Generalized Vandermonde Matrices and Determinants in Electromagnetic Compatibility

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Vandermonde Matrices and Determinants in Electromagnetic Compatibility Mälardalen University Press Licentiate Theses No. 253 Mälardalen University Press Licentiate Theses No. 253 GENERALIZED VANDERMONDE MATRICES AND DETERMINANTS IN ELECTROMAGNETIC COMPATIBILITY GENERALIZED VANDERMONDE MATRICES AND DETERMINANTS IN ELECTROMAGNETIC COMPATIBILITY Karl Lundengård Karl2017 Lundengård 2017 School of Education, Culture and Communication School of Education, Culture and Communication Abstract Matrices whose rows (or columns) consists of monomials of sequential powers are called Vandermonde matrices and can be used to describe several useful concepts and have properties that can be helpful for solving many kinds of problems. In this thesis we will discuss this matrix and some of its properties as well as a generalization of it and how it can be applied to curve fitting discharge current for the purpose of ensuring electromagnetic compatibility. In the first chapter the basic theory for later chapters is introduced. This includes the Vandermonde matrix and some of its properties, history, appli- cations and generalizations, interpolation and regression problems, optimal experiment design and modelling of electrostatic discharge currents with the purpose to ensure electromagnetic compatibility. The second chapter focuses on finding the extreme points for the deter- minant for the Vandermonde matrix on various surfaces including spheres, ellipsoids, cylinders and tori. The extreme points are analysed in three dimensions or more. The third chapter discusses fitting a particular model called the p-peaked Analytically Extended Function (AEF) to data taken either from a stan- dard for electromagnetic compatibility or experimental measurements. More specifically the AEF will be fitted to discharge currents from the IEC 62305-1 and IEC 61000-4-2 standards for lightning protection and electrostatic dis- charge immunity as well as some experimentally measured data of similar phenomena. Copyright © Karl Lundengård, 2017 ISBN 978-91-7485-312-4 ISSN 1651-9256 Printed by E-Print AB, Stockholm, Sweden 1 Abstract Matrices whose rows (or columns) consists of monomials of sequential powers are called Vandermonde matrices and can be used to describe several useful concepts and have properties that can be helpful for solving many kinds of problems. In this thesis we will discuss this matrix and some of its properties as well as a generalization of it and how it can be applied to curve fitting discharge current for the purpose of ensuring electromagnetic compatibility. In the first chapter the basic theory for later chapters is introduced. This includes the Vandermonde matrix and some of its properties, history, appli- cations and generalizations, interpolation and regression problems, optimal experiment design and modelling of electrostatic discharge currents with the purpose to ensure electromagnetic compatibility. The second chapter focuses on finding the extreme points for the deter- minant for the Vandermonde matrix on various surfaces including spheres, ellipsoids, cylinders and tori. The extreme points are analysed in three dimensions or more. The third chapter discusses fitting a particular model called the p-peaked Analytically Extended Function (AEF) to data taken either from a stan- dard for electromagnetic compatibility or experimental measurements. More specifically the AEF will be fitted to discharge currents from the IEC 62305-1 and IEC 61000-4-2 standards for lightning protection and electrostatic dis- charge immunity as well as some experimentally measured data of similar phenomena. 1 Acknowledgements First I am very grateful to my closest colleagues. My main supervisor Pro- fessor Sergei Silvestrov introduced the Vandermonde matrix to me and sug- gested the research pursued in this thesis. From him and my co-supervisor Professor Anatoliy Malyarenko I have learned invaluable lessons about math- ematics research that will be very important in my future career. Optimising the Vandermonde determinant would have been less fruitful and engaging without fellow research student Jonas Osterberg¨ whose skills and ideas com- plement my own very well. I am very glad to have worked with Dr. Milica Ranˇci´cwhose conscientiousness, work ethic and patience when introducing me to the world of electromagnetic compatibility and developing and evalu- ating the ideas used in this thesis makes me consider her a true role model for an interdisciplinary researcher. The research related to electromagnetic compatibility owes a lot to the regular input from Assistant Professor Vesna Javor to ensure the relevance and quality of the work. I am also grateful to the other research students at M¨alardalen University that I have worked alongside with. I have found the environment at the School for Education, Culture and Communication at M¨alardalen University excellent and full of friendly, helpful and skilled co-workers. Last but not least a very heartfelt thank you to my family for all the support, encouragement and assistance you have given me. A special men- tion to my sister for help with translating from 18th century French. I am also very sad that I will not get to spend time explaining the contents of this thesis to my father whose entire mathematics career consisted of unsuc- cessfully solving a single problem on the blackboard in 9th grade. On the other hand, my mother’s modest academic credentials have never stopped her from engaging, discussing and enjoying my work, interests and other new knowledge so I am sure she will keep me busy. Without the ideas, requests, remarks, questions, encouragements and patience of those around me this work would not have been completed. Karl Lundeng˚ard V¨aster˚as, March, 2017 3 Acknowledgements First I am very grateful to my closest colleagues. My main supervisor Pro- fessor Sergei Silvestrov introduced the Vandermonde matrix to me and sug- gested the research pursued in this thesis. From him and my co-supervisor Professor Anatoliy Malyarenko I have learned invaluable lessons about math- ematics research that will be very important in my future career. Optimising the Vandermonde determinant would have been less fruitful and engaging without fellow research student Jonas Osterberg¨ whose skills and ideas com- plement my own very well. I am very glad to have worked with Dr. Milica Ranˇci´cwhose conscientiousness, work ethic and patience when introducing me to the world of electromagnetic compatibility and developing and evalu- ating the ideas used in this thesis makes me consider her a true role model for an interdisciplinary researcher. The research related to electromagnetic compatibility owes a lot to the regular input from Assistant Professor Vesna Javor to ensure the relevance and quality of the work. I am also grateful to the other research students at M¨alardalen University that I have worked alongside with. I have found the environment at the School for Education, Culture and Communication at M¨alardalen University excellent and full of friendly, helpful and skilled co-workers. Last but not least a very heartfelt thank you to my family for all the support, encouragement and assistance you have given me. A special men- tion to my sister for help with translating from 18th century French. I am also very sad that I will not get to spend time explaining the contents of this thesis to my father whose entire mathematics career consisted of unsuc- cessfully solving a single problem on the blackboard in 9th grade. On the other hand, my mother’s modest academic credentials have never stopped her from engaging, discussing and enjoying my work, interests and other new knowledge so I am sure she will keep me busy. Without the ideas, requests, remarks, questions, encouragements and patience of those around me this work would not have been completed. Karl Lundeng˚ard V¨aster˚as, March, 2017 3 Generalized Vandermonde matrices and determinants in electromagnetic compatibility Popul¨arvetenskaplig sammanfattning Popular-science summary Denna licentiatuppsats behandlar tv˚aolika ¨amnen, optimering av determi- This licentiate thesis discusses two different topics, optimisation of the Van- nanten av Vandermonde-matrisen ¨over olika volymer i olika dimensioner och dermonde determinant over different volumes in various dimensions and how hur en viss klass av funktioner kan anv¨andas f¨or att approximera str¨ommen a certain class of functions can be used to approximate the current in elec- i elektrostatiska urladdningar som anv¨ands f¨or att s¨akerst¨alla elektromag- trostatic discharges used in ensuring electromagnetic compatibility. An ex- netisk kompatibilitet. En exempel p˚akopplingen mellan de tv˚aomr˚adena ample of how the two topics can be connected is given in the final part of ges i den sista delen av uppsatsen. the thesis. En Vandermonde-matris ¨aren matris d¨arraderna (eller kolonnerna) ges A Vandermonde matrix is a matrix with rows (or column) given by av stigande potenser och s˚adana matriser f¨orekommer i m˚anga olika sam- increasing powers and such matrices appear in many different circumstances, manhang, b˚ade inom abstrakt matematik och till¨ampningar inom andra both in abstract mathematics and various applications. In the thesis a brief omr˚aden. I uppsatsen ges en kort genomg˚ang av Vandermonde-matrisens history of the Vandermonde matrix is given as well as a discussion of some historia och till¨ampningar av den och n˚agra besl¨aktade matriser. Fokus applications of the Vandermonde matrix and some related matrices. The ligger p˚ainterpolation or regression vilket kortfattat kan beskrivas som main topics will be interpolation and regression which can be described as metoder f¨or att anpassa en matematisk beskrivning till given data, t.ex. methods for fitting a mathematical description to collected data from for fr˚anexperimentella m¨atningar. example experimental measurements. Determinanten av en matris ¨arett tal som ber¨aknas fr˚anmatrisens el- The determinant of a matrix is a number calculated from the elements of ement och som p˚aett kompakt s¨att kan beskriva flera olika egenskaper av the matrix in a particular way and it can describe properties of the matrix matrisen eller systemet som matrisen beskriver. I denna uppsats diskuteras or the system it describes in a compact way.
Recommended publications
  • Lecture Notes: Qubit Representations and Rotations
    Phys 711 Topics in Particles & Fields | Spring 2013 | Lecture 1 | v0.3 Lecture notes: Qubit representations and rotations Jeffrey Yepez Department of Physics and Astronomy University of Hawai`i at Manoa Watanabe Hall, 2505 Correa Road Honolulu, Hawai`i 96822 E-mail: [email protected] www.phys.hawaii.edu/∼yepez (Dated: January 9, 2013) Contents mathematical object (an abstraction of a two-state quan- tum object) with a \one" state and a \zero" state: I. What is a qubit? 1 1 0 II. Time-dependent qubits states 2 jqi = αj0i + βj1i = α + β ; (1) 0 1 III. Qubit representations 2 A. Hilbert space representation 2 where α and β are complex numbers. These complex B. SU(2) and O(3) representations 2 numbers are called amplitudes. The basis states are or- IV. Rotation by similarity transformation 3 thonormal V. Rotation transformation in exponential form 5 h0j0i = h1j1i = 1 (2a) VI. Composition of qubit rotations 7 h0j1i = h1j0i = 0: (2b) A. Special case of equal angles 7 In general, the qubit jqi in (1) is said to be in a superpo- VII. Example composite rotation 7 sition state of the two logical basis states j0i and j1i. If References 9 α and β are complex, it would seem that a qubit should have four free real-valued parameters (two magnitudes and two phases): I. WHAT IS A QUBIT? iθ0 α φ0 e jqi = = iθ1 : (3) Let us begin by introducing some notation: β φ1 e 1 state (called \minus" on the Bloch sphere) Yet, for a qubit to contain only one classical bit of infor- 0 mation, the qubit need only be unimodular (normalized j1i = the alternate symbol is |−i 1 to unity) α∗α + β∗β = 1: (4) 0 state (called \plus" on the Bloch sphere) 1 Hence it lives on the complex unit circle, depicted on the j0i = the alternate symbol is j+i: 0 top of Figure 1.
    [Show full text]
  • 1111: Linear Algebra I
    1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 11 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 11 1 / 13 Previously on. Theorem. Let A be an n × n-matrix, and b a vector with n entries. The following statements are equivalent: (a) the homogeneous system Ax = 0 has only the trivial solution x = 0; (b) the reduced row echelon form of A is In; (c) det(A) 6= 0; (d) the matrix A is invertible; (e) the system Ax = b has exactly one solution. A very important consequence (finite dimensional Fredholm alternative): For an n × n-matrix A, the system Ax = b either has exactly one solution for every b, or has infinitely many solutions for some choices of b and no solutions for some other choices. In particular, to prove that Ax = b has solutions for every b, it is enough to prove that Ax = 0 has only the trivial solution. Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 11 2 / 13 An example for the Fredholm alternative Let us consider the following question: Given some numbers in the first row, the last row, the first column, and the last column of an n × n-matrix, is it possible to fill the numbers in all the remaining slots in a way that each of them is the average of its 4 neighbours? This is the \discrete Dirichlet problem", a finite grid approximation to many foundational questions of mathematical physics. Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 11 3 / 13 An example for the Fredholm alternative For instance, for n = 4 we may face the following problem: find a; b; c; d to put in the matrix 0 4 3 0 1:51 B 1 a b -1C B C @0:5 c d 2 A 2:1 4 2 1 so that 1 a = 4 (3 + 1 + b + c); 1 8b = 4 (a + 0 - 1 + d); >c = 1 (a + 0:5 + d + 4); > 4 < 1 d = 4 (b + c + 2 + 2): > > This is a system with 4:> equations and 4 unknowns.
    [Show full text]
  • On Multivariate Interpolation
    On Multivariate Interpolation Peter J. Olver† School of Mathematics University of Minnesota Minneapolis, MN 55455 U.S.A. [email protected] http://www.math.umn.edu/∼olver Abstract. A new approach to interpolation theory for functions of several variables is proposed. We develop a multivariate divided difference calculus based on the theory of non-commutative quasi-determinants. In addition, intriguing explicit formulae that connect the classical finite difference interpolation coefficients for univariate curves with multivariate interpolation coefficients for higher dimensional submanifolds are established. † Supported in part by NSF Grant DMS 11–08894. April 6, 2016 1 1. Introduction. Interpolation theory for functions of a single variable has a long and distinguished his- tory, dating back to Newton’s fundamental interpolation formula and the classical calculus of finite differences, [7, 47, 58, 64]. Standard numerical approximations to derivatives and many numerical integration methods for differential equations are based on the finite dif- ference calculus. However, historically, no comparable calculus was developed for functions of more than one variable. If one looks up multivariate interpolation in the classical books, one is essentially restricted to rectangular, or, slightly more generally, separable grids, over which the formulae are a simple adaptation of the univariate divided difference calculus. See [19] for historical details. Starting with G. Birkhoff, [2] (who was, coincidentally, my thesis advisor), recent years have seen a renewed level of interest in multivariate interpolation among both pure and applied researchers; see [18] for a fairly recent survey containing an extensive bibli- ography. De Boor and Ron, [8, 12, 13], and Sauer and Xu, [61, 10, 65], have systemati- cally studied the polynomial case.
    [Show full text]
  • The Many Faces of Alternating-Sign Matrices
    The many faces of alternating-sign matrices James Propp Department of Mathematics University of Wisconsin – Madison, Wisconsin, USA [email protected] August 15, 2002 Abstract I give a survey of different combinatorial forms of alternating-sign ma- trices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, three- colorings, monotone triangles, tetrahedral order ideals, square ice, gasket- and-basket tilings and full packings of loops. (This article has been pub- lished in a conference edition of the journal Discrete Mathematics and Theo- retical Computer Science, entitled “Discrete Models: Combinatorics, Com- putation, and Geometry,” edited by R. Cori, J. Mazoyer, M. Morvan, and R. Mosseri, and published in July 2001 in cooperation with le Maison de l’Informatique et des Mathematiques´ Discretes,` Paris, France: ISSN 1365- 8050, http://dmtcs.lori.fr.) 1 Introduction An alternating-sign matrix of order n is an n-by-n array of 0’s, 1’s and 1’s with the property that in each row and each column, the non-zero entries alter- nate in sign, beginning and ending with a 1. For example, Figure 1 shows an Supported by grants from the National Science Foundation and the National Security Agency. 1 alternating-sign matrix (ASM for short) of order 4. 0 100 1 1 10 0001 0 100 Figure 1: An alternating-sign matrix of order 4. Figure 2 exhibits all seven of the ASMs of order 3. 001 001 0 10 0 10 0 10 100 001 1 1 1 100 0 10 100 0 10 0 10 100 100 100 001 0 10 001 0 10 001 Figure 2: The seven alternating-sign matrices of order 3.
    [Show full text]
  • Lecture 13: Simple Linear Regression in Matrix Format
    11:55 Wednesday 14th October, 2015 See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 13: Simple Linear Regression in Matrix Format 36-401, Section B, Fall 2015 13 October 2015 Contents 1 Least Squares in Matrix Form 2 1.1 The Basic Matrices . .2 1.2 Mean Squared Error . .3 1.3 Minimizing the MSE . .4 2 Fitted Values and Residuals 5 2.1 Residuals . .7 2.2 Expectations and Covariances . .7 3 Sampling Distribution of Estimators 8 4 Derivatives with Respect to Vectors 9 4.1 Second Derivatives . 11 4.2 Maxima and Minima . 11 5 Expectations and Variances with Vectors and Matrices 12 6 Further Reading 13 1 2 So far, we have not used any notions, or notation, that goes beyond basic algebra and calculus (and probability). This has forced us to do a fair amount of book-keeping, as it were by hand. This is just about tolerable for the simple linear model, with one predictor variable. It will get intolerable if we have multiple predictor variables. Fortunately, a little application of linear algebra will let us abstract away from a lot of the book-keeping details, and make multiple linear regression hardly more complicated than the simple version1. These notes will not remind you of how matrix algebra works. However, they will review some results about calculus with matrices, and about expectations and variances with vectors and matrices. Throughout, bold-faced letters will denote matrices, as a as opposed to a scalar a. 1 Least Squares in Matrix Form Our data consists of n paired observations of the predictor variable X and the response variable Y , i.e., (x1; y1);::: (xn; yn).
    [Show full text]
  • Introducing the Game Design Matrix: a Step-By-Step Process for Creating Serious Games
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2020 Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games Aaron J. Pendleton Follow this and additional works at: https://scholar.afit.edu/etd Part of the Educational Assessment, Evaluation, and Research Commons, Game Design Commons, and the Instructional Media Design Commons Recommended Citation Pendleton, Aaron J., "Introducing the Game Design Matrix: A Step-by-Step Process for Creating Serious Games" (2020). Theses and Dissertations. 4347. https://scholar.afit.edu/etd/4347 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING SERIOUS GAMES THESIS Aaron J. Pendleton, Captain, USAF AFIT-ENG-MS-20-M-054 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-20-M-054 INTRODUCING THE GAME DESIGN MATRIX: A STEP-BY-STEP PROCESS FOR CREATING LEARNING OBJECTIVE BASED SERIOUS GAMES THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Cyberspace Operations Aaron J.
    [Show full text]
  • SUPPLEMENTARY MATERIAL: I. Fitting of the Hessian Matrix
    Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2010 1 SUPPLEMENTARY MATERIAL: I. Fitting of the Hessian matrix In the fitting of the Hessian matrix elements as functions of the reaction coordinate, one can take advantage of symmetry. The non-diagonal elements may be written in the form of numerical derivatives as E(Δα, Δβ ) − E(Δα,−Δβ ) − E(−Δα, Δβ ) + E(−Δα,−Δβ ) H (α, β ) = . (S1) 4δ 2 Here, α and β label any of the 15 atomic coordinates in {Cx, Cy, …, H4z}, E(Δα,Δβ) denotes the DFT energy of CH4 interacting with Ni(111) with a small displacement along α and β, and δ the small displacement used in the second order differencing. For example, the H(Cx,Cy) (or H(Cy,Cx)) is 0, since E(ΔCx ,ΔC y ) = E(ΔC x ,−ΔC y ) and E(−ΔCx ,ΔC y ) = E(−ΔCx ,−ΔC y ) . From Eq.S1, one can deduce the symmetry properties of H of methane interacting with Ni(111) in a geometry belonging to the Cs symmetry (Fig. 1 in the paper): (1) there are always 18 zero elements in the lower triangle of the Hessian matrix (see Fig. S1), (2) the main block matrices A, B and F (see Fig. S1) can be split up in six 3×3 sub-blocks, namely A1, A2 , B1, B2, F1 and F2, in which the absolute values of all the corresponding elements in the sub-blocks corresponding to each other are numerically identical to each other except for the sign of their off-diagonal elements, (3) the triangular matrices E1 and E2 are also numerically the same except for the sign of their off-diagonal terms, (4) the 1 Supplementary Material (ESI) for PCCP This journal is © the Owner Societies 2010 2 block D is a unique block and its off-diagonal terms differ only from each other in their sign.
    [Show full text]
  • EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS June 6
    EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEMS HAW-REN FANG∗ AND DIANNE P. O’LEARY† June 6, 2010 Abstract. A Euclidean distance matrix is one in which the (i, j) entry specifies the squared distance between particle i and particle j. Given a partially-specified symmetric matrix A with zero diagonal, the Euclidean distance matrix completion problem (EDMCP) is to determine the unspecified entries to make A a Euclidean distance matrix. We survey three different approaches to solving the EDMCP. We advocate expressing the EDMCP as a nonconvex optimization problem using the particle positions as variables and solving using a modified Newton or quasi-Newton method. To avoid local minima, we develop a randomized initial- ization technique that involves a nonlinear version of the classical multidimensional scaling, and a dimensionality relaxation scheme with optional weighting. Our experiments show that the method easily solves the artificial problems introduced by Mor´e and Wu. It also solves the 12 much more difficult protein fragment problems introduced by Hen- drickson, and the 6 larger protein problems introduced by Grooms, Lewis, and Trosset. Key words. distance geometry, Euclidean distance matrices, global optimization, dimensional- ity relaxation, modified Cholesky factorizations, molecular conformation AMS subject classifications. 49M15, 65K05, 90C26, 92E10 1. Introduction. Given the distances between each pair of n particles in Rr, n r, it is easy to determine the relative positions of the particles. In many applications,≥ though, we are given only some of the distances and we would like to determine the missing distances and thus the particle positions. We focus in this paper on algorithms to solve this distance completion problem.
    [Show full text]
  • The Many Faces of Alternating-Sign Matrices
    The many faces of alternating-sign matrices James Propp∗ Department of Mathematics University of Wisconsin – Madison, Wisconsin, USA [email protected] June 1, 2018 Abstract I give a survey of different combinatorial forms of alternating-sign ma- trices, starting with the original form introduced by Mills, Robbins and Rumsey as well as corner-sum matrices, height-function matrices, three- colorings, monotone triangles, tetrahedral order ideals, square ice, gasket- and-basket tilings and full packings of loops. (This article has been pub- lished in a conference edition of the journal Discrete Mathematics and Theo- retical Computer Science, entitled “Discrete Models: Combinatorics, Com- putation, and Geometry,” edited by R. Cori, J. Mazoyer, M. Morvan, and R. Mosseri, and published in July 2001 in cooperation with le Maison de l’Informatique et des Math´ematiques Discr`etes, Paris, France: ISSN 1365- 8050, http://dmtcs.lori.fr.) 1 Introduction arXiv:math/0208125v1 [math.CO] 15 Aug 2002 An alternating-sign matrix of order n is an n-by-n array of 0’s, +1’s and −1’s with the property that in each row and each column, the non-zero entries alter- nate in sign, beginning and ending with a +1. For example, Figure 1 shows an ∗Supported by grants from the National Science Foundation and the National Security Agency. 1 alternating-sign matrix (ASM for short) of order 4. 0 +1 0 0 +1 −1 +1 0 0 0 0 +1 0 +1 0 0 Figure 1: An alternating-sign matrix of order 4. Figure 2 exhibits all seven of the ASMs of order 3.
    [Show full text]
  • QUADRATIC FORMS and DEFINITE MATRICES 1.1. Definition of A
    QUADRATIC FORMS AND DEFINITE MATRICES 1. DEFINITION AND CLASSIFICATION OF QUADRATIC FORMS 1.1. Definition of a quadratic form. Let A denote an n x n symmetric matrix with real entries and let x denote an n x 1 column vector. Then Q = x’Ax is said to be a quadratic form. Note that a11 ··· a1n . x1 Q = x´Ax =(x1...xn) . xn an1 ··· ann P a1ixi . =(x1,x2, ··· ,xn) . P anixi 2 (1) = a11x1 + a12x1x2 + ... + a1nx1xn 2 + a21x2x1 + a22x2 + ... + a2nx2xn + ... + ... + ... 2 + an1xnx1 + an2xnx2 + ... + annxn = Pi ≤ j aij xi xj For example, consider the matrix 12 A = 21 and the vector x. Q is given by 0 12x1 Q = x Ax =[x1 x2] 21 x2 x1 =[x1 +2x2 2 x1 + x2 ] x2 2 2 = x1 +2x1 x2 +2x1 x2 + x2 2 2 = x1 +4x1 x2 + x2 1.2. Classification of the quadratic form Q = x0Ax: A quadratic form is said to be: a: negative definite: Q<0 when x =06 b: negative semidefinite: Q ≤ 0 for all x and Q =0for some x =06 c: positive definite: Q>0 when x =06 d: positive semidefinite: Q ≥ 0 for all x and Q = 0 for some x =06 e: indefinite: Q>0 for some x and Q<0 for some other x Date: September 14, 2004. 1 2 QUADRATIC FORMS AND DEFINITE MATRICES Consider as an example the 3x3 diagonal matrix D below and a general 3 element vector x. 100 D = 020 004 The general quadratic form is given by 100 x1 0 Q = x Ax =[x1 x2 x3] 020 x2 004 x3 x1 =[x 2 x 4 x ] x2 1 2 3 x3 2 2 2 = x1 +2x2 +4x3 Note that for any real vector x =06 , that Q will be positive, because the square of any number is positive, the coefficients of the squared terms are positive and the sum of positive numbers is always positive.
    [Show full text]
  • Paper We Shall Assume That All Logs Are Base 2
    Maximally Recoverable Codes: the Bounded Case Venkata Gandikota ∗ Elena Grigorescu y Clayton Thomas z Minshen Zhu x Abstract Modern distributed storage systems employ Maximally Recoverable codes that aim to bal- ance failure recovery capabilities with encoding/decoding efficiency tradeoffs. Recent works of Gopalan et al [SODA 2017] and Kane et al [FOCS 2017] show that the alphabet size of grid-like topologies of practical interest must be large, a feature that hampers decoding efficiency. To bypass such shortcomings, in this work we initiate the study of a weaker version of recoverability, where instead of being able to correct all correctable erasure patterns (as is the case for maximal recoverability), we only require to correct all erasure patterns of bounded size. The study of this notion reduces to a variant of a combinatorial problem studied in the literature, which is interesting in its own right. We study the alphabet size of codes withstanding all erasure patterns of small (constant) size. We believe the questions we propose are relevant to both real storage systems and combinatorial analysis, and merit further study. 1 Introduction Modern distributed storage systems need to address the challenge of storing large amounts of data, with small overhead, while providing reliable recovery in the face of failures. Unlike in com- munication settings, if a failure occurs in a storage system, it is typically easy to detect where it occurs (e.g., rack or data center failure are obvious to the system). Hence, recent trends in practical systems adopt erasure coding schemes with fast encoding and decoding capabilities [BHH13, HSX+12, SLR+14].
    [Show full text]
  • Theory of Angular Momentum and Spin
    Chapter 5 Theory of Angular Momentum and Spin Rotational symmetry transformations, the group SO(3) of the associated rotation matrices and the 1 corresponding transformation matrices of spin{ 2 states forming the group SU(2) occupy a very important position in physics. The reason is that these transformations and groups are closely tied to the properties of elementary particles, the building blocks of matter, but also to the properties of composite systems. Examples of the latter with particularly simple transformation properties are closed shell atoms, e.g., helium, neon, argon, the magic number nuclei like carbon, or the proton and the neutron made up of three quarks, all composite systems which appear spherical as far as their charge distribution is concerned. In this section we want to investigate how elementary and composite systems are described. To develop a systematic description of rotational properties of composite quantum systems the consideration of rotational transformations is the best starting point. As an illustration we will consider first rotational transformations acting on vectors ~r in 3-dimensional space, i.e., ~r R3, 2 we will then consider transformations of wavefunctions (~r) of single particles in R3, and finally N transformations of products of wavefunctions like j(~rj) which represent a system of N (spin- Qj=1 zero) particles in R3. We will also review below the well-known fact that spin states under rotations behave essentially identical to angular momentum states, i.e., we will find that the algebraic properties of operators governing spatial and spin rotation are identical and that the results derived for products of angular momentum states can be applied to products of spin states or a combination of angular momentum and spin states.
    [Show full text]