Mountain Wave Turbulence in the Lee of the Hex River Mountains
Total Page:16
File Type:pdf, Size:1020Kb
Mountain wave turbulence in the lee of the Hex River Mountains By Deon Van Der Mescht Thesis presented in fulfilment of the requirements for the degree of Master of Science in Geography and Environmental Studies at the Stellenbosch University. Supervisor: Mr PJ Eloff Faculty of Arts and Social Sciences Department of Geography and Environmental Studies March 2012 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2012 Copyright © 2012 University of Stellenbosch All rights reserved Stellenbosch University http://scholar.sun.ac.za iii ABSTRACT Despite recorded mountain wave related aircraft accidents in South Africa, very little literature exists on South African mountain waves. This study discusses the results of a mountain wave study in the Hex River Mountains in the Western Cape province of South Africa. The aim of this study was to measure mountain wave turbulence on the lee side of the mountains by conducting weather balloon soundings on the upwind and lee sides of the mountains. These soundings were performed over four days in the winter and spring, with each field day representing different synoptic scale weather conditions. Lee wave rotors were detected from several of the lee wave soundings. Significant values of horizontal vorticity around a north-south axis (y-component horizontal vorticity) were detected. The instrumentation was highly sensitive and able to measure even weak up and downdraft velocities associated with the rotors. Strong downdrafts were measured in some mountain waves, but no strong downdrafts were detected near rotors which occurred below the mountain waves. The two dimensional positions of balloons were only available after a considerable amount of reanalysis. If this data can be made available onsite shortly after soundings, it can be used to decide where to move launch sites to, in order to obtain optimal results. Keywords: balloon soundings, mountain waves, rotors, y-component horizontal vorticity Stellenbosch University http://scholar.sun.ac.za iv OPSOMMING Ten spyte van gedokumenteerde berggolf-verwante vliegongelukke, bestaan baie min literatuur oor Suid Afrikaanse berggolwe. Hierdie tesis bespreek die resultate van ‘n berggolfstudie in die Hexrivier Berge in the Weskaap Provinsie van Suid- Afrika. Die doel van hierdie studie was om die berggolfturbulensie aan die lykant van die berge te meet deur middel van weerballonopstygings aan beide die wind- en lykante van die berge. Hierdie opstygings is oor ‘n tydperk van vier winter en lente dae uitgevoer, met elkeen van die dae wat verskillende sinoptiese weersomstandighede verteenwoordig het. Rotors is waargeneem in die data van verskeie ballonopstygings wat aan die lykant uitgevoer is. Beduidende waardes van horisontale vortisiteit rondom ‘n noord-suid as (y-komponent horisontale vortisiteit) is gemeet. Die instrumentasie was hoogs sensitief en kon selfs swak op- en afstrominge meet. Sterk afstrominge is waargeneem in berggolwe, maar nie in die omgewing van rotors wat onder die berggolwe voorgekom het nie. Die twee-dimensionele posisies van ballonne was slegs na aansienlike heranaliese van die data beskikbaar. Indien hierdie data kort na opstygings beskikbaar is tydens veldwerk, kan dit help met besluite oor alternatiewe posisies waarvandaan ballonopstygings gedoen kan word ten einde optimale resultate te bekom. Sleutelwoorde: ballonopstygings, berggolwe, rotors, y-komponent horisontale vortisiteit Stellenbosch University http://scholar.sun.ac.za v ACKNOWLEDGEMENTS The author wishes to thank the following individuals and organizations for their support: Dirk Uys from Aircraft Owners and Pilot’s Association of South Africa for a reconnaissance flight over the study area and the use of a vehicle during the first field trip. Intermet Africa for the use of their sounding equipment, technical support, software support and research material. Didi and Waldo from the Matroosberg Reserve for accommodation and technical support during the first field trip. Colleagues from the South African Weather Service: Karen Marais and Anastasia Demertzis for assistance with research material, Colleen de Villiers for supplying automatic weather station data and Tennielle Jacobs for advice on structural elements of the thesis. Chris Booysens from the South African Aero Club for supplying topographic maps on CD. Pilots Chris van Hoof, Richard Sandy as well as members of the Stellenbosch Flying Club for financial assistance. Jonathan Smailes for his assistance during the second field trip. The author’s wife, Michelle, for support and patience during the months of work on the thesis. Stellenbosch University http://scholar.sun.ac.za vi CONTENTS 1 INTRODUCTION TO MOUNTAIN WAVES AND THE RESEARCH PROJECT 1 1.1 Definition of mountain waves 1 1.2 Classes of mountain waves 1 1.3 Features of trapped lee waves 2 1.4 Prerequisites for the formation of mountain waves 4 1.5 Literature review 5 1.5.1 Historic Overview 5 1.5.2 Aircraft accidents: airliners 10 1.5.3 Aircraft accidents: General aviation 11 1.6 Research problem 12 1.7 Research aim 13 1.8 Research objectives 13 1.9 Study area 13 2 DATA COLLECTION AND PROCESSING 15 2.1 Forecasting mountain wave events 15 2.2 Sounding hardware and software 16 2.3 D-Met sounding data 16 2.4 Pilot reports 17 2.5 Calculations used for processing the data 17 2.5.1 Potential temperature 17 2.5.2 Scorer parameter 18 2.5.3 Wavelength 19 2.5.4 -wind and -wind 19 2.5.5 Converting GPS data to change in horizontal distance along the -component 20 2.5.6 Vertical velocity, Balloon ascent rate and Geopotential height 20 2.5.7 Richardson number 22 Stellenbosch University http://scholar.sun.ac.za vii 2.5.8 Horizontal vorticity 23 2.5.9 International standard atmosphere (ISA) 24 2.5.10 Half-width of mountain 24 3 FIELD WORK 22 JULY 2010 26 3.1 Surface conditions (NCEP reanalysis) 26 3.2 Upper air conditions (NCEP reanalysis) 26 3.3 Upper air conditions (S1 sounding data) 29 3.4 Surface conditions (SAWS data) 29 3.5 Sounding locations and objectives 31 3.6 Sounding 1 (S1) 33 3.6.1 S1 Profile 33 3.6.2 S1 Potential temperature () 34 3.6.3 S1 Scorer parameter 35 3.6.4 Lee wavelength 37 3.7 Sounding 2 (S2) 38 3.7.1 S2 Profile 39 3.7.2 S2 Richardson number () 41 3.7.3 S2 Horizontal vorticity () 41 3.7.4 S2 Balloon ascent rate 43 3.7.5 S2 Vertical velocity 45 3.7.6 S2 Potential temperature (θ) and isopleth estimation 48 3.8 Sounding 3 (S3) 51 3.8.1 S3 Profile 51 3.8.2 S3 Richardson number () 53 3.8.3 S3 Horizontal vorticity () 54 3.8.4 S3 Balloon ascent rate 55 3.8.5 S3 Vertical velocity 56 3.8.6 S3 Potential temperature () and isopleth estimation 58 3.9 Sounding 4 (S4) 61 Stellenbosch University http://scholar.sun.ac.za viii 3.9.1 S4 Profile and track 61 3.9.2 S4 Richardson Number () 63 3.9.3 S4 Horizontal Vorticity () 63 3.9.4 S4 Balloon ascent rate 65 3.9.5 S4 Vertical velocity 67 3.9.6 S4 Potential Temperature () and Isopleths estimation 69 3.10 Comparison between S2, S3 and S4 features 74 3.11 Aircraft observations 76 3.12 Overview of 22 July 2010 77 4 FIELD WORK 23 JULY 2010 78 4.1 Surface conditions (NCEP reanalysis) 78 4.2 Upper air conditions (NCEP reanalysis) 78 4.3 Upper air conditions (S5 data) 80 4.4 Surface conditions (SAWS data) 80 4.5 Surface conditions (onsite) 82 4.6 Sounding locations and objectives 83 4.7 Sounding 5 84 4.7.1 S5 Profile 84 4.7.2 S5 Potential temperature 85 4.7.3 S5 Scorer parameter 86 4.7.4 Lee wavelength 87 4.8 Sounding 6 (S6) 88 4.8.1 S6 Profile and track 88 4.8.2 S6 Richardson Number () 90 4.8.3 S6 Horizontal Vorticity () 90 4.8.4 S6 Balloon ascent rate 91 4.8.5 S6 Vertical velocity 92 4.8.6 S6 Potential temperature () and isopleth estimation 93 4.9 Sounding 7 (S7) 96 4.9.1 S7 Profile 96 Stellenbosch University http://scholar.sun.ac.za ix 4.9.2 S7 Richardson number () 97 4.9.3 S7 Horizontal vorticity () 98 4.9.4 S7 Ascent Rate 98 4.9.5 S7 Vertical Velocity 99 4.9.6 S7 Potential temperature () and isopleths estimation 102 4.10 Sounding 8 (S8) 104 4.10.1 S8 Profile 104 4.10.2 S8 Richardson Number () 105 4.10.3 S8 Horizontal vorticity () 106 4.10.4 S8 Ascent Rate 106 4.10.5 S8 Vertical Velocity 107 4.10.6 S8 Potential temperature () and isopleth estimation 108 4.11 Field work summary for 22 and 23 July 2010 110 4.11.1 Synoptic conditions and observations 110 4.11.2 Main mountain wave features 111 4.11.3 Sub-wave features 112 5 FIELD WORK 17 AND 18 SEPTEMBER 2010 116 5.1 Surface conditions on 17 September 2010 (NCEP reanalysis) 116 5.2 Upper air conditions on 17 September 2010 (NCEP reanalysis) 117 5.3 Upper air conditions on 17 September 2010 (S9 data) 118 5.4 Surface conditions on 17 September 2010 (SAWS data) 118 5.5 Sounding locations and objectives on 17 September 2010 119 5.6 On-site observations on 17 September 2010 120 5.7 Surface conditions on 18 September 2010 (NCEP reanalysis) 122 5.8 Upper air conditions on 18 September 2010 (NCEP reanalysis) 123 5.9 Upper air conditions on 18 September 2010 (S12 data) 125 5.10 Surface conditions on 18 September 2010 (SAWS data) 126 5.11 Sounding locations and objectives on 18 September 2010 127 5.12 On-site observations on 18 September 2010 128 Stellenbosch