Gypsum Survey 2011 Final
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Partial Flora Survey Rottnest Island Golf Course
PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge -
Transline Infrastructure Corridor Vegetation and Flora Survey
TROPICANA GOLD PROJECT Tropicana – Transline Infrastructure Corridor Vegetation and Flora Survey 025 Wellington Street WEST PERTH WA 6005 phone: 9322 1944 fax: 9322 1599 ACN 088 821 425 ABN 63 088 821 425 www.ecologia.com.au Tropicana Gold Project Tropicana Joint Venture Tropicana-Transline Infrastructure Corridor: Vegetation and Flora Survey July 2009 Tropicana Gold Project Tropicana-Transline Infrastructure Corridor Flora and Vegetation Survey © ecologia Environment (2009). Reproduction of this report in whole or in part by electronic, mechanical or chemical means, including photocopying, recording or by any information storage and retrieval system, in any language, is strictly prohibited without the express approval of ecologia Environment and/or AngloGold Ashanti Australia. Restrictions on Use This report has been prepared specifically for AngloGold Ashanti Australia. Neither the report nor its contents may be referred to or quoted in any statement, study, report, application, prospectus, loan, or other agreement document, without the express approval of ecologia Environment and/or AngloGold Ashanti Australia. ecologia Environment 1025 Wellington St West Perth WA 6005 Ph: 08 9322 1944 Fax: 08 9322 1599 Email: [email protected] i Tropicana Gold Project Tropicana-Transline Infrastructure Corridor Flora and Vegetation Survey Executive Summary The Tropicana JV (TJV) is currently undertaking pre-feasibility studies on the viability of establishing the Tropicana Gold Project (TGP), which is centred on the Tropicana and Havana gold prospects. The proposed TGP is located approximately 330 km east north-east of Kalgoorlie, and 15 km west of the Plumridge Lakes Nature Reserve, on the western edge of the Great Victoria Desert (GVD) biogeographic region of Western Australia. -
Their Botany, Essential Oils and Uses 6.86 MB
MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy, Lyndley A. Craven and John C. Doran MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy School of Chemistry, University of New South Wales Lyndley A. Craven Australian National Herbarium, CSIRO Plant Industry John C. Doran Australian Tree Seed Centre, CSIRO Plant Industry 2013 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia's international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia's contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2013 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected] Brophy J.J., Craven L.A. and Doran J.C. 2013. Melaleucas: their botany, essential oils and uses. ACIAR Monograph No. 156. Australian Centre for International Agricultural Research: Canberra. -
Camm River Confluence to Newdegate
Government of W estern Australia Department of Wa te r Waterway assessment of the upper Lockhart River: Camm River confluence to Newdegate Water resource management series Report no. WRM 58 Looking after all our water needs December 2009 Waterway assessment of the upper Lockhart River: Camm River confluence to Newdegate This project is funded by the Avon Catchment Council and the State and Australian governments through the Natural Heritage Trust and the National Action Plan for Salinity and Water Quality. AVON RIVERCARE PROJECT Department of Water Water resource management series Report no. WRM 58 December 2009 Department of Water 168 St Georges Terrace Perth Western Australia 6000 Telephone +61 8 6364 7600 Facsimile +61 8 6364 7601 www.water.wa.gov.au © Government of Western Australia 2009 December 2009 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to the Department of Water. ISSN 1326-6934 (print) ISSN 1835-3592 (online) ISBN 978-1-921637-28-5 (print) ISBN 978-1-921637-29-2 (online) Acknowledgements The Department of Water would like to thank the following people for contributing to this report: Penny Butcher and Lyn Atkins (Ecoscape), co-authors Martin Revell, Bernard Kelly & Shepherd Chipfunde (Department of Water), report review Lyn Atkins and Catherine Krens (Ecoscape), field survey and photography. Mapping by the Department of Water. -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
University of California Santa Cruz Responding to An
UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes. -
Inventory of Taxa for the Fitzgerald River National Park
Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park 2013 Damien Rathbone Department of Environment and Conservation, South Coast Region, 120 Albany Hwy, Albany, 6330. USE OF THIS REPORT Information used in this report may be copied or reproduced for study, research or educational purposed, subject to inclusion of acknowledgement of the source. DISCLAIMER The author has made every effort to ensure the accuracy of the information used. However, the author and participating bodies take no responsibiliy for how this informrion is used subsequently by other and accepts no liability for a third parties use or reliance upon this report. CITATION Rathbone, DA. (2013) Flora Survey of the Coastal Catchments and Ranges of the Fitzgerald River National Park. Unpublished report. Department of Environment and Conservation, Western Australia. ACKNOWLEDGEMENTS The author would like to thank many people that provided valable assistance and input into the project. Sarah Barrett, Anita Barnett, Karen Rusten, Deon Utber, Sarah Comer, Charlotte Mueller, Jason Peters, Roger Cunningham, Chris Rathbone, Carol Ebbett and Janet Newell provided assisstance with fieldwork. Carol Wilkins, Rachel Meissner, Juliet Wege, Barbara Rye, Mike Hislop, Cate Tauss, Rob Davis, Greg Keighery, Nathan McQuoid and Marco Rossetto assissted with plant identification. Coralie Hortin, Karin Baker and many other members of the Albany Wildflower society helped with vouchering of plant specimens. 2 Contents Abstract .............................................................................................................................. -
FINAL REPORT 2019 Canna Reserve
FINAL REPORT 2019 Canna Reserve This project was supported by NACC NRM and the Shire of Morawa through funding from the Australian Government’s National Landcare Program Canna Reserve BioBlitz 2019 Weaving and wonder in the wilderness! The weather may have been hot and dry, but that didn’t stop everyone having fun and learning about the rich biodiversity and conservation value of the wonderful Canna Reserve during the highly successful 2019 BioBlitz. On the 14 - 15 September 2019, NACC NRM together with support from Department of Biodiversity Conservation and Attractions and the Shire of Morawa, hosted their third BioBlitz at the Canna Reserve in the Shire of Morawa. Fifty professional biologists and citizen scientists attended the event with people travelling from near and far including Morawa, Perenjori, Geraldton and Perth. After an introduction and Acknowledgement of Country from organisers Jessica Stingemore and Jarna Kendle, the BioBlitz kicked off with participants separating into four teams and heading out to explore Canna Reserve with the goal of identifying as many plants, birds, invertebrates, and vertebrates as possible in a 24 hr period. David Knowles of Spineless Wonders led the invertebrate survey with assistance from, OAM recipient Allen Sundholm, Jenny Borger of Jenny Borger Botanical Consultancy led the plant team, BirdLife Midwest member Alice Bishop guided the bird survey team and David Pongracz from Department of Biodiversity Conservation and Attractions ran the vertebrate surveys with assistance from volunteer Corin Desmond. The BioBlitz got off to a great start identifying 80 plant species during the first survey with many more species to come and even a new orchid find for the reserve. -
Under the Environment Protection and Biodiversity Conservation Act 1999
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/279060093 Nomination for Listing of Iron Grass (Lomandra effusa – L. multiflora ssp. dura) Tussock Grassland as a Threatened Ecological Community under the Environmental Protection and Biodi... Technical Report · January 2000 CITATIONS READS 0 7 1 author: Richard J.-P. Davies University of NSW 68 PUBLICATIONS 207 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Goodenia asteriscus (Goodeniaceae), a new arid zone species form north-western South Australia an eastern Western Australia. View project All content following this page was uploaded by Richard J.-P. Davies on 20 March 2019. The user has requested enhancement of the downloaded file. Nomination for listing of Iron Grass (Lomandra ejfusa - L. multiflora ssp. dura) Tussock Grassland as a threatened ecological community under the Environment Protection and BiodiversityConservation Act 1999 Report prepared for WWF Australia by Richard Davies , 2000 Ecological Community Details Generally accepted name of the ecological community Iron Grass (Lomandra ejjusa-L. multiflora ssp. dura) Tussock Grassland. This community was initially referred to as Lomandra multiflora - L. dura association in · Wood (193 7) & Jessup (1948). It was subsequently referred to as Lomandra dura - L. ejjusa Tussock Grassland/Sedgeland in Specht (1972, 1974), and Lomandra effi1sa ± L. dura Tussock Grassland/Sedgeland in Davies (1982) and Neagle (1995). More recently Hyde (1995) and Robertson (1998) undertook floristic analysis of floristic quadrats sampled throughout the native grassland and grassy woodland areas in the Lofty Block Bioregion Consequently, Hyde (1995) split Iron Grass (Lomandra ejjusa - L. -
DRAFT 25/10/90; Plant List Updated Oct. 1992; Notes Added June 2021
DRAFT 25/10/90; plant list updated Oct. 1992; notes added June 2021. PRELIMINARY REPORT ON THE CONSERVATION VALUES OF OPEN COUNTRY PADDOCK, BOOLARDY STATION Allan H. Burbidge and J.K. Rolfe INTRODUCTION Boolardy Station is situated about 150 km north of Yalgoo and 140 km west-north-west of Cue, in the Shire of Murchison, Western Australia. Open Country Paddock (about 16 000 ha) is in the south-east corner of the station, at 27o05'S, 116o50'E. The most prominent named feature is Coolamooka Hill, near the eastern boundary of the paddock. There are no conservation reserves in this region, although there are some small reserves set aside for various other purposes. Previous biological data for the station consist of broad scale vegetation mapping and land system mapping. Beard (1976) mapped the entire Murchison region at 1: 1 000 000. The Open Country Paddock area was mapped as supporting mulga woodlands and shrublands. More detailed mapping of land system units for rangeland assessment purposes has been carried out more recently at a scale of 1: 40 000 (Payne and Curry in prep.). Seven land systems were identified in open Country Paddock (Fig. 1). Apart from these studies, no detailed biological survey work appears to have been done in the area. Open Country Paddock has been only lightly grazed by domestic stock because of the presence of Kite-leaf Poison (Gastrolobium laytonii) and a lack of fresh water. Because of this and the generally good condition of the paddock and presence of a wide range of plant species, P.J. -
Charles Darwin Reserve
CHARLES DARWIN RESERVE (WHITE WELLS STATION) WESTERN AUSTRALIA FIELD HERBARIUM Volunteers of the Bushland Plant Survey Project Wildflower Society of Western Australia (Inc.) PO Box 519 Floreat WA 6014 for Bush Heritage Australia July 2010 This project was supported by the Wildflower Society of Western Australia Support was also provided by the WA Department of Environment and Conservation NOTE: This Field Herbarium is to remain the property of Bush Heritage, in so long as the Reserve is managed sympathetically with the bushland, and the owners are able to care for the Herbarium so it does not deteriorate. In the event these criteria cannot be met the Field Herbarium is to be handed over to the Geraldton Regional Herbarium. For further information contact the WA Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, WA 6983 Phone (08) 9334 0500. Charles Darwin Reserve (White Wells Station), Western Australia – Field Herbarium CONTENTS 1 BACKGROUND AND ACKNOWLEDGEMENTS..................................................................................... 1 Map 1 Wildflower Society of WA survey sites at Charles Darwin Reserve - August 2008 .......................... 2 Map 2 Wildflower Society of WA survey sites at Charles Darwin Reserve – October 2008 ........................ 3 2 FLORA ........................................................................................................................................................... 4 3 THE FIELD HERBARIUM .......................................................................................................................... -
A Multi-Gene Region Targeted Capture Approach to Detect Plant DNA in Environmental Samples
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.03.450983; this version posted July 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A multi-gene region targeted capture approach to detect plant DNA in 2 environmental samples: A case study from coastal environments 3 Nicole R. Foster1*, Kor-jent van Dijk1, Ed Biffin2, Jennifer M. Young3, Vicki Thomson1, 4 Bronwyn M. Gillanders1, Alice Jones1,4, Michelle Waycott1,2 5 6 Abstract 7 Metabarcoding of plant DNA recovered from environmental samples, termed environmental DNA 8 (eDNA), has been used to detect invasive species, track biodiversity changes and reconstruct past 9 ecosystems. The P6 loop of the trnL intron is the most widely utilized gene region for metabarcoding 10 plants due to the short fragment length and subsequent ease of recovery from degraded DNA, which 11 is characteristic of environmental samples. However, the taxonomic resolution for this gene region is 12 limited, often precluding species level identification. Additionally, targeting gene regions using 13 universal primers can bias results as some taxa will amplify more effectively than others. To increase 14 the ability of DNA metabarcoding to better resolve flowering plant species (angiosperms) within 15 environmental samples, and reduce bias in amplification, we developed a multi-gene targeted capture 16 method that simultaneously targets 20 chloroplast gene regions in a single assay across all flowering 17 plant species.