Document downloaded from:

http://hdl.handle.net/10251/153787

This paper must be cited as:

Company Rodríguez, J. (2017). Unusually thick dinosaur eggshell fragments from the Spanish Late . Historical Biology (Online). 31(2):203-210. https://doi.org/10.1080/08912963.2017.1357717

The final publication is available at

https://doi.org/10.1080/08912963.2017.1357717

Copyright Taylor & Francis

Additional Information

Historical Biology

For Peer Review Only

Unusually thick dinosaur eggshell fragments from the of The Iberian Range, Spain.

Journal: Historical Biology

Manuscript ID Draft

Manuscript Type: Original Article

Date Submitted by the Author: n/a

Complete List of Authors: Company, Julio; Universidad Politecnica de Valencia, Departamento de Ingeniería del Terreno

dinosaur eggshells, , Megaloolithus aff. siruguei, Late Keywords: Cretaceous, Spain

URL: http://mc.manuscriptcentral.com/ghbi Page 1 of 26 Historical Biology

1 2 3 1 Unusually thick dinosaur eggshell fragments from the Late 4 5 2 Cretaceous of Spain. 6 7 8 3 Julio Company 9 10 11 4 Departamento de Ingeniería del Terreno, Universidad Politécnica de Valencia, 46022 12 5 Valencia, Spain 13 14 6 For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 2 of 26

1 2 3 7 Unusually thick dinosaur eggshell fragments from the Late Cretaceous 4 5 8 of Spain. 6 7 8 9 Recent fieldwork carried out in the southeastern branch of the Iberian Range 9 10 10 (Valencia province, Spain) has produced a large collection of dinosaur eggshell 11 11 fragments of unusual thickness. The specimens, up to 4.8 mm thick, were 12 13 12 recovered from palustrine grey marls of the upper Campanianlower 14 13 MaastrichtianFor PeerSierra Perenchiza Review Formation, which constitutes Only the deposits of a 15 16 14 wetland paleoenvironment. The eggshell fragments exhibit a characteristic 17 15 compactit uberculate ornamentation, a tubospherulitic organization , and a 18 19 16 complex canaliculate respiratory system . The external tuberculate surface of the 20 17 shell and the internal microstructure permit to refer the studied specimens to 21 22 18 Megaloolithus aff. siruguei , the most common megaloolithid oospecies in the 23 24 19 Iberian Peninsula and Southern . The biostratigraphic range of 25 20 Megaloolithus siruguei matches the temporal distribution of titanosaurid 26 27 21 dinosaurs in the Iberian Range, which are tentatively considered to be potential 28 22 producers. 29 30 31 23 Keywords: dinosaur eggshells, Megaloolithidae, Megaloolithus aff. siruguei , 32 24 Late Cretaceous, Spain. 33 34 35 25 36 37 38 39 26 Introduction 40 41 27 The Upper Cretaceous continental deposits of the Iberian Peninsula and Southern 42 43 28 France (IberoArmorican Island) have produced an extensive record of dinosaur 44 45 29 remains since the 19th century (Allain & PeredaSuberbiola 2003; CsikiSlava et al. 46 47 30 2015; Canudo et al. 2016). The most productive localities are principally concentrated 48 49 31 in the Pyrenean domain (Spain and France), Provence and Occitan (southeastern 50 51 52 32 France), and the Iberian Range (eastern Spain). This record includes skeletal remains as 53 54 33 well as abundant oological and ichnological material. Up to eight different eggshell taxa 55 56 34 have been defined in the IberoArmorican domain (VianeyLiaud et al. 2003), albeit 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 3 of 26 Historical Biology

1 2 3 35 nowadays not all them are considered valid oospecies (for a complete revision, see 4 5 36 Sellés, 2012; Fernández and Koshla, 2013). 6 7 37 Recent fieldwork carried out in the foothills of the Sierra de Malacara 8 9 10 38 (southwestern Iberian Range, Valencia province, Spain) has yielded abundant dinosaur 11 12 39 eggshell fragments of the megaloolithid type. The fragments, of unusual shell thickness, 13 14 40 greatly exceedsFor the usualPeer parameters Review described for the megaloolithid Only structural type 15 16 41 (VianeyLiaud et al. 1994). The aim of the present work is to provide a detailed 17 18 42 description of the microstructure of the recovered specimens, to determine their 19 20 21 43 taxonomic position within the family Megaloolithidae, and to chronostratigraphically 22 23 44 test the main hypothesis about the identity of the producer dinosaur group. 24 25 26 27 45 Locality and stratigraphy 28 46 The material described herein was collected from pale greypink pedogenic marls 29 30 31 47 exposed in a 20metres roadcut of deposits of the Late Cretaceous Sierra Perenchiza 32 33 48 Formation in the southern part of the Iberian Range (eastern Spain), next to the 34 35 49 Yegüeros creek, approximately 8 km west of the village of Buñol, Valencia province 36 37 50 (Figure 1). The Sierra Perenchiza Formation constitutes a late Campanianearly 38 39 40 51 Maastrichtian carbonate succession of interbedded palustrine marls and limestones with 41 42 52 strong evidence of pedogenic modification (Vilas et al. 1982; Alonso et al. 1991; Garcia 43 44 53 et al. 2004). These facies represent the sediments of seasonal wetlands, heavily 45 46 54 modified by vegetation and by subaerial exposure (Freytet & Plaziat 1982; Wright & 47 48 55 Platt 1995, AlonsoZarza & Wright 2010). 49 50 51 56 Neighbouring outcrops of the Sierra Perenchiza Formation, located about 20 km 52 53 57 to the north, have yielded a rich vertebrate assemblage composed largely of dinosaurs, 54 55 58 crocodiles, pterosaurs, and aquatic chelonians. Microvertebrate remains have also been 56 57 59 recovered by screenwashing the sediments, including bony fish, squamates and 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 4 of 26

1 2 3 60 amphibians, together with tiny eggshell fragments, freshwater invertebrates (gastropods, 4 5 61 ostracodes, and bivalves), and charophyte remains (Company 2004; Company & 6 7 62 Szentesi 2012). 8 9 10 63 The paleoecological association and the sedimentological traits of these deposits 11 12 64 place the Sierra Perenchiza fossil localities in a palustrine paleoenvironment at the end 13 14 65 of the Cretaceous,For settledPeer in the western Review Tethyan margin of theOnly Iberian coastline. 15 16 17 18 66 Materials and methods 19 20 67 More than 100 eggshell fragments were recovered by surface prospecting in a single 21 22 68 collecting site of approximately 500 square meters. They range from small pieces of 23 24 69 few millimetres up to larger pieces of 3.5–4 cm in size. Even smaller fragments were 25 26 70 recovered by screenwashing a bulk sample of sediment (ca. 25 kg), which also 27 28 71 produced tiny fragments of crocodile eggshells, abundant charophyte remains, 29 30 31 72 ostracodes and fragmentary freshwater gastropods. Neither complete eggs nor dinosaur 32 33 73 skeletal remains were found in the locality. The specimens are relatively equally well 34 35 74 preserved, without noticeable signs of abrasion, and display a similar external 36 37 75 appearance, so it is presumed that the fragments had not been subject to significant 38 39 40 76 transportation and come from the same nesting area. 41 42 77 Eggshell fragments were cleaned with 30 sec. ultrasonic baths. The process was 43 44 78 monitoring using a stereomicroscope. Shell thickness of each specimen was estimated 45 46 79 as the mean of three different measurements taken with a digital micrometer. Radial 47 48 80 thin sections of the specimens were prepared following standard petrographic methods. 49 50 51 81 The sections were studied under a petrographic microscope (Olympus BXTR BX40), in 52 53 82 both normal and polarized light. Images were captured with a mounted digital camera 54 55 83 (Sony Cybershot TM QX100) and edited with Adobe© Photoshop CS5©. Surface 56 57 84 ornamentation and microstructural organization of smaller Au, Pdcoated fragments 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 5 of 26 Historical Biology

1 2 3 85 were examined using a scanning electron microscope (Philips XL30 ESEM FEG). 4 5 86 Nomenclature and definitions of eggshell microstructure used here are mainly based on 6 7 87 Mikhailov (1997). Specimens have been temporarily deposited in the collections of the 8 9 10 88 Polytechnic University of Valencia (Valencia, Spain). 11 12 13 89 Systematic palaeontology 14 For Peer Review Only 15 90 Oofamily Megaloolithidae Zhao, 1979 16 17 91 Oogenus Megaloolithus VianeyLiaud, Mallan, 18 19 20 92 Buscail and Montgellard, 1994 21 22 93 Megaloolithus aff. siruguei VianeyLiaud, Mallan, Buscail and 23 24 94 Montgelard, 1994 25 26 95 Figs. 2 & 3 27 28 96 29 30 31 97 Description 32 33 98 The eggshell fragments are composed of a single structural layer of calcite with a well 34 35 99 preserved surficial ornamentation (Figure 2). The eggshell thicknesses ranges from 1.8 36 37 100 to 4.8 mm, with an average of 3.45 mm (n = 125). The outer surface displays a distinct 38 39 101 compactituberculate ornamentation, consisting mostly of relatively rounded to 40 41 42 102 polygonal nodes which constitute the top of the shell units (Figures 2ac). Occasionally, 43 44 103 neighbouring nodes coalesce, forming small chains. The average node diameter is about 45 46 104 0.59 mm, ranging from 0.34 to 0.90 mm in size. The pore openings are located in the 47 48 105 internodular spaces (Figures 2bc). They are subcircular in shape and have diameters 49 50 51 106 ranging from 50 to 250 µm approximately. 52 53 107 In radial section, the eggshells consist of a single structural layer composed of 54 55 108 fanshaped shell units of acicular calcite. Arched accretionary lines run from the base to 56 57 109 the top of the units (Figures 2ef, Figure 3). The crystal units are spherulitic and 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 6 of 26

1 2 3 110 extremely high and narrow (average height/width ratios range from 4.4:1 to 6.1:1). A 4 5 111 few units are fused upwardly. In general, the shell units do not have parallel margins, as 6 7 112 their borders diverge at angles between 20º and 25º (Figure 2f). 8 9 10 113 The respiratory system is multicanaliculate (Mikhailov 1997). It consists of a 11 12 114 branching network of relatively straight, vertical primary canals with occasional 13 14 115 (transverse)For anastomoses, Peer forming a Reviewcomplex threedimensional Only respiratory system 15 16 116 (Figure 2f). This eggshell structural type correlates with a high gas conductance, 17 18 117 characteristic of nesting in humid environments (Mikhailov 1997, LópezMartínez et al. 19 20 21 118 2000; Deeming, 2006; Jackson et al., 2008; Tanaka and Zelenitsky, 2013). Many of the 22 23 119 vertical canals have been enlarged into galleries, filled posteriorly by diagenetic, coarse 24 25 120 sparry calcite cement during diagenesis (Figure 2f, Figure 3). The contour of these 26 27 121 cavities is irregular, suggesting dissolution of the boundaries of the shell units (Bravo et 28 29 30 122 al., 2006; MorenoAzanza et al. 2016). 31 32 123 The inner surface of the shell is covered by irregular mamillae in different 33 34 124 degrees of dissolution (Figure 2d). The membrana tesacea is mostly missing in the 35 36 125 examined specimens; only rare remnants persist covering the base of the spherulites 37 38 126 (Figure 3). Occasional extraspherulites are dispersed throughout the shell (Figure 2f). 39 40 41 42 127 Discussion 43 44 128 The external compactituberculate ornamentation, along with the tubospherulitic 45 46 129 (discretispherulitic) organization and the canaliculate pore system of the eggshell 47 48 130 fragments permit to refer the studied specimens to the oofamily Megaloolithidae (Zhao, 49 50 51 131 1979; VianeyLiaud et al. 1994). 52 53 132 Megaloolithid eggs are widely distributed in the Upper Cretaceous deposits of 54 55 133 the IberoArmorican landmass of the European archipelago (Iberian Peninsula and 56 57 134 southern France), as well as in other Laurasian and Gondwanan paleoprovinces, and 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 7 of 26 Historical Biology

1 2 3 135 thus have a worldwide distribution (Powell, 1992; Grigorescu et al. 1994; Sahni et al. 4 5 136 1994;VianeyLiaud et al. 1994, 2003; Mikhailov, 1997; Calvo et al. 1997; VianeyLiaud 6 7 137 & LopezMartinez 1997; Mohabey 1998; Chiappe et al. 1998; Garcia 2000; Garcia & 8 9 10 138 VianeyLiaud 2001a, 2001b; LópezMartínez 2003; Garcia et al. 2003; GrelletTinner 11 12 139 et al. 2004; Jackson 2007; Grigorescu et al. 2010; Griebeler & Wermer 2011; Grellet 13 14 140 Tinner etFor al. 2012; FernándezPeer & Khosla Review 2015). Only 15 16 141 The most striking feature of the studied specimens is their unusual shell 17 18 142 thickness, often exceeding 3.5 mm and reaching a maximum value of 4.8 mm, which 19 20 21 143 are noticeably greater than the corresponding values of the different megaloolithid taxa, 22 23 144 that rarely reach 3.0 to 3.5 mm in thickness (VianeyLiaud et al. 1994; Sellés 2012 and 24 25 145 references therein). Only four valid Late Cretaceous megaloolithid species are 26 27 146 considered to be medium to thickshelled taxa (Sellés et al, 2012), and exhibit high 28 29 30 147 (i.e., >3:1) lengthtowidth ratios of the shell units : Megalolithus cylindricus , M. 31 32 148 khempuriensis , M. megadermus , and M. siruguei . Whereas M. khempuriensis and M. 33 34 149 megadermus eggs are restricted to the Upper Cretaceous beds of , in 35 36 150 India (Mohabey 1998), M. cylindricus , has also been reported from South America 37 38 151 (Kholsa & Sahni 1995; Fernández & Khosla 2015). Thus, all three oospecies have a 39 40 41 152 Gondwanan distribution. By contrast, M. siruguei is a Laurasian taxon, exclusively 42 43 153 documented in the European archipelago. M. siruguei constitutes the most common 44 45 154 megaloolithid oospecies in the Upper Cretaceous of the Iberian Peninsula and southern 46 47 155 France (Moratalla 1993; VianeyLiaud et al. 1994, 2003; LópezMartínez et al. 2000; 48 49 50 156 Garcia & VianeyLiaud 2001; Bravo et al 2005, 2006; Vila et al. 2009, 2010, 2011; 51 52 157 Sellés 2012; Sellés et al. 2013; Sellés & Vila 2015). 53 54 158 Regarding M. megadermus , some authors consider it an invalid, pathologic 55 56 159 ootaxon (Sellés 2012), while others consider it a valid species (Mohabey, 1998; 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 8 of 26

1 2 3 160 Fernández, 2013; Fernández & Khosla 2015). The general features of M. megadermus 4 5 161 (Mohabey, 1998) resemble those of the Valencia eggshells, especially the strong shell 6 7 162 thickness, the coarse compactituberculate ornamentation, and the proportions of the 8 9 10 163 elongate, fanshaped shell units. Nevertheless, the absence of a complex (i.e. 11 12 164 multicanaliculate) respiratory system in M. megadermus , prevents from placing the 13 14 165 ValencianFor specimens Peer in this ootaxon. Review M. cylindricus exhibits Only“regular”, neverfused 15 16 166 cylindrical shell units, more rounded and wellseparated ornamental nodes, and simple, 17 18 167 vertical respiratory canals (Khosla & Sahni 1995), features not seen in the studied 19 20 21 168 samples. Moreover, the taxonomical validity of M. cylindricus , has been recently 22 23 169 questioned (Mohabey 1998; Khosla and Sahni 1995). Finally, M. khempuriensis also 24 25 170 differs from the Valencian specimens in the reduced thickness of the shell and in 26 27 171 lacking a complex pore system organization (Mohabey 1998). 28 29 30 172 The only thickshelled megaloolithid oospecies provided with a three 31 32 173 dimensional pore system is M. siruguei –and its junior synonym M. multituberculata 33 34 174 (VianeyLiaud et al. 1994; Sellés 2012; Bravo & Gaete 2015). Even though the M. 35 36 175 siruguei type material and the large number of specimens recovered elsewhere display 37 38 176 lower values of shell thickness, ranging between 1.84 and 3.18 mm (VianeyLiaud et al. 39 40 41 177 1994; LópezMartínez et al. 2000; VianeyLiaud et al. 2003; Bravo et al. 2005; Vila et 42 43 178 al. 2009, 2010, 2011; Sellés 2012; Sellés et al. 2013), in certain CampanoMaastrichtian 44 45 179 Iberian localities (La Rosaca and La Tejera sites, Burgos province), extremely thick 46 47 180 megaloolithid eggshell fragments of up to 5.46 mm have also been referred to by this 48 49 50 181 ootaxon (Izquierdo et al. 2001; Bravo et al. 2006; Moreno et al. 2016). Despite certain 51 52 182 differences of ornamentation and shape of the shell units that these specimens display 53 54 183 (Bravo et al. 2006, p. 229; MorenoAzanza et al. 2006, p.5/17), given the morphological 55 56 184 variability usually observed in fossil oospecies, they have been ascribed to this Late 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 9 of 26 Historical Biology

1 2 3 185 Cretaceous oospecies. The close similarity between the Valencian samples and the 4 5 186 abovementioned specimens is indisputable. Additionally, the taphonomic history of the 6 7 187 eggshells from both localities followed a similar pattern resulting in an enlargement of 8 9 10 188 some pore canals in dissolution galleries, later filled with equant (blocky) calcite spar, 11 12 189 combined with the appearance of extraspherulites of diagenetic origin (MorenoAzanza 13 14 190 et al., 2016).For Peer Review Only 15 16 191 Other Upper Cretaceous megaloolithid oospecies reported in the Ibero 17 18 192 Armorican Island are Megaloolithus aureliensis (= M. Peralta ), Megaloolithus 19 20 21 193 mamillare (= M. baghensis , recently renamed Fusioolithus baghensis in Fernández & 22 23 194 Khosla (2015)), and Megaloolithus jabalpurensis (= M. patagonicus ) (VianeyLiaud et 24 25 195 al. 2003; Bravo et al. 2005; Vila et al. 2011; Sellés 2012; Sellés et al 2013; Bravo & 26 27 196 Gaete 2015). The shells of these taxa clearly differ from those of the studied specimens 28 29 30 197 in their general microstructure: they all display thinner shells composed of shorter and 31 32 198 wider spherulitic units, that are frequently fused producing coalescent nodes on the 33 34 199 external surface, and lack the complex multicanaliculate respiratory system 35 36 200 characteristic of M. siruguei . 37 38 201 Therefore, in accordance with the microstructural features observed in the 39 40 41 202 eggshell material from Valencia, and taking into account the wellknown morphological 42 43 203 variability observed inside each taxa of the oofamily Megaloolithidae (Mikhailov 1997) 44 45 204 which has allowed a profusion of invalid oospecies (VianeyLiaud et al. 2003; Sellés 46 47 205 2012; Fernandez & Khosla 2015; Bravo & Gaete 2015), the recently discovered 48 49 50 206 megaloolithid material from the Sierra Perenchiza Formation in Valencia province fits 51 52 207 in the range of variation of the thickshelled variety of M. siruguei (Bravo et al. 2005; 53 54 208 MorenoAzanza et al., 2006), and is hereafter assigned to Megaloolithus aff. siruguei . 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 10 of 26

1 2 3 209 This small oological sample from Valencia province provides important 4 5 210 information on the oodiversity of dinosaur faunas in one of the most meridional 6 7 211 areas of the European archipelago just before the Cretaceous –Paleocene event, 8 9 10 212 improving the data provided by coeval localities of the south-central and south- 11 12 213 eastern Pyrenees and the Iberian Range. 13 14 For Peer Review Only 15 16 214 Megaloolithus siruguei record in the Iberian Peninsula and association with 17 215 titanosaurian dinosaurs 18 19 216 There is a general consensus that the megaloolithid eggs were laid by titanosaurian 20 21 217 sauropods (Powell, 1992; Calvo et al. 1997; Mikhailov 1997; GrelletTinner et al. 22 23 24 218 2012), especially after the discovery of sauropod embryonic remains inside 25 26 219 megaloolithid eggs in (Chiappe et al. 1998, 2003; GrelletTinner et al. 2004). 27 28 220 The occurrence in Romania of Upper Cretaceous (upper Maastrichtian) nesting horizons 29 30 221 with clutches of megaloolithid eggs (Megaloolithus cf. siruguei ) associated with 31 32 33 222 hatchling and embryo remains of the basal hadrosaur Telmatosaurus transsylvanycus 34 35 223 (Grigorescu et al. 1994, 2010) calls in doubt that megaloolithidtype eggs are exclusive 36 37 224 of sauropods. 38 39 225 In the Iberian Peninsula, the most extensive record of eggshells, eggs, and 40 41 42 226 clutches belonging to the family megaloolithidae comes from the Upper Cretaceous 43 44 227 continental deposits of the south Pyrenean domain (Vila et al. 2011; Sellés et al 2013; 45 46 228 Sellés & Vila 2015; Bravo & Gaete 2015), which consist of a continuous stratigraphic 47 48 229 record of transitional and continental sediments ranging up to1000mthick from the late 49 50 230 Campanian to the Paleogene (Oms et al. 2007; Vila et al 2011). The oological record 51 52 53 231 often cooccurs with a rich record of both dinosaur skeletal remains and ichnological 54 55 232 sites. 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 11 of 26 Historical Biology

1 2 3 233 According to recent reviews, between 150 and 200 dinosaur localities have been 4 5 234 identified in the foothills of the southern Pyrenees (Sellés & Vila 2015; Oms et al. 2016; 6 7 235 Canudo et al. 2016). The faunal composition of the sites illustrates a clear predominance 8 9 10 236 of titanosaurian sauropods and hadrosaurid ornithopods over ankylosaurians and 11 12 237 theropod dinosaurs (Riera et al. 2009; Vila et al. 2016; Canudo et al. 2016). Even 13 14 238 though titanosaursFor arePeer almost continuously Review present from the basalmostOnly terms of the 15 16 239 sedimentary sequence (late Campanian) to the Cretaceous/Paleogene boundary, there is 17 18 240 a gradual decline in the abundance of remains towards the end of the Maastrichtian 19 20 21 241 (albeit there is an apparent increase in their taxonomical diversity: Vila et al. 2012). 22 23 242 Meanwhile, the hadrosaurids, which are completely absent from the late Campanian to 24 25 243 the early Maastrichtian, increases gradually their presence, and become the dominant 26 27 244 group at the end of the Maastrichtian (Riera et al 2009; Vila et al. 2016; Canudo et al. 28 29 30 245 2016). Similarly, any member of Megaloolithidae is present throughout all the 31 32 246 sedimentary sequence, and M. siruguei eggs and eggshells tend to be more frequent in 33 34 247 Upper Campanian to lower Maastrichtian deposits (VianeyLiaud & LópezMartínez 35 36 248 1997; LópezMartínez et al 2000; Garcia & Vianey_Liaud 2001b; LópezMartínez 37 38 249 2003; Vila et al. 2009, 2010, 2011; Sellés 2012; Sellés et al. 2013; Sellés & Vila 2015), 39 40 41 250 just when the sauropod (i. e., titanosaurian) skeletal record is more abundant. The last 42 43 251 occurrence of M. siruguei is located in the lower part of the late Maastrichtian, near the 44 45 252 C31rC31n reversal (Vila et al. 2011; Sellés et al. 2013), which chronologically marks 46 47 253 the first appearance of the hadrosaurids in the IberoArmorican domain (Riera et al. 48 49 50 254 2009; Canudo et al. 2016). Up to now, no M. siruguei remains have been reported from 51 52 255 the younger sediments that have produced the rich hadrosaurid fauna of the Ibero 53 54 256 Armorican domain. 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 12 of 26

1 2 3 257 Megaloolithid eggs and eggshells are not only present in the Pyrenean realm, but 4 5 258 also in other geological domains of the Iberian Peninsula, as the Iberian Range. The 6 7 259 Iberian Range is a large NW–SE fold belt generated, like the Pyrenees, as a result of the 8 9 10 260 Alpine compression in the eastern part of the Iberian Peninsula. Exposures of Late 11 12 261 Cretaceous continental deposits occur along the northwestern and southeastern margins 13 14 262 of the rangeFor (Vilas etPeer al. 1982; Alonso Review et al. 1991) where at leastOnly three different 15 16 263 continental formations have produced oological remains. Hundreds of megaloolithid 17 18 264 eggshell fragments have been recovered from CampanianMaastrichtian strata in 19 20 21 265 Burgos, Cuenca and Valencia provinces (Gutiérrez & Robles 1976; Moratalla 1993; 22 23 266 Izquierdo et al. 2001; Company, 2004; Bravo et al. 2006; MorenoAzanza et al. 2016). 24 25 267 The occurrence of megaloolithid eggs and titanosaurian remains has been documented 26 27 268 in each of these stratigraphic formations. 28 29 30 269 The stratigraphic distribution of Upper Cretaceous eggshells and dinosaur 31 32 270 skeletal remains in the Iberian Range is very similar to that in the Pyrenean record. 33 34 271 Eggshell fragments of M. siruguei (Moratalla 1993; Izquierdo et al. 2001; Bravo et al. 35 36 272 2006) and titanosaurian remains (Izquierdo et al. 2001; Company et al. 2009; Ortega & 37 38 273 PérezGarcía, 2009; Ortega et al. 2015) occur only in late Campanianearly 39 40 41 274 Maastrichtian formations. The first appearance of hadrosaurid remains in the Iberian 42 43 275 Range is dated to the end of the Maastrichtian (Company 2004), far from the last 44 45 276 occurrence of M. siruguei . Therefore, the cooccurrence of titanosaur remains and M. 46 47 277 siruguei material in in coeval deposits of the Iberian Range matches with that observed 48 49 50 278 in the southern Pyrenees and gives support to the extended acceptance that there is a 51 52 279 close relationship between titanosaur sauropods and megaloolithid eggs. Therefore, the 53 54 280 oological material from Valencia is tentatively assigned to titanosaurian dinosaurs. 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 13 of 26 Historical Biology

1 2 3 281 In sum, none of the late Campanianearly Maastrichtian dinosaur localities from 4 5 282 the IberoArmorican Island that have yielded M. siruguei material and titanosaur 6 7 283 remains have provided hadrosaurid fossils. Late Maastrichtian formations, which have 8 9 10 284 produced hadrosaurid remains, have not yielded M. siruguei eggshells. This disparity 11 12 285 makes it highly improbable that this oospecies, at least in the Iberian domain, was laid 13 14 286 by hadrosauridFor dinosaurs. Peer This fact doesReview not contradict that otherOnly megaloolithidtype 15 16 287 eggs belong to hadrosaurs, given their direct associations in Central . 17 18 19 20 288 Conclusions 21 22 289 The dinosaur eggshell fragments recently recovered from the Upper Cretaceous beds of 23 24 290 the Iberian Range, Valencia province (Spain) can be referred to the oofamily 25 26 291 Megaloolithidae. The egg fragments are close similar to and exhibit the main 27 28 292 microstructural features of Megaloolithus siruguei from southern France, southcentral 29 30 31 293 Pyrenees and other eggproducing localities of the Iberian Range. Even though these 32 33 294 fragments display thicker shells than the type material, analogous eggshells from 34 35 295 diverse Late Cretaceous Iberian localities have been referred to as the abovementioned 36 37 296 oospecies. In accord with recent discoveries and the chronostratigraphic distribution of 38 39 40 297 dinosaur groups in the Iberian Range, the egg material is likely to have been laid by 41 42 298 titanosaurian sauropod dinosaurs. 43 44 45 46 299 Acknowledgements 47 300 The author gratefully acknowledges the support of the Central Service for Experimental 48 49 50 301 Research of the University of Valencia. Research was partly supported by the 51 52 302 Ministerio de Economía y Competitividad of Spain (Secretaría de Estado de 53 54 303 Investigación, Desarrollo e Innovación, projects CGL201347521P and CGL2014 55 56 304 53548P). The original version of the manuscript was submitted for professional 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 14 of 26

1 2 3 305 proofreading. Thanks also go to Pedro Huerta and Fidel Torcida for sharing information 4 5 306 about the age of the egg localities of Burgos province. 6 7 8 9 10 11 12 13 14 For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 15 of 26 Historical Biology

1 2 3 307 References 4 5 308 Allain R, PeredaSuberbiola X. 2003. Dinosaurs of France. C R Palevol Palevol 2:27– 6 7 309 44. 8 310 Alonso A, Meléndez N, Mas JR. 1991. Sedimentación lacustre durante el Cretácico en 9 10 311 la Cordillera Ibérica, España. Acta Geol Hisp. 26: 35–54. 11 12 312 AlonsoZarza AM,Wright VP. 2010. Palustrine carbonates. In: AlonsoZarza AM, 13 313 Tanner LH, editors. Carbonates in Continental Settings: Geochemistry, 14 For Peer Review Only 15 314 Diagenesis and Applications. Develop Sedim. 61: p.103–132. Elsevier. 16 17 315 Bravo AM, Gaete R. 2015. Titanosaur eggshells from the (Upper 18 316 Cretaceous, Southern Pyrenees, Spain). Hist Biol. 27:1079–1089. 19 20 317 Bravo AM, Huerta P, IzquierdoMontero LA, MonteroHuerta D, PérezMartínez G, 21 22 318 Torcida FernándezBaldor, F, UriénMontero V. 2006. Un nuevo yacimiento de 23 319 cáscaras de huevo de dinosaurio de la provincia de Burgos, España 24 25 320 (Maastrichtiense, Fm. Santibañez del Val). Actas de las III Jornadas 26 27 321 Internacionales sobre Paleontología de Dinosaurios y su Entorno. Ed. Colectivo 28 322 Arqueológico y Paleontológico de Salas. Salas de los Infantes, 223–234. 29 30 323 Bravo AM, Vila B, Galobart, A. & Oms, O. 2005. Restos de huevos de dinosaurio en el 31 32 324 Cretácico Superior del sinclinal de Vallcebre (Berguedà, provincia de 33 325 Barcelona). Rev Esp Paleont. N.E:10, 49–57. 34 35 326 Calvo JO, Engelland S, Heredia SE, Salgado L. 1997. First record of dinosaur eggshells 36 37 327 (?Sauropoda–Megaloolithidae) from Neuquén, Patagonia, Argentina. Gaia. 38 328 14:23–32. 39 40 329 Canudo JI, Oms O, Vila B, Galobart À, Fondevilla V, PuertolasPascual E, Sellès AG, 41 42 330 CruzadoCaballero P, DinarèsTurell J, Vicens E, Castanera D, Company J, 43 331 Burrel L, Estrada R, Marmi J, Blanco A. 2016. The upper Maastrichtian 44 45 332 dinosaur fossil record from the southern Pyrenees and its contribution to the 46 47 333 topic of the CretaceousePalaeogene mass extinction event. Cret Res. 57:540– 48 334 551. 49 50 335 CruzadoCaballero P, RuizOmeñaca JI, Gaete R, Riera V, Oms O, Canudo,JI. 2014. A 51 52 336 new hadrosaurid dentary from the latest Maastrichtian of the Pyrenees (north 53 337 Spain) and the high diversity of the duckbilled dinosaurs of the Ibero 54 55 338 Armorican Realm at the very end of the Cretaceous. Hist Biol. 26,619–630. 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 16 of 26

1 2 3 339 Chiappe LM, Coria RA, Dingus L, Jackson F, Chinsamy A, Fox M. 1998. Sauropod 4 5 340 dinosaur embryos from the Late Cretaceous of Patagonia. Nature. 396:258–261. 6 341 Chiappe LM, Coria RA, Jackson F, Dingus L. 2003. The Late Cretaceous nesting site of 7 8 342 Auca Mahuevo (Patagonia, Argentina): eggs, nests and embryos of titanosaurian 9 10 343 sauropods. Palaeovertebr Montpelier. 32:97–108. 11 344 Company J. 2004. Vertebrados continentales del Cretácico superior (Campaniense 12 13 345 Maastrichtiense) de Valencia. [PhD dissertation]. Valencia: Universidad de 14 For Peer Review Only 15 346 Valencia. 16 347 Company J, Szentesi Z. 2012. Amphibians from the Late Cretaceous Sierra Perenchiza 17 18 348 Formation of the Chera Basin, Valencia Province, Spain. Cret Res. 37:240–245. 19 20 349 CsikiSava Z, Buffetaut E, Ősi A, PeredaSuberbiola X, Brusatte SL. 2015. Island life in 21 350 the Cretaceousfaunal composition, biogeography, evolution, and extinction of 22 23 351 landliving vertebrates on the Late Cretaceous European archipelago. ZooKeys 24 25 352 469:1–161. 26 353 Deeming DC. 2006. Ultrastructural and functional morphology of eggshells supports 27 28 354 the idea that dinosaur eggs were incubated buried in a substrate. Palaeontology 29 30 355 49:171–185. 31 356 Fernández MS. 2013. Análisis de cáscaras de huevos de Dinosaurios de la Formación 32 33 357 Allen, Cretácico Superior de Río Negro (CampanianoMaastrichtiano): Utilidad 34 35 358 de los macrocaracteres de interés parataxonómico. Ameghiniana 50:7997. 36 359 Fernández MS, Khosla A. 2015. Parataxonomic review of the Upper Cretaceous 37 38 360 dinosaur eggshells belonging to the oofamily Megaloolithidae from India and 39 40 361 Argentina. Hist Biol. 27:158–180. 41 362 Freytet P, Plaziat JC. 1982. Continental carbonate sedimentation and pedogenesis Late 42 43 363 Cretaceous and Early Tertiary of southern France. Contrib Sedimentol. 12:1– 44 45 364 213. 46 365 Garcia G. 2000. Diversité des coquilles "minces" d'oeufs fossiles du Crétacé supérieur 47 48 366 du Sud de la France. Geobios. 33:113–126. 49 50 367 Garcia G, Tabuce R, Cappetta H, Marandat B, Bentaleb I, Benabdallah A, Vianey 51 368 Liaud M. 2003. First record of dinosaur eggshells and teeth from the NorthWest 52 53 369 African Maastrichtian (Morocco): Palaeovertebrata. 32:59–69. 54 55 370 Garcia G, VianeyLiaud M. 2001a. Nouvelles donnees sur les coquilles d’œufs de 56 371 dinosaures Megaloolithidae du Sud de la France: systematiue et variabilite 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 17 of 26 Historical Biology

1 2 3 372 intraspecifique: C R Acad Sci Paris, Sciences de la Terre et des planètes. 4 5 373 332:183–191. 6 374 Garcia G, VianeyLiaud M .2001b. Dinosaur eggshells as biochronological markers in 7 8 375 Upper Cretaceous continental deposits. Palaeog Palaeoclim Palaeoec. 169:153– 9 10 376 164. 11 377 GrelletTinner G, Chiappe LM, Coria R. 2004. Eggs of titanosaurid sauropods from the 12 13 378 Upper Cretaceous of Auca Mahuevo (Argentina). Can J Earth Sci. 41:949–960. 14 For Peer Review Only 15 379 GrelletTinner G, Codrea V, Folie A, Higa A, Smith T .2012. First evidence of 16 380 reproductive adaptation to ‘‘Island Effect’’ of a dwarf Cretaceous Romanian 17 18 381 titanosaur, with embryonic integument in ovo. PLoS ONE 7(3): e32051. 19 20 382 Griebeler EM, Werner J. 2011. The life cycle of sauropod dinosaurs. In: Klein N, 21 383 Remes K, Gee CT, Sander PM, editors. Biology of the Sauropod Dinosaurs: 22 23 384 Understanding the Life of Giants. Bloomington: Indiana University Press; p. 24 25 385 263–275. 26 386 Grigorescu D, Garcia G, Csiki Z, Codrea V, Bojar AV. 2010. Uppermost Cretaceous 27 28 387 megaloolithid eggs from the Hateg Basin, Romania, associated with hadrosaur 29 30 388 hatchlings: Search for explanation . Palaeog Palaeoclim Palaeoec. 293:360–374. 31 389 Grigorescu D, Weishampel D, Norman D, Seclamen M, Rusu M, Baltres A, Teodorescu 32 33 390 V. 1994. Late Maastrichtian dinosaur eggs from the Hateg Basin (Romania). In: 34 35 391 Carpenter K, Hirsch KF, Horner JR, editors. Dinosaur eggs and babies. 36 392 Cambridge: Cambridge University Press; p. 75–87. 37 38 393 Gutiérrez G, Robles F.1976. Biostratigraphie du Sénonien continental des environs de 39 40 394 Villalba de la Sierra (Province de Cuenca, Espagne). Paléobiol Cont. 7:1–17. 41 395 Izquierdo LA, Montero D, Pérez G, UriénV, Meijide M. 2001. Macroestructura de 42 43 396 huevos de dinosaurios en el Cretácico superior de "La Rosaca" (Burgos, 44 45 397 España). Actas de las I Jornadas Internacionales Sobre Paleontología de 46 398 Dinosaurios y su Entorno. Ed. Colectivo Arqueológico y Paleontológico de 47 48 399 Salas. Salas de los Infantes, 389 – 395. 49 50 400 Jackson FD. 2007. Titanosaur reproductive biology : comparison of the Auca Mahuevo 51 401 Titanosaur nesting locality (Argentina), to the Pinyes Megaloolithus nesting 52 53 402 locality (Spain). [PhD dissertation]. Bozeman (Mt): Montana State University. 54 55 403 Jackson FD, Varrichio DJ, Jackson R, Vila B, Chiappe L. 2008. Comparison of water 56 404 vapor conductance on a titanosaur egg from Argentina with a Megaloolithus 57 58 405 siruguei from Spain. Paleobiology 34: 229–246. 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 18 of 26

1 2 3 406 Khosla A, Sahni A. 1995. Parataxonomic classification of Late Cretaceous dinosaur 4 5 407 eggshells from India. J Paleontol Soc India. 40:87–102. 6 408 LópezMartínez N. 2003. Dating dinosaur oodiversity: chronostratigraphic control of 7 8 409 late Cretaceous oospecies succession. Palaeovertebrata. 32:120–148. 9 10 410 LópezMartínez N, Canudo JI, Ardévol L, PeredaSuberbiola X, OrueEtxebarría X, 11 411 CuencaBescós G, Ruiz Omeñaca JI, Murelaga X, Feist M. 2001. New dinosaur 12 13 412 sites correlated with Upper Maastrichtian pelagic deposits in the Spanish 14 For Peer Review Only 15 413 Pyrenees: implications for the dinosaur extinction pattern in Europe. Cret Res. 16 414 22:41–61. 17 18 415 LópezMartínez N, Moratalla JJ, Sanz JL. 2000. Dinosaurs nesting on tidal flats. 19 20 416 Palaeogeogr Palaeoclimatol Palaeoecol.160:153–163. 21 417 Mikhailov KE. 1997. Fossil and recent eggshell in amniotic vertebrates: fine structure, 22 23 418 comparative morphology and classification. Spec Pap Paleontol. 56:1–80. 24 25 419 Mohabey DM. 1998. Systematics of Indian Upper Cretaceous dinosaur and chelonian 26 420 eggshells. J Vert Paleontol. 18:348–362. 27 28 421 Moratalla JJ. 1993. Restos indirectos de dinosaurios del registro español: paleoicnología 29 30 422 de la Cuenca de (Jurásico superiorCretácico inferior) y paleoología del 31 423 Cretácico superior. [PhD dissertation]. Madrid: Universidad Autónoma de 32 33 424 Madrid. 34 35 425 MorenoAzanza M, Bauluz B, Canudo JI, PuértolasPascual E, Sellés AG. 2013. A re 36 426 evaluation of aff. Megaloolithidae eggshell fragments from the uppermost 37 38 427 Cretaceous of the Pyrenees and implications for crocodylomorph eggshell 39 40 428 structure. Hist Biol. 26:195–205. 41 429 MorenoAzanza M, Bauluz B, Canudo JI, Gasca JM, Torcida FernándezBaldor F. 42 43 430 2016. Combined use of electron and light microscopy techniques reveals false 44 45 431 secondary shell units in Megaloolithidae eggshells. PLoS ONE 11(5): e0153026. 46 432 doi:10.1371/journal.pone.0153026. 47 48 433 Oms O, DinarésTurell J, Vicens E, Estrada R, Vila B, Galobart A, Bravo AM. 2007. 49 50 434 Integrated stratigraphy from the Vallcebre Basin (southeastern Pyrenees, Spain): 51 435 new insights on the continental CretaceousTertiary transition in southwest 52 53 436 Europe. Palaeog Palaeoclim Palaeoec. 255:35–47. 54 55 437 Oms O, Fondevilla V, Riera V, Marmi J, Vicens E, Estrada R, Anadón P, Vila B. 56 438 Galobart, A. 2016. Transitional environments of the Maastrichtian south 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 19 of 26 Historical Biology

1 2 3 439 Pyrenean basin (Catalonia, Spain): the Fumanya Member tidal flat. Cret Res. 4 5 440 57:428–442. 6 441 Ortega F, Bardet N, BarrosoBarcenilla F, Callapez PM, CambraMoo O, Daviero 7 8 442 Gómez V, DíezDíaz V, Domingo L, Elvira A, Escaso F, et al. 2015. The biota 9 10 443 of the Upper Cretaceous site of “Lo Hueco” (Cuenca, Spain). J Iber Geol.41:83– 11 444 99. 12 13 445 Ortega F, Pérez García A. 2009. Cf. Lirainosaurus sp.(Dinosauria: ) en el 14 For Peer Review Only 15 446 Cretácico Superior de Guadalajara. Geogaceta 46:87–90. 16 447 Powell, JE. 1992. Hallazgo de huevos asignables a dinosaurios titanosauridos 17 18 448 (Saurischia, Sauropoda) de la Provincia de Río Negro, Argentina. Acta Zool 19 20 449 Lill. 41:381–389. 21 450 Riera V, Oms O, Gaete R, Galobart A. 2009. The endCretaceous dinosaur succession 22 23 451 in Europe: the Tremp Basin record (Spain). Palaeogeogr Palaeoclimatol 24 25 452 Palaeoecol. 283:160–171. 26 453 Sahni A, Khosla A. 1994. Paleobiology, taphonomical and paleoenvironmental aspects 27 28 454 of Indian Cretaceous sauropod nesting sites. Gaia 10:215–223. 29 30 455 Sahni A, Tandon SK, Jolly A, Bajpai S, Sood A, Srinivasan S. 1994. Upper Cretaceous 31 456 dinosaur eggs and nesting sites from the Deccan volcanosedimentary province 32 33 457 of peninsular India. In: Carpenter K, Hirsch KF, Horner JR, editors. Dinosaur 34 35 458 eggs and babies. Cambridge, UK: Cambridge University Press; p. 204–226. 36 459 Sanz JL, Moratalla JJ, DíazMolina M, LópezMartínez N, Kälin O, VianeyLiaud M. 37 38 460 1995. Dinosaur nests at the sea shore. Nature. 376:731–732. 39 40 461 Segura M, García A, Carenas B, GarcíaHidalgo JF, Gil J. 2002. Upper Cretaceous of 41 462 the Iberian Basin. In: Gibbons W, Moreno T, editors. The Geology of Spain. 42 43 463 London: The Geological Society; p. 288 –292. 44 45 464 Sellés AG. 2012. Oological Record of Dinosaurs in SouthCentral Pyrenees (SW 46 465 Europe): Parataxonomy, diversity and biostratigraphical implications 47 48 466 [dissertation]. Barcelona (Spain): Universitat de Barcelona. 49 50 467 Sellés AG, Bravo AM, Delclòs X, Colombo F, Marti X, OrtegaBlanco J, Parellada C. 51 468 Galobart A. 2013. Dinosaur eggs in the Upper Cretaceous of the Coll de Nargó 52 53 469 area, Lleida Province, southcentral Pyrenees, Spain: Oodiversity, 54 55 470 biostratigraphy and their implications. Cret Res. 40:10–20. 56 471 Sellés AG, Vila, B. 2015. Reevaluation of the age of some dinosaur localities from the 57 58 472 southern Pyrenees by means of megaloothid oospecies. J Iber Geol. 41:125–139. 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 20 of 26

1 2 3 473 Tanaka K, Zelenitsky DK. 2014. Comparisons between experimental and morphometric 4 5 474 water vapor conductance in the eggs of extant birds and crocodiles: implications 6 475 for predicting nest type in dinosaurs. Can J Zool. 92: 1049–1058. 7 8 476 VianeyLiaud M, Khosla A, Garcia G. 2003. Comparison of European and Indian 9 10 477 dinosaur eggshells: paleobiogeographicl implicaitons. J Vert Paleontol. 23:575– 11 478 585. 12 13 479 VianeyLiaud M, LópezMartínez N. 1997. Late Cretaceous dinosaur eggshells from the 14 For Peer Review Only 15 480 Tremp basin, southern Pyrenees, Lleida, Spain. J Paleont. 71:1157–1171. 16 481 VianeyLiaud M, Mallan P, Buscail O, Montgelard C. 1994. Review of French dinosaur 17 18 482 eggshells: morphology, structure, mineral and organic composition. In: 19 20 483 Carpenter K, Hirsch KF, Horner JR, editors. Dinosaur Eggs and Babies. 21 484 Cambridge: Cambridge University Press; p. 151–183 . 22 23 485 Vila B. Galobart A, Canudo J I, Le Loeuff J, DinarésTurell J, Riera V, Oms O, Tortosa 24 25 486 T, Gaete R. 2012. The diversity of sauropod dinosaurs in the latest Cretaceous of 26 487 Southwest of Europe. Palaeogeogr Palaeoclimatol Palaeoecol. 350:19–38. 27 28 488 Vila B, Galobart A, Oms O, Poza B, Bravo AM. 2009. Assessing the nesting strategies 29 30 489 of Late Cretaceous titanosaurs: 3D clutch geometry from a new megaloolithid 31 490 eggsite. Lethaia 43:197–208. 32 33 491 Vila B, Jackson FD, Fortuny J, Sellés AG, Galobart A. 2010. 3D Modelling of 34 35 492 Megaloolithid Clutches: Insights about Nest Construction and Dinosaur 36 493 Behaviour. PLoS ONE 5(5): e10362. doi:10.1371/journal.pone.0010362. 37 38 494 Vila B, Riera V, Bravo AM, Oms O, Vicens E, Estrada R, Galobart A. 2011. The 39 40 495 chronology of dinosaur oospecies in southwestern Europe: Refinements from 41 496 the Maastrichtian succession of the eastern Pyrenees, Cret Res. 32: 378–386. 42 43 497 Vila B, Sellés AG, Brusatte SL. 2016. Diversity and faunal changes in the latest 44 45 498 Cretaceous dinosaur communities of southwestern Europe. Cret Res. 57: 552– 46 499 564. 47 48 500 Vilas L, Mas R, García A, Arias C, Alonso A, Meléndez N, Rincón R. 1982. Ibérica 49 50 501 Suroccidental. In: García A, editor. El Cretácico de España. Madrid: 51 502 Universidad Complutense de Madrid; p. 457 –513. 52 53 503 Vissers RLM, Meijer PTh. 2012. Iberian plate kinematics and Alpine collision in the 54 55 504 Pyrenees. EarthSci Rev. 114:61–83. 56 505 Wright VP, Platt NH. 1995. Seasonal wetland carbonate sequences and dynamic 57 58 506 catenas: a reappraisal of palustrine limestones. Sedim Geol. 99:65–71. 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 21 of 26 Historical Biology

1 2 3 507 Zhao Z. 1979. The advancement of researches on the dinosaurian eggs in China. In: 4 5 508 IVPP, N.G.P.I., editor. Mesozoic and Cenozoic Red Beds of South China. 6 509 Beijing: Science Publishing Co.; p. 330–340. 7 8 510 9 10 11 511 Figure 1. Sketch maps showing the locality from which the specimens were collected. 12 512 Inset shows the position of the sketch map of Valencia province showing the location 13 14 513 (star) ofFor the collecting Peer site, in the vicinity Review of Buñol village (exact Only location on file at 15 16 514 DGPC, Generalitat Valenciana). 17 18 515 Figure 2. Megaloolithus aff. siruguei from the Late Cretaceous Sierra Perenchiza 19 20 516 Formation (Valencia province, Spain). (a–c), SEM photographs of the outer eggshell 21 22 517 surface, showing the compactituberculate ornamentation composed of densely packed 23 518 nodes (a–b). Note the occasional coalescence of the nodes (b). White arrows mark the 24 25 519 position of the pore apertures (b–c). (d), SEM photograph of the inner surface showing 26 27 520 partially dissolved mamillae. (e), SEM photograph in radial view showing the shape of 28 521 the fanshaped units made of acicular calcite crystals radiating from the nucleation 29 30 522 centres. (f), Polarized light microscope photograph of a radial thin section showing the 31 32 523 highly elongated fanshaped units, with a few fused units (red arrow). Growth lines are 33 524 markedly convex and end at the margins of the shell units. Note the presence of extra 34 35 525 spherulites (green arrows) and the prolatocanaliculate canal system sometimes linked by 36 37 526 transverse channels (blue arrows).Anastomosed canals are coloured for a better view. 38 527 Scale bar in (c) = 1 mm. 39 40 41 528 Figure 3. Megaloolithus aff. siruguei from the Late Cretaceous Sierra Perenchiza 42 529 Formation (Valencia province, Spain). Polarized light microscope photograph of a 43 44 530 radial section showing the fanshaped morphology of the elongated shell units and the 45 46 531 presence of extended cavities filled with sparry calcite cement. Remains of a membrane 47 532 partially covers the base of the spherulites (white arrows). Abbreviations: al , 48 49 533 accretionary lines; acc , acicular calcite crystals; ca , cavities. Scale bar = 0.5 mm. 50 51 52 534 Fig. 4. (a), map of the main Late Cretaceous megaloolithid, hadrosaur and titanosaur 53 535 producing localities in the Iberian Peninsula. (b), chronostratigraphic ranges of 54 55 536 megaloolithid oospecies in the IberoArmorican realm (data from the Iberian Range in a 56 57 537 separate graph. Star marks the chronostratigraphic position of the studied locality). (c), 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 22 of 26

1 2 3 538 Stratigraphic distribution of titanosaur and hadrosaur occurences in the northern 4 5 539 Pyrenees (grey graphs), southern Pyrenees (black graphs), and the Iberian Range (white 6 540 graphs). (a, modified from Vissers & Meijer 2012; b, c, modified from Sellés & Vila 7 8 541 2015). 9 10 11 12 13 14 For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 23 of 26 Historical Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 For Peer Review Only 15 16 17 18 19 20 21 22 23 Figure 1. Sketch maps showing the locality from which the specimens were collected. Inset shows the 24 position of the sketch map of Valencia province showing the location (star) of the collecting site, in the 25 vicinity of Buñol village (exact location on file at DGPC, Generalitat Valenciana). 26 27 53x25mm (300 x 300 DPI) 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 24 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 Figure 2. Megaloolithus aff. siruguei from the Late Cretaceous Sierra Perenchiza Formation (Valencia 26 province, Spain). (a–c), SEM photographs of the outer eggshell surface, showing the compactituberculate 27 ornamentation composed of densely packed nodes (a–b). Note the occasional coalescence of the nodes (b). 28 White arrows mark the position of the pore apertures (b–c). (d), SEM photograph of the inner surface 29 showing partially dissolved mamillae. (e), SEM photograph in radial view showing the shape of the fan- 30 shaped units made of acicular calcite crystals radiating from the nucleation centres. (f), Polarized light 31 microscope photograph of a radial thin section showing the highly elongated fan-shaped units, with a few 32 fused units (red arrow). Growth lines are markedly convex and end at the margins of the shell units. Note 33 the presence of extra spherulites (green arrows) and the prolatocanaliculate canal system sometimes linked by transverse channels (blue arrows).Anastomosed canals are coloured for a better view. Scale bar in (c) = 34 1 mm. 35 36 98x53mm (300 x 300 DPI) 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Page 25 of 26 Historical Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Figure 3. Megaloolithus cf. siruguei from the Late Cretaceous Sierra Perenchiza Formation (Valencia province, Spain). Polarized light microscope photograph of a radial section showing the fan-shaped 48 morphology of the elongated shell units and the presence of extended cavities filled with sparry calcite 49 cement. Remains of a membrane partially covers the base of the spherulites (white arrows). Abbreviations: 50 al, accretionary lines; acc,a cicular calcite crystals; ca, cavities. Scale bar = 0.5 mm. 51 52 90x189mm (300 x 300 DPI) 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi Historical Biology Page 26 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 For Peer Review Only 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Fig. 4. (a), map of the main Late Cretaceous megaloolithid, hadrosaur and titanosaur-producing localities in 29 the Iberian Peninsula. (b), chronostratigraphic ranges of megaloolithid oospecies in the Ibero-Armorican 30 realm (data from the Iberian Range in a separate graph. Star marks the chronostratigraphic position of the 31 studied locality). (c), Stratigraphic distribution of titanosaur and hadrosaur occurences in the northern 32 Pyrenees (grey graphs), southern Pyrenees (black graphs), and the Iberian Range (white graphs). (a, modified from Vissers & Meijer 2012; b, c, modified from Sellés & Vila 2015). 33

34 118x73mm (600 x 600 DPI) 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 URL: http://mc.manuscriptcentral.com/ghbi