1 An Optimization Approach to Jacobian Conjecture Jiang Liu Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences :
[email protected] Abstract Let n 2 and K be a number field of characteristic 0. Jacobian Conjecture asserts for a polynomial ≥ map from Kn to itself, if the determinant of its Jacobian matrix is a nonzero constant in K then P the inverse −1 exists and is also a polynomial map. This conjecture was firstly proposed by Keller P in 1939 for Kn = C2 and put in Smale’s 1998 list of Mathematical Problems for the Next Century. This study is going to present a proof for the conjecture. Our proof is based on Dru˙zkowski Map and Hadamard’s Diffeomorphism Theorem, and additionally uses some optimization idea. Index Terms D-map, Jacobian Conjecture, Polynomial Automorphism, Proper Map I. INTRODUCTION K K K arXiv:2002.10249v4 [math.GM] 17 May 2020 Let denote a number field, on which [X] = [x1,...,xn] be the polynomial ring in n n variables X = (x1,...,xn). Each polynomial vector (X) := ( 1(X),..., n(X)) K[X] P P P ∈ defines a map from Kn to Kn. The n n Jacobian matrix J (X) (J for short) of (X) consists × P P P ∂Pj of the partial derivatives of j with respect to xk, that is, JP = [ ,j,k =1,...,n]. Then the P ∂xk determinant det(JP ) of JP is a polynomial function of X. Jacobian Condition is that det(JP ) is a nonzero constant in K. A K[X]n is called Keller map [28] if it satisfies Jacobian P ∈ Condition.