Chapter 3, Rings Definitions and Examples. We Now Have Several

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3, Rings Definitions and Examples. We Now Have Several Chapter 3, Rings Definitions and examples. We now have several examples of algebraic systems with addition and multiplication: Z; Zn; R;Mn(R);2Z={2n|n∈Z}. We will write down a system of axioms which includes them all. Definition, p. 42. A ring is a nonempty set R with two binary operations (usually written as addition and multiplication) such that for all a; b; c ∈ R, (1) R is closed under addition: a + b ∈ R. (2) Addition is associative: (a + b)+c=a+(b+c). (3) Addition is commutative: a + b = b + a. (4) R contains an additive identity element, called zero and usually denoted by 0 or 0R: a +0=0+a=a. (5) Every element of R has an additive inverse: for each a, there exists an x ∈ R such that a + x =0=x+a. We write x = −a. (6) R is closed under multiplication: ab ∈ R. (7) Multiplication is associative: (ab)c = a(bc). (8) Multiplication distributes over addition: a(b + c)=ab + ac and (a + b)c = ac + bc. Other possible properties are captured by special types of rings. We will encounter many in this book; many more are studied as well by mathematicians. Theorem 3.3. Additive inverses are unique. Proof. Assume that x and y are both inverses of a.Thenx=x+0 = x+(a+y)= (x+a)+y=0+y=y. We don't have to add axioms about subtraction. We just define a − b to be a +(−b). Definition. A commutative ring is a ring R that satisfies the additional axiom that ab = ba for all a; b ∈ R. Examples are Z, R, Zn,2Z, but not Mn(R)ifn≥2. Definition. A ring with identity is a ring R that contains a multiplicative identity element 1R:1Ra=a=a1Rfor all a ∈ R. 10 Examples: 1 in the first three rings above, in M2(R). The set of even integers 01 1 2 is a ring without identity. The set of odd integers is not a ring. We can also work with matrices whose elements come from any ring we know about, such as Mn(Zr). Example. LetR = M2(Z2). This is a finite (16 elements) noncommutative ring with 10 00 identity 1R = and zero element 0R = . We give an example to show it 01 00 is noncommutative: 10 01 01 01 10 00 = but = 00 00 00 00 00 00 Example: rings of continuous functions. Let X be any topological space; if you don't know what that is, let it be R or any interval in R. We consider the set R = C(X; R), the set of all continuous functions from X to R. R becomes a ring with identity when we define addition and multiplication as in elementary calculus: (f + g)(x)=f(x)+g(x)and (fg)(x)=f(x)g(x). The identity element is the constant function 1. R is commutative because R is, but it does have zero divisors for almost all choices of X. There are many, many examples of this sort of ring. The functions don't have to be continuous. They can be restricted in many other ways, or not restricted at all. For example, you can look at polynomial functions or differentiable functions (for some choices of X). Definition, p. 46. An integral domain is a commutative ring R with identity 1R =06 R with no zero divisors; that is, ab =0R implies that a =0R or b =0R. Examples: Z, R, Zp for p prime. Nonexamples: C(R; R), Zn for n composite, the zero ring {0R}, the even integers 2Z. Definition, p. 47. A field is an integral domain in which every nonzero element a has a multiplicative inverse, denoted a−1. Examples: R, Q, C, Zp for p prime (Theorem 2.8). If an element of a ring has a multiplicative inverse, it is unique. The proof is the same as that given above for Theorem 3.3 if we replace addition by multiplication. (Note that we did not use the commutativity of addition.) This is also the proof from Math 311 that invertible matrices have unique inverses. Definition, p. 60. Any element a in a ring R with identity which has an inverse u (i.e., au =1r =ua)iscalledaunit. 3 Making new rings. Theorem 3.1 (Product rings). Let R; S be rings and form the Cartesian product R × S. Define operations by (r; s)+(r0;s0)=(r+r0;s+s0) (r; s)(r0;s0)=(rr0;ss0): Then R × S is a ring. If R and S are both commutative, so is R × S.IfRand S both have an identity, then (1R; 1S) is the identity in R × S. Example. Let R be the ring Z × Z = { (n; m) | n; m ∈ Z }.Notethat(1;0)(0; 1) = (0; 0) = 0R,soRis not an integral domain. For the same reason, no product ring is an integral domain. Definition, p. 49. A subset of a ring which is itself a ring (using the same operations) is called a subring. A subset of a field which is itself a field is called a subfield. Q is a subfield of R, and both are subfields of C. Z is a subring of Q. Z3 is not a subring of Z. Its elements are not integers, but rather are congruence classes of integers. 2Z = { 2n | n ∈ Z } is a subring of Z, but the only subring of Z with identity is Z itself. The zero ring is a subring of every ring. As with subspaces of vector spaces, it is not hard to check that a subset is a subring as most axioms are inherited from the ring. Theorem 3.2. Let S be a subset of a ring R. S is a subring of R iff the following conditions all hold: (1) S is closed under addition and multiplication. (2) 0R ∈ S. (3) −s ∈ S for every element s ∈ S. Proof. Axioms 1, 4, 5 and 6 are in our hypotheses. Axioms 2, 3, 7 and 8 are inherited from R. As examples, do exercises from book, page 51{55: 7, 8, 9, 19, 34, discuss 35. 4 Basic properties of rings. Theorem 3.4{3.5. For all a; b; c in a ring R, (1) a + b = a + c implies b = c. (2) a · 0=0·a=0. (3) a(−b)=−(ab)=(−a)b. (4) −(−a)=a. (5) −(a + b)=(−a)+(−b). (6) (−a)(−b)=ab. (7) (−1)a = −a if R has an identity element. Proof. These make use of the definition of subtraction and negatives. For (1), add −a. (2) a · 0=a(0 + 0) = a · 0+a·0anduse(1). (3) Show that a(−b)and(−a)bare additive inverses for ab (we know there is a unique such element). (4) and (5) Definition of additive inverse. (6) Use (3) and (4). (7) Use (3) or add (−1)a to a. A quicker version of Theorem 3.2 can be obtained using subtraction. Theorem 3.6. Let R be a ring and ∅6=S⊆R. Sis a subring of R if S is closed under subtraction and multiplication. Proof. We need to show S is closed under addition, has 0 and has additive inverses. But S =6 ∅ implies there is some s ∈ S, hence 0 = s − s ∈ S. For any a ∈ S, −a =0−a∈S. And finally, for a; b ∈ S, a + b = a − (−b) ∈ S. Notation: For a in a ring R and n ∈ Z, write na for a sum of n copies of a and an 0 for a product of n copies of a. This includes the cases 0 · a =0R and a =1R if R has an identity element. Be careful: (a+b)2 = a2+ab+ba+b2 cannot be simplified unless the ring is commutative. Theorem 3.7. Let R be a ring and a; b ∈ R. The equation a + x = b has the unique solution x = b − a in R. Proof. b − a is a solution: check it! If z is another solution, then a + z = b = a +(b−a), so z = b − a by cancellation (Theorem 3.4). For multiplication, we need multiplicative inverses to get the cancellation in the proof. 5 Theorem 3.8. Let R be a ring with identity and a; b ∈ R.Ifais a unit, then the equations ax = b and ya = b have unique solutions in R. Proof. x = a−1b and y = ba−1 are solutions: check! Uniqueness works as in Theorem 3.7, using the inverse for cancellation: if z is another solution to ax = b,thenaz = b = a(a−1b). Multiply on the left by a−1 to get z = a−1az = a−1a(a−1b)=a−1b. A similar argument works for y. The solutions x = a−1b and y = ba−1 may not be the same. Exercise 4, p. 62 gives an example with 2 × 2 matrices. Sometimes multiplicative cancellation works without inverses (recall the integers). Theorem 3.10. Let R be an integral domain. If a =06 and ab = ac,thenb=c. Proof. ab = ac implies a(b − c) = 0. Since a =0and6 Ris an integral domain, we must have b − c =0,orb=c. If R is not an integral domain, this fails because of zero divisors: p. 62. Let a =6 0 in a ring R. a is a zero divisor if there exists an element b =0in6 R with either ab =0orba =0. Example: 2 · 3=0=2·0inZ6. Theorem 3.11. Every finite integral domain is a field. Combinatorial proof.
Recommended publications
  • Algebra I (Math 200)
    Algebra I (Math 200) UCSC, Fall 2009 Robert Boltje Contents 1 Semigroups and Monoids 1 2 Groups 4 3 Normal Subgroups and Factor Groups 11 4 Normal and Subnormal Series 17 5 Group Actions 22 6 Symmetric and Alternating Groups 29 7 Direct and Semidirect Products 33 8 Free Groups and Presentations 35 9 Rings, Basic Definitions and Properties 40 10 Homomorphisms, Ideals and Factor Rings 45 11 Divisibility in Integral Domains 55 12 Unique Factorization Domains (UFD), Principal Ideal Do- mains (PID) and Euclidean Domains 60 13 Localization 65 14 Polynomial Rings 69 Chapter I: Groups 1 Semigroups and Monoids 1.1 Definition Let S be a set. (a) A binary operation on S is a map b : S × S ! S. Usually, b(x; y) is abbreviated by xy, x · y, x ∗ y, x • y, x ◦ y, x + y, etc. (b) Let (x; y) 7! x ∗ y be a binary operation on S. (i) ∗ is called associative, if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x; y; z 2 S. (ii) ∗ is called commutative, if x ∗ y = y ∗ x for all x; y 2 S. (iii) An element e 2 S is called a left (resp. right) identity, if e ∗ x = x (resp. x ∗ e = x) for all x 2 S. It is called an identity element if it is a left and right identity. (c) S together with a binary operation ∗ is called a semigroup, if ∗ is as- sociative. A semigroup (S; ∗) is called a monoid if it has an identity element. 1.2 Examples (a) Addition (resp.
    [Show full text]
  • Group Homomorphisms
    1-17-2018 Group Homomorphisms Here are the operation tables for two groups of order 4: · 1 a a2 + 0 1 2 1 1 a a2 0 0 1 2 a a a2 1 1 1 2 0 a2 a2 1 a 2 2 0 1 There is an obvious sense in which these two groups are “the same”: You can get the second table from the first by replacing 0 with 1, 1 with a, and 2 with a2. When are two groups the same? You might think of saying that two groups are the same if you can get one group’s table from the other by substitution, as above. However, there are problems with this. In the first place, it might be very difficult to check — imagine having to write down a multiplication table for a group of order 256! In the second place, it’s not clear what a “multiplication table” is if a group is infinite. One way to implement a substitution is to use a function. In a sense, a function is a thing which “substitutes” its output for its input. I’ll define what it means for two groups to be “the same” by using certain kinds of functions between groups. These functions are called group homomorphisms; a special kind of homomorphism, called an isomorphism, will be used to define “sameness” for groups. Definition. Let G and H be groups. A homomorphism from G to H is a function f : G → H such that f(x · y)= f(x) · f(y) forall x,y ∈ G.
    [Show full text]
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • Boolean and Abstract Algebra Winter 2019
    Queen's University School of Computing CISC 203: Discrete Mathematics for Computing II Lecture 7: Boolean and Abstract Algebra Winter 2019 1 Boolean Algebras Recall from your study of set theory in CISC 102 that a set is a collection of items that are related in some way by a common property or rule. There are a number of operations that can be applied to sets, like [, \, and C. Combining these operations in a certain way allows us to develop a number of identities or laws relating to sets, and this is known as the algebra of sets. In a classical logic course, the first thing you typically learn about is propositional calculus, which is the branch of logic that studies propositions and connectives between propositions. For instance, \all men are mortal" and \Socrates is a man" are propositions, and using propositional calculus, we may conclude that \Socrates is mortal". In a sense, propositional calculus is very closely related to set theory, in that propo- sitional calculus is the study of the set of propositions together with connective operations on propositions. Moreover, we can use combinations of connective operations to develop the laws of propositional calculus as well as a collection of rules of inference, which gives us even more power to manipulate propositions. Before we continue, it is worth noting that the operations mentioned previously|and indeed, most of the operations we have been using throughout these notes|have a special name. Operations like [ and \ apply to pairs of sets in the same way that + and × apply to pairs of numbers.
    [Show full text]
  • On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES .
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Research Statement Robert Won
    Research Statement Robert Won My research interests are in noncommutative algebra, specifically noncommutative ring the- ory and noncommutative projective algebraic geometry. Throughout, let k denote an alge- braically closed field of characteristic 0. All rings will be k-algebras and all categories and equivalences will be k-linear. 1. Introduction Noncommutative rings arise naturally in many contexts. Given a commutative ring R and a nonabelian group G, the group ring R[G] is a noncommutative ring. The n × n matrices with entries in C, or more generally, the linear transformations of a vector space under composition form a noncommutative ring. Noncommutative rings also arise as differential operators. The ring of differential operators on k[t] generated by multiplication by t and differentiation by t is isomorphic to the first Weyl algebra, A1 := khx; yi=(xy − yx − 1), a celebrated noncommutative ring. From the perspective of physics, the Weyl algebra captures the fact that in quantum mechanics, the position and momentum operators do not commute. As noncommutative rings are a larger class of rings than commutative ones, not all of the same tools and techniques are available in the noncommutative setting. For example, localization is only well-behaved at certain subsets of noncommutative rings called Ore sets. Care must also be taken when working with other ring-theoretic properties. The left ideals of a ring need not be (two-sided) ideals. One must be careful in distinguishing between left ideals and right ideals, as well as left and right noetherianness or artianness. In commutative algebra, there is a rich interplay between ring theory and algebraic geom- etry.
    [Show full text]
  • Chapter 1 the Field of Reals and Beyond
    Chapter 1 The Field of Reals and Beyond Our goal with this section is to develop (review) the basic structure that character- izes the set of real numbers. Much of the material in the ¿rst section is a review of properties that were studied in MAT108 however, there are a few slight differ- ences in the de¿nitions for some of the terms. Rather than prove that we can get from the presentation given by the author of our MAT127A textbook to the previous set of properties, with one exception, we will base our discussion and derivations on the new set. As a general rule the de¿nitions offered in this set of Compan- ion Notes will be stated in symbolic form this is done to reinforce the language of mathematics and to give the statements in a form that clari¿es how one might prove satisfaction or lack of satisfaction of the properties. YOUR GLOSSARIES ALWAYS SHOULD CONTAIN THE (IN SYMBOLIC FORM) DEFINITION AS GIVEN IN OUR NOTES because that is the form that will be required for suc- cessful completion of literacy quizzes and exams where such statements may be requested. 1.1 Fields Recall the following DEFINITIONS: The Cartesian product of two sets A and B, denoted by A B,is a b : a + A F b + B . 1 2 CHAPTER 1. THE FIELD OF REALS AND BEYOND A function h from A into B is a subset of A B such that (i) 1a [a + A " 2bb + B F a b + h] i.e., dom h A,and (ii) 1a1b1c [a b + h F a c + h " b c] i.e., h is single-valued.
    [Show full text]
  • Real Numbers and Their Properties
    Real Numbers and their Properties Types of Numbers + • Z Natural numbers - counting numbers - 1, 2, 3,... The textbook uses the notation N. • Z Integers - 0, ±1, ±2, ±3,... The textbook uses the notation J. • Q Rationals - quotients (ratios) of integers. • R Reals - may be visualized as correspond- ing to all points on a number line. The reals which are not rational are called ir- rational. + Z ⊂ Z ⊂ Q ⊂ R. R ⊂ C, the field of complex numbers, but in this course we will only consider real numbers. Properties of Real Numbers There are four binary operations which take a pair of real numbers and result in another real number: Addition (+), Subtraction (−), Multiplication (× or ·), Division (÷ or /). These operations satisfy a number of rules. In the following, we assume a, b, c ∈ R. (In other words, a, b and c are all real numbers.) • Closure: a + b ∈ R, a · b ∈ R. This means we can add and multiply real num- bers. We can also subtract real numbers and we can divide as long as the denominator is not 0. • Commutative Law: a + b = b + a, a · b = b · a. This means when we add or multiply real num- bers, the order doesn’t matter. • Associative Law: (a + b) + c = a + (b + c), (a · b) · c = a · (b · c). We can thus write a + b + c or a · b · c without having to worry that different people will get different results. • Distributive Law: a · (b + c) = a · b + a · c, (a + b) · c = a · c + b · c. The distributive law is the one law which in- volves both addition and multiplication.
    [Show full text]
  • Chapter 4 Complex Numbers Course Number
    Chapter 4 Complex Numbers Course Number Section 4.1 Complex Numbers Instructor Objective: In this lesson you learned how to perform operations with Date complex numbers. Important Vocabulary Define each term or concept. Complex numbers The set of numbers obtained by adding real number to real multiples of the imaginary unit i. Complex conjugates A pair of complex numbers of the form a + bi and a – bi. I. The Imaginary Unit i (Page 328) What you should learn How to use the imaginary Mathematicians created an expanded system of numbers using unit i to write complex the imaginary unit i, defined as i = Ö - 1 , because . numbers there is no real number x that can be squared to produce - 1. By definition, i2 = - 1 . For the complex number a + bi, if b = 0, the number a + bi = a is a(n) real number . If b ¹ 0, the number a + bi is a(n) imaginary number .If a = 0, the number a + bi = bi is a(n) pure imaginary number . The set of complex numbers consists of the set of real numbers and the set of imaginary numbers . Two complex numbers a + bi and c + di, written in standard form, are equal to each other if . and only if a = c and b = d. II. Operations with Complex Numbers (Pages 329-330) What you should learn How to add, subtract, and To add two complex numbers, . add the real parts and the multiply complex imaginary parts of the numbers separately. numbers Larson/Hostetler Trigonometry, Sixth Edition Student Success Organizer IAE Copyright © Houghton Mifflin Company.
    [Show full text]
  • Factorization Theory in Commutative Monoids 11
    FACTORIZATION THEORY IN COMMUTATIVE MONOIDS ALFRED GEROLDINGER AND QINGHAI ZHONG Abstract. This is a survey on factorization theory. We discuss finitely generated monoids (including affine monoids), primary monoids (including numerical monoids), power sets with set addition, Krull monoids and their various generalizations, and the multiplicative monoids of domains (including Krull domains, rings of integer-valued polynomials, orders in algebraic number fields) and of their ideals. We offer examples for all these classes of monoids and discuss their main arithmetical finiteness properties. These describe the structure of their sets of lengths, of the unions of sets of lengths, and their catenary degrees. We also provide examples where these finiteness properties do not hold. 1. Introduction Factorization theory emerged from algebraic number theory. The ring of integers of an algebraic number field is factorial if and only if it has class number one, and the class group was always considered as a measure for the non-uniqueness of factorizations. Factorization theory has turned this idea into concrete results. In 1960 Carlitz proved (and this is a starting point of the area) that the ring of integers is half-factorial (i.e., all sets of lengths are singletons) if and only if the class number is at most two. In the 1960s Narkiewicz started a systematic study of counting functions associated with arithmetical properties in rings of integers. Starting in the late 1980s, theoretical properties of factorizations were studied in commutative semigroups and in commutative integral domains, with a focus on Noetherian and Krull domains (see [40, 45, 62]; [3] is the first in a series of papers by Anderson, Anderson, Zafrullah, and [1] is a conference volume from the 1990s).
    [Show full text]
  • Ring Homomorphisms Definition
    4-8-2018 Ring Homomorphisms Definition. Let R and S be rings. A ring homomorphism (or a ring map for short) is a function f : R → S such that: (a) For all x,y ∈ R, f(x + y)= f(x)+ f(y). (b) For all x,y ∈ R, f(xy)= f(x)f(y). Usually, we require that if R and S are rings with 1, then (c) f(1R) = 1S. This is automatic in some cases; if there is any question, you should read carefully to find out what convention is being used. The first two properties stipulate that f should “preserve” the ring structure — addition and multipli- cation. Example. (A ring map on the integers mod 2) Show that the following function f : Z2 → Z2 is a ring map: f(x)= x2. First, f(x + y)=(x + y)2 = x2 + 2xy + y2 = x2 + y2 = f(x)+ f(y). 2xy = 0 because 2 times anything is 0 in Z2. Next, f(xy)=(xy)2 = x2y2 = f(x)f(y). The second equality follows from the fact that Z2 is commutative. Note also that f(1) = 12 = 1. Thus, f is a ring homomorphism. Example. (An additive function which is not a ring map) Show that the following function g : Z → Z is not a ring map: g(x) = 2x. Note that g(x + y)=2(x + y) = 2x + 2y = g(x)+ g(y). Therefore, g is additive — that is, g is a homomorphism of abelian groups. But g(1 · 3) = g(3) = 2 · 3 = 6, while g(1)g(3) = (2 · 1)(2 · 3) = 12.
    [Show full text]