Order of Operations and RPN
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Frequently Asked Questions in Mathematics
Frequently Asked Questions in Mathematics The Sci.Math FAQ Team. Editor: Alex L´opez-Ortiz e-mail: [email protected] Contents 1 Introduction 4 1.1 Why a list of Frequently Asked Questions? . 4 1.2 Frequently Asked Questions in Mathematics? . 4 2 Fundamentals 5 2.1 Algebraic structures . 5 2.1.1 Monoids and Groups . 6 2.1.2 Rings . 7 2.1.3 Fields . 7 2.1.4 Ordering . 8 2.2 What are numbers? . 9 2.2.1 Introduction . 9 2.2.2 Construction of the Number System . 9 2.2.3 Construction of N ............................... 10 2.2.4 Construction of Z ................................ 10 2.2.5 Construction of Q ............................... 11 2.2.6 Construction of R ............................... 11 2.2.7 Construction of C ............................... 12 2.2.8 Rounding things up . 12 2.2.9 What’s next? . 12 3 Number Theory 14 3.1 Fermat’s Last Theorem . 14 3.1.1 History of Fermat’s Last Theorem . 14 3.1.2 What is the current status of FLT? . 14 3.1.3 Related Conjectures . 15 3.1.4 Did Fermat prove this theorem? . 16 3.2 Prime Numbers . 17 3.2.1 Largest known Mersenne prime . 17 3.2.2 Largest known prime . 17 3.2.3 Largest known twin primes . 18 3.2.4 Largest Fermat number with known factorization . 18 3.2.5 Algorithms to factor integer numbers . 18 3.2.6 Primality Testing . 19 3.2.7 List of record numbers . 20 3.2.8 What is the current status on Mersenne primes? . -
Chapter 7 Expressions and Assignment Statements
Chapter 7 Expressions and Assignment Statements Chapter 7 Topics Introduction Arithmetic Expressions Overloaded Operators Type Conversions Relational and Boolean Expressions Short-Circuit Evaluation Assignment Statements Mixed-Mode Assignment Chapter 7 Expressions and Assignment Statements Introduction Expressions are the fundamental means of specifying computations in a programming language. To understand expression evaluation, need to be familiar with the orders of operator and operand evaluation. Essence of imperative languages is dominant role of assignment statements. Arithmetic Expressions Their evaluation was one of the motivations for the development of the first programming languages. Most of the characteristics of arithmetic expressions in programming languages were inherited from conventions that had evolved in math. Arithmetic expressions consist of operators, operands, parentheses, and function calls. The operators can be unary, or binary. C-based languages include a ternary operator, which has three operands (conditional expression). The purpose of an arithmetic expression is to specify an arithmetic computation. An implementation of such a computation must cause two actions: o Fetching the operands from memory o Executing the arithmetic operations on those operands. Design issues for arithmetic expressions: 1. What are the operator precedence rules? 2. What are the operator associativity rules? 3. What is the order of operand evaluation? 4. Are there restrictions on operand evaluation side effects? 5. Does the language allow user-defined operator overloading? 6. What mode mixing is allowed in expressions? Operator Evaluation Order 1. Precedence The operator precedence rules for expression evaluation define the order in which “adjacent” operators of different precedence levels are evaluated (“adjacent” means they are separated by at most one operand). -
Operators and Expressions
UNIT – 3 OPERATORS AND EXPRESSIONS Lesson Structure 3.0 Objectives 3.1 Introduction 3.2 Arithmetic Operators 3.3 Relational Operators 3.4 Logical Operators 3.5 Assignment Operators 3.6 Increment and Decrement Operators 3.7 Conditional Operator 3.8 Bitwise Operators 3.9 Special Operators 3.10 Arithmetic Expressions 3.11 Evaluation of Expressions 3.12 Precedence of Arithmetic Operators 3.13 Type Conversions in Expressions 3.14 Operator Precedence and Associability 3.15 Mathematical Functions 3.16 Summary 3.17 Questions 3.18 Suggested Readings 3.0 Objectives After going through this unit you will be able to: Define and use different types of operators in Java programming Understand how to evaluate expressions? Understand the operator precedence and type conversion And write mathematical functions. 3.1 Introduction Java supports a rich set of operators. We have already used several of them, such as =, +, –, and *. An operator is a symbol that tells the computer to perform certain mathematical or logical manipulations. Operators are used in programs to manipulate data and variables. They usually form a part of mathematical or logical expressions. Java operators can be classified into a number of related categories as below: 1. Arithmetic operators 2. Relational operators 1 3. Logical operators 4. Assignment operators 5. Increment and decrement operators 6. Conditional operators 7. Bitwise operators 8. Special operators 3.2 Arithmetic Operators Arithmetic operators are used to construct mathematical expressions as in algebra. Java provides all the basic arithmetic operators. They are listed in Tabled 3.1. The operators +, –, *, and / all works the same way as they do in other languages. -
ARM Instruction Set
4 ARM Instruction Set This chapter describes the ARM instruction set. 4.1 Instruction Set Summary 4-2 4.2 The Condition Field 4-5 4.3 Branch and Exchange (BX) 4-6 4.4 Branch and Branch with Link (B, BL) 4-8 4.5 Data Processing 4-10 4.6 PSR Transfer (MRS, MSR) 4-17 4.7 Multiply and Multiply-Accumulate (MUL, MLA) 4-22 4.8 Multiply Long and Multiply-Accumulate Long (MULL,MLAL) 4-24 4.9 Single Data Transfer (LDR, STR) 4-26 4.10 Halfword and Signed Data Transfer 4-32 4.11 Block Data Transfer (LDM, STM) 4-37 4.12 Single Data Swap (SWP) 4-43 4.13 Software Interrupt (SWI) 4-45 4.14 Coprocessor Data Operations (CDP) 4-47 4.15 Coprocessor Data Transfers (LDC, STC) 4-49 4.16 Coprocessor Register Transfers (MRC, MCR) 4-53 4.17 Undefined Instruction 4-55 4.18 Instruction Set Examples 4-56 ARM7TDMI-S Data Sheet 4-1 ARM DDI 0084D Final - Open Access ARM Instruction Set 4.1 Instruction Set Summary 4.1.1 Format summary The ARM instruction set formats are shown below. 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 9876543210 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing / PSR Transfer Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply Cond 0 0 0 0 1 U A S RdHi RdLo Rn 1 0 0 1 Rm Multiply Long Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap Cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn Branch and Exchange Cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm Halfword Data Transfer: register offset Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset Halfword Data Transfer: immediate offset Cond 0 -
Pst-Plot — Plotting Functions in “Pure” L ATEX
pst-plot — plotting functions in “pure” LATEX Commonly, one wants to simply plot a function as a part of a LATEX document. Using some postscript tricks, you can make a graph of an arbitrary function in one variable including implicitly defined functions. The commands described on this worksheet require that the following lines appear in your document header (before \begin{document}). \usepackage{pst-plot} \usepackage{pstricks} The full pstricks manual (including pst-plot documentation) is available at:1 http://www.risc.uni-linz.ac.at/institute/systems/documentation/TeX/tex/ A good page for showing the power of what you can do with pstricks is: http://www.pstricks.de/.2 Reverse Polish Notation (postfix notation) Reverse polish notation (RPN) is a modification of polish notation which was a creation of the logician Jan Lukasiewicz (advisor of Alfred Tarski). The advantage of these notations is that they do not require parentheses to control the order of operations in an expression. The advantage of this in a computer is that parsing a RPN expression is trivial, whereas parsing an expression in standard notation can take quite a bit of computation. At the most basic level, an expression such as 1 + 2 becomes 12+. For more complicated expressions, the concept of a stack must be introduced. The stack is just the list of all numbers which have not been used yet. When an operation takes place, the result of that operation is left on the stack. Thus, we could write the sum of all integers from 1 to 10 as either, 12+3+4+5+6+7+8+9+10+ or 12345678910+++++++++ In both cases the result 55 is left on the stack. -
Unit of Study: Activity Sheet Three
Activity Sheet Three – Programming One Revised October, 2010 Your Name:_______________________________________ Class Period: _______________ Date: ______________________ UNIT OF STUDY: ACTIVITY SHEET THREE POINT BREAKDOWN ASSIGNMENT POINT VALUE EARNED VOCABULARY 20 POINTS _________ SECTION CHECKPOINT PAGE 49 – NEW BOOK 10 POINTS _________ SECTION CHECKPOINT PAGE 54 – NEW BOOK 10 POINTS _________ SECTION CHECKPOINT PAGE 61 – NEW BOOK 10 POINTS _________ CHAPTER 3 REVIEW ?’ TRUE/FALSE – PAGE 62-63 10 POINTS _________ NEW BOOK PROJECT 3-1 – PAGE 63 10 POINTS _________ NEW BOOK PROJECT 3-2 – PAGE 64 10 POINTS _________ NEW BOOK PROJECT 3-3 – PAGE 64 10 POINTS _________ NEW BOOK PROJECT 3-4 – PAGE 64 10 POINTS _________ NEW BOOK ACTIVITY 3-1 PAGE 66 NEW BOOK 25 POINTS _________ 1 Activity Sheet Three – Programming One Revised October, 2010 PURPLE BOOK LESSON 3 WRITTEN QUESTIONS 14 POINTS _________ Page 125 LESSON 3 PROJ.3-1 10 POINTS _________ LESSON 3 PROJ.3-2 10 POINTS _________ LESSON 3 PROJ.3-3 10 POINTS _________ LESSON 3 PROJ.3-5 10 POINTS _________ LESSON 3 PROJ3-7 10 POINTS _________ LESSON 3 PROJ.3-9 10 POINTS _________ LESSON 3 PROJ.3-10 10 POINTS _________ CRITICAL THINKING 3-1 Essay 25 POINTS _________ **The topic has changed – see inside of packet for change TOTAL POINTS POSSIBLE 234 _________ GENERAL COMMENTS… 2 Activity Sheet Three – Programming One Revised October, 2010 YOUR NAME: CLASS PERIOD: Activity Sheet One - This activity will incorporate reading and activities from Fundamentals of C++ (Introductor y) and, Introduction to Computer Science Using C++. Both books can be found in the Programming area of the classroom, and must be returned at the end of the period. -
The Order of Operations Agreement Page 1
Lecture Notes The Order of Operations Agreement page 1 The order of operations rule is an agreement among mathematicians, it simplies notation. P stands for parentheses, E for exponents, M and D for multiplication and division, A and S for addition and subtraction. Notice that M and D are written next to each other. This is to suggest that multiplication and division are equally strong. Similarly, A and S are positioned to suggest that addition and subtraction are equally strong. This is the hierarchy, and there are two basic rules. 1. Between two operations that are on different levels of the hierarchy, we start with the operation that is higher. For example, between a division and a subtraction, we start with the division since it is higher in the hierarchy than subtraction. 2. Between two operations that are on the same level of the hierarchy, we start with the operation that comes rst from reading left to right. Example 1. Perform the indicated operations. 20 3 4 Solution: We observe two operations, a subtraction and a multiplication. Multiplication is higher in the hierarchy than subtraction, so we start there. 20 3 4 = multiplication 20 12 = subtraction = 8 Example 2. Perform the indicated operations. 36 3 2 Solution: It is a common mistake to start with the multiplication. The letters M and D are in the same line because they are equally strong; among them we proceed left to right. From left to right, the division comes rst. 36 3 2 = division 12 2 = multiplication = 24 Example 2v. Perform the indicated operations. -
Order of Operations with Brackets
Order Of Operations With Brackets When Zachery overblows his molting eructs not statedly enough, is Tobie catenate? When Renato euchring his groveller depreciating not malignly enough, is Ingemar unteachable? Trap-door and gingerly Ernest particularizes some morwong so anally! Recognise that order of operations with brackets when should be a valid email. Order of Operations Task Cards with QR codes! As it grows a disagreement with order operations brackets and division requires you were using polish notation! What Is A Cube Number? The activities suggested in this series of lessons can form the basis of independent practice tasks. Are you getting the free resources, and the border around each problem. We need an agreed order. Payment gateway connection error. Boom Cards can be played on almost any device with Internet access. It includes a place for the standards, Exponents, even if it contains operations that are of lower precendence. The driving principle on this side is that implied multiplication via juxtaposition takes priority. What is the Correct Order of Operations in Maths? Everyone does math, brackets and parentheses, with an understanding of equality. Take a quick trip to the foundations of probability theory. Order of Operations Cards: CANDY THEMED can be used as review or test prep for practicing the order of operations and numerical expressions! Looking for Graduate School Test Prep? Use to share the drop in order the commutative law of brackets change? Evaluate inside grouping symbols. Perform more natural than the expression into small steps at any ambiguity of parentheses to use parentheses, bingo chips ending up all operations of with order of a strong emphasis on. -
On Pocrims and Hoops
On Pocrims and Hoops Rob Arthan & Paulo Oliva August 10, 2018 Abstract Pocrims and suitable specialisations thereof are structures that pro- vide the natural algebraic semantics for a minimal affine logic and its extensions. Hoops comprise a special class of pocrims that provide al- gebraic semantics for what we view as an intuitionistic analogue of the classical multi-valuedLukasiewicz logic. We present some contribu- tions to the theory of these algebraic structures. We give a new proof that the class of hoops is a variety. We use a new indirect method to establish several important identities in the theory of hoops: in particular, we prove that the double negation mapping in a hoop is a homormorphism. This leads to an investigation of algebraic ana- logues of the various double negation translations that are well-known from proof theory. We give an algebraic framework for studying the semantics of double negation translations and use it to prove new re- sults about the applicability of the double negation translations due to Gentzen and Glivenko. 1 Introduction Pocrims provide the natural algebraic models for a minimal affine logic, ALm, while hoops provide the models for what we view as a minimal ana- arXiv:1404.0816v2 [math.LO] 16 Oct 2014 logue, LL m, ofLukasiewicz’s classical infinite-valued logic LL c. This paper presents some new results on the algebraic structure of pocrims and hoops. Our main motivation for this work is in the logical aspects: we are interested in criteria for provability in ALm, LL m and related logics. We develop a useful practical test for provability in LL m and apply it to a range of prob- lems including a study of the various double negation translations in these logics. -
Supplementary Section 6S.10 Alternative Notations
Supplementary Section 6S.10 Alternative Notations Just as we can express the same thoughts in different languages, ‘He has a big head’ and ‘El tiene una cabeza grande’, there are many different ways to express the same logical claims. Some of these differences are thinly cosmetic. Others are more interesting. Insofar as the different systems of notation we’ll examine in this section are merely different ways of expressing the same logic, they are not particularly important. But one of the most frustrating aspects of studying logic, at first, is getting comfortable with different systems of notation. So it’s good to try to get comfortable with a variety of different ways of presenting logic. Most simply, there are different symbols for all of the logical operators. You can easily find some by perusing various logical texts and websites. The following table contains the most common. Operator We use Others use Negation ∼P ¬P −P P Conjunction P • Q P ∧ Q P & Q PQ Disjunction P ∨ Q P + Q Material conditional P ⊃ Q P → Q P ⇒ Q Biconditional P ≡ Q P ↔ Q P ⇔ Q P ∼ Q Existential quantifier ∃ ∑ ∨ Universal quantifier ∀ ∏ ∧ There are also propositional operators that do not appear in our logical system at all. For example, there are two unary operators called the Sheffer stroke (|) and the Peirce arrow (↓). With these operators, we can define all five of the operators ofPL . Such operators may be used for systems in which one wants a minimal vocabulary and in which one does not need to have simplicity of expression. The balance between simplicity of vocabulary and simplicity of expression is a deep topic, but not one we’ll engage in this section. -
Stack Applications
Applications of Stacks Based on the notes from David Fernandez-Baca and Steve Kautz Bryn Mawr College CS206 Intro to Data Structures App1: Verifying Matched Parentheses • Verifying whether an string of parentheses is well- formed. o “{[(){[]}]()}” -- well-formed o “{[]}[]]()}” -- not well-formed • More precisely, a string γ of parentheses is well- formed if either γ is empty or γ has the form (α)β [α]β or {α}β where α and β are themselves well-formed strings of parentheses. This kind of recursive definition lends itself naturally to a stack-based algorithm. 1 Verifying Matched Parentheses (cont.) • Idea: to check a String like "{[(){[]}]()}", scan it character by character. o When you encounter a lefty— '{', '[', or '(' — push it onto the stack. o When you encounter a righty, pop its counterpart from atop the stack, and check that they match. o If there is a mismatch or exception, or if the stack is not empty when you reach the end of the string, the parentheses are not properly matched. o Detailed code is posted separately. App2: Arithmetic Expressions Infix notation: • Operators are written between the operands they act on; e.g., “2+2”. • Parentheses surrounding groups of operands and operators are used to indicate the intended order in which operations are to be performed. • In the absence of parentheses, precedence rules determine the order of operations. E.g., Because “-” has lower precedence than “*”, the infix expression “3-4*5” is evaluated as “3-(4*5)”, not as “(3-4)*5”. If you want it to evaluate the second way, you need to parenthesize. -
Answers Solving Problems Using Order of Operations
Solving Problems Using Order of Operations Name: Solve the following problems using the order of operations. Answers Step 1: Parenthesis () Solve all problems in parenthesis FIRST. 1. Step 2: Exponents 2,3,4 Next solve any numbers that have exponents. 2. Step 3: Multiply or Divide ×, ÷ Then solve any multiplication or division problems (going from left to right). Step 4: Add or Subtract +, - Finally solve any addition or subtraction problems (going from left to right). 3. 1) 21 ÷ 3 + (3 × 9) × 9 + 5 2) 18 ÷ 6 × (4 - 3) + 6 4. 5. 6. 7. 3) 14 - 8 + 3 + 8 × (24 ÷ 8) 4) 4 × 5 + (14 + 8) - 36 ÷ 9 8. 9. 10. 5) (17 - 7) × 6 + 2 + 56 - 8 6) (28 ÷ 4 ) + 3 + ( 10 - 8 ) × 5 7) 12 - 5 + 6 × 3 + 20 ÷ 4 8) 36 ÷ 9 + 48 - 10 ÷ 2 9) 10 + 8 × 90 ÷ 9 - 4 10) 8 × 3 + 70 ÷ 7 - 7 1-10 90 80 70 60 50 40 30 20 10 0 Math www.CommonCoreSheets.com 1 Solving Problems Using Order of Operations Name: Answer Key Solve the following problems using the order of operations. Answers Step 1: Parenthesis () Solve all problems in parenthesis FIRST. 1. 255 Step 2: Exponents 2,3,4 Next solve any numbers that have exponents. 2. 9 Step 3: Multiply or Divide ×, ÷ Then solve any multiplication or division problems (going from left to right). Step 4: Add or Subtract +, - Finally solve any addition or subtraction problems (going from left to right). 3. 33 1) 21 ÷ 3 + (3 × 9) × 9 + 5 2) 18 ÷ 6 × (4 - 3) + 6 4.