Vertebrate Genomes Compared How the Concept of “Model Organism” Has 21 Changed

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Genomes Compared How the Concept of “Model Organism” Has 21 Changed S CIENCE’ S C OMPASS 65 text falls short of what might be expected 64 of an encyclopedia—the author’s lack of 63 expertise in several aspects of meteoritics 62 has resulted in errors. The straightforward 61 text takes the traditional approach of sys- 60 tematically describing stones, stony-irons, 59 and iron meteorites in terms of their clas- 58 sification and properties. The book is not 57 the sort that a nonspecialist would read in 56 order to learn about meteorites; it is much Image not 55 too technical for that. However, it is beau- available for 54 tifully and lavishly illustrated with many 53 pictures of meteorites in thin section as online use. 52 well as of hand specimens. These images 51 should help the work fulfill another of its 50 goals, providing a “guide to assist 49 searchers in the field to recognize the 48 many classes of meteorites.” 47 Meteoritics has come a long way in the 46 208 years since Chladni’s publication. Be- 45 van and de Laeter devote their final chapter 44 to looking to the future, in which they con- 43 sider missions to Mars, comets, and aster- BROWSINGS 42 oids, along with efforts to retrieve interstel- Earth from Above. Revised and Expanded Edition. Yann Arthus-Bertrand. Abrams, New 41 lar dust. Much remains for the next 200 York, 2002. 462 pp. $45.00. ISBN 0-8109-3495-7. Earth From Above. An exhibit at Mil- 40 years; we are still looking for meteorites lennium Park, Chicago, IL, through 30 September 2002. 39 that are indubitably from Mercury, Venus, a With a helicopter as his preferred tripod, Arthus-Bertrand specializes in composing im- 38 cometary nucleus, and a Kuiper belt object. ages on the fly. Ranging from an intimate glimpse at a worker resting on cotton in the 37 Part of the excitement of meteoritics is Côte d’Ivoire to a spectacular panorama of the Himalayan crest, the 190 photographs in 36 knowing that any of these extraterrestrial this oversize volume capture the beauty of natural landscapes and human settlements 35 rocks might already be here on Earth, just alike. Many depict strikingly abstract patterns, such as these formed by crystallized salts 34 waiting to be found, identified, and written on the surface of Kenya’s Lake Magadi (above). Arthus-Bertrand’s project was supported 33 about. In their different ways, both of these by UNESCO, and the book includes 14 new short essays on our beleaguered world and 32 books convey the message that meteoritics steps towards an “eco-economy.” The exhibit, with 120 large (1.2 m by 1.8 m) prints, 31 is a fast-moving field, one in which we still opened in Paris in May 2000 and has appeared in 40 cities and 15 countries. 30 have much to learn. 29 28 27 S CIENCE’ S C OMPASS PERSPECTIVES 26 25 PERSPECTIVES: GENOMICS the underlying evolutionary and genetic 24 mechanisms that shape them. 23 The tiger pufferfish is a good example of 22 Vertebrate Genomes Compared how the concept of “model organism” has 21 changed. Growing up to 70 cm in length, it 20 S. Blair Hedges and Sudhir Kumar is a relatively large marine fish known for its 19 taste, not a laboratory workhorse like the fly 18 t takes two of anything to make a com- account for this difference. Its unusually or mouse. It was introduced as a “genomic 17 parison. With the publication of the draft small genome size, combined with a faster model” organism (3) specifically because of 16 Igenome sequence of the tiger pufferfish method of sequencing (whole-genome its compact genome, permitting efficient 15 (Fugu rubripes) by Aparicio et al. on page shotgun), has yielded a much lower price comparison with the human genome. Other 14 1301 of this issue (1), we are now able to tag—a mere $12 million compared with the genomic models include human parasites, 13 compare the genomes of two vertebrates. hundreds of millions of dollars spent on se- such as Plasmodium and Trypanosoma, and 12 Measuring 365 million base pairs in length, quencing the human genome. The primary species of interest to agriculture, such as rice 11 the Fugu genome is only one-ninth the size incentive for sequencing this and other ver- and corn. Fugu’s relative, the spotted green 10 of the human genome (2) yet contains ap- tebrate genomes lies in better identification pufferfish (Tetraodon nigroviridis), is a 9 proximately the same number of genes. and characterization of human genes and much smaller (up to 17 cm in length) fresh- 8 Shorter introns and a smaller amount of their regulatory elements, especially those water species with a similarly small genome, 7 repetitive DNA in the pufferfish genome that are mutated in human diseases. For ex- and is more accessible to experimental re- 6 ample, nearly 1000 putative human genes search requiring laboratory breeding. The 5 S. Blair Hedges is at the NASA Astrobiology Institute have been discovered by comparing the Tetraodon genome, one of at least 18 verte- 4 and Department of Biology, 208 Mueller Laboratory, Fugu and human genomes (1). Beyond brate genomes being sequenced, is almost 3 Pennsylvania State University, University Park, PA 16802–5301, USA. S. Kumar is in the Department of biomedical applications, the extent of con- complete (see the figure). 2 Biology, Life Sciences 351, Arizona State University, servation and divergence among the puffer- A major motivation behind genome-se- 1 AGENCY,CREDIT:YANN ARTHUS-BERTRAND/ALTITUDE PARIS Tempe, AZ 85287–1501, USA. fish and human genomes will shed light on quencing projects is to generate a better www.sciencemag.org SCIENCE VOL 297 23 AUGUST 2002 1283 S CIENCE’ S C OMPASS 65 Homo sapiens (Human) 64 Pan troglodytes (Common chimpanzee) 63 Macaca mulatta (Rhesus macaque) 62 Mus musculus (House mouse) 61 Rattus norvegicus (Norway rat) Canis familiaris (Domestic dog) 60 Felis catus (Domestic cat) 59 Equus caballus (Horse) 58 Sus scrofa (Domestic pig) 57 To marsupials Bos taurus (Domestic cattle) 56 Ovis aries (Domestic sheep) 55 Gallus gallus (Domestic fowl) Xenopus laevis (African clawed frog) 54 Xenopus tropicalis (Tropical clawed frog) 53 Danio rerio (Zebrafish) 52 Oryzias latipes (Japanese medaka) 51 Tetraodon nigroviridis (Spotted green pufferfish) 50 Takifugu rubripes (Tiger pufferfish or “Torafugu”) 49 Paleozoic Mesozoic Cen. 01234 48 Haploid genome 47 400 300 200 100 0 mass (pg) 46 Million years ago 45 Evolution of vertebrate genomes. The evolutionary tree shows relationships, times of divergence, and genome sizes (in picograms of DNA, pg) of 44 vertebrates whose genomes have been selected for sequencing. Classically, 1 pg of DNA has been considered equivalent to roughly 1 billion base pairs, 43 although the conversion factor for both human and Fugu is 0.91 ×109 base pairs. The position of marsupials is indicated to illustrate their potential im- 42 portance in filling an evolutionary gap in genome projects (12). The relationships and divergence times are largely from a molecular clock study of 658 41 proteins (8), although reflecting current uncertainty in the position of some orders of mammals (9) and supplemented with data on fishes and 40 genome sizes of vertebrates (www.genomesize.com/) (12–15). “Takifugu” is considered by ichthyologists to be the correct genus instead of the more 39 popular “Fugu”(www.fishbase.org/). 38 37 understanding of the genetics of human at evolutionarily conserved positions of the parts where times are unknown (8). Accu- 36 diseases (4). Sequencing of the complete protein sequence, and the alteration in chem- rate species divergence times are needed to 35 Fugu genome, a distant relative of humans, istry is more extreme than that permitted by link biological events with Earth’s geologi- 34 provides an opportunity to compare these natural selection (7). Thus, comparison of cal history and the appearance of charac- 33 two genomes at the level of exons, introns, nonmammalian genomes with the human teristic life forms. Such genomic clocks 32 and the protein sequence. The much short- genome will be crucial for understanding the might determine with better precision 31 er length of Fugu introns will enable se- genetic basis of many human diseases. whether the orders of mammals began 30 quence stretches important for regulating Evolutionary biology also has benefited splitting from one another in the Mesozoic 29 gene expression (5) to be identified, and greatly from genome-sequencing projects. era (80 to 100 million years ago) when 28 the role of noncoding DNA (which makes The wealth of new genome data is helping to continents were breaking apart, or later in 27 up most of the human genome) to be clari- better resolve the tree of life, particularly its the Cenozoic era (65 million years ago) af- 26 fied. The Fugu genome carries a handful of major branches. This has been especially true ter the dinosaurs disappeared, vacating 25 “giant” genes containing long introns, for prokaryotes, where more than 80 genomes ecological niches (8). Robust estimation of 24 which should provide insight into what has have been sequenced so far and the results the timing of gene-duplication events en- 23 driven the change in genome size during have greatly improved our view of the early ables reliable predictions of gene content 22 evolution. Understanding the genome history of life. For vertebrates, many thorny in unsequenced genomes and estimation of 21 structure of Fugu also will foster a clearer issues remain to be resolved, such as the phy- the rate of gene content increase over time 20 picture of the master control genes direct- logeny of families and other major groups in (11).
Recommended publications
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Genomics and Mapping of Teleostei (Bony fish)
    Comparative and Functional Genomics Comp Funct Genom 2003; 4: 182–193. Published online 1 April 2003 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.259 Featured Organism Genomics and mapping of Teleostei (bony fish) Melody S. Clark* HGMP Resource Centre, Genome Campus, Hinxton, Cambridge CB2 4PP, UK *Correspondence to: Abstract Melody S. Clark, HGMP Resource Centre, Genome Until recently, the Human Genome Project held centre stage in the press releases Campus, Hinxton, Cambridge concerning sequencing programmes. However, in October 2001, it was announced CB2 4PP, UK. that the Japanese puffer fish (Takifugu rubripes, Fugu) was the second vertebrate E-mail: [email protected] organism to be sequenced to draft quality. Briefly, the spotlight was on fish genomes. There are currently two other fish species undergoing intensive sequencing, the green spotted puffer fish (Tetraodon nigroviridis) and the zebrafish (Danio rerio). But this trio are, in many ways, atypical representations of the current state of fish genomic research. The aim of this brief review is to demonstrate the complexity of fish as a Received: 10 November 2002 group of vertebrates and to publicize the ‘lesser-known’ species, all of which have Revised: 5 December 2002 something to offer. Copyright 2003 John Wiley & Sons, Ltd. Accepted: 28 January 2003 Keywords: Teleostei; fish; genomics; BACs; sequencing; aquaculture Background the wild-caught fisheries production figures. The equivalents within the EU are trout, Atlantic Fish have the potential to be immensely useful salmon and sea bass/bream for aquaculture; model organisms in medical research, as evidenced with herring, mackerel and sprat for wild-caught by the genomic sequencing programmes mentioned fisheries.
    [Show full text]
  • Canestro 06Evodev Retinoic Acid Machinery in Non-Chordates.Pdf
    EVOLUTION & DEVELOPMENT 8:5, 394–406 (2006) Is retinoic acid genetic machinery a chordate innovation? Cristian Can˜estro,a John H. Postlethwait,a Roser Gonza`lez-Duarte,b and Ricard Albalatb,Ã aInstitute of Neuroscience, University of Oregon, Eugene, OR 97403, USA bDepartament de Gene`tica, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain ÃAuthor for correspondence (email: [email protected]) SUMMARY Development of many chordate features and showed for the first time that RA genetic machineryF depends on retinoic acid (RA). Because the action of RA that is Aldh1a, Cyp26, and Rar orthologsFis present in during development seems to be restricted to chordates, it had nonchordate deuterostomes. This finding implies that RA been previously proposed that the ‘‘invention’’ of RA genetic genetic machinery was already present during early machinery, including RA-binding nuclear hormone receptors deuterostome evolution, and therefore, is not a chordate (Rars), and the RA-synthesizing and RA-degrading enzymes innovation. This new evolutionary viewpoint argues against Aldh1a (Raldh) and Cyp26, respectively, was an important the hypothesis that the acquisition of gene families under- step for the origin of developmental mechanisms leading lying RA metabolism and signaling was a key event for to the chordate body plan. We tested this hypothesis the origin of chordates. We propose a new hypothesis in by conducting an exhaustive survey of the RA machinery which lineage-specific duplication and loss of RA machinery in genomic databases for twelve deuterostomes. We genes could be related to the morphological radiation of reconstructed the evolution of these genes in deuterostomes deuterostomes. INTRODUCTION which appears to be the sister group of chordates (Cameron et al.
    [Show full text]
  • Adaptive Evolution of Low Salinity Tolerance and Hypoosmotic Regulation in a Euryhaline Teleost, Takifugu Obscurus
    Adaptive evolution of low salinity tolerance and hypoosmotic regulation in a euryhaline teleost, Takifugu obscurus Hanyuan Zhang Key Laboratory of Aquatic Genomics, Ministry of Agriculture, CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Fengtai, Beijing, China Jilun Hou Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, China Haijin Liu Breeding Laboratory, Dalian Tianzheng Industry Co. Ltd., Dalian, Liaoning, China Haoyong Zhu Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China Gangchun Xu Freshwater Fisheries Research Centre of Chinese Academy of Fishery Sciences, Wuxi, China Jian Xu ( [email protected] ) Chinese Academy of Fishery Sciences https://orcid.org/0000-0003-0274-4268 Research article Keywords: Takifugu, low salt-tolerance, hypoosmotic regulation, population genomics, genome re- sequencing Posted Date: October 30th, 2019 DOI: https://doi.org/10.21203/rs.2.16620/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Marine Biology on June 3rd, 2020. See the published version at https://doi.org/10.1007/s00227-020-03705-x. Page 1/20 Abstract Background The mechanism of osmoregulation is crucial for maintaining growth, development, and life activities in teleosts. Takifugu obscurus, the only euryhaline species in the genus Takifugu, is a proper model organism for studying the mechanism of low salt-tolerance and hypoosmotic regulation. Results In this study, whole genome sequencing data were obtained from 90 puffersh representing ve species within this genus, T. rubripes, T. obscurus, T.
    [Show full text]
  • Integration of the Genetic Map and Genome Assembly of Fugu Facilitates Insights Into Distinct Features of Genome Evolution in Teleosts and Mammals
    GBE Integration of the Genetic Map and Genome Assembly of Fugu Facilitates Insights into Distinct Features of Genome Evolution in Teleosts and Mammals Wataru Kai1, Kiyoshi Kikuchi*,1, Sumanty Tohari2, Ah Keng Chew2, Alice Tay2, Atushi Fujiwara3, Sho Hosoya1, Hiroaki Suetake1, Kiyoshi Naruse4, Sydney Brenner2, Yuzuru Suzuki1, and Downloaded from https://academic.oup.com/gbe/article-abstract/doi/10.1093/gbe/evr041/582998 by guest on 22 April 2019 Byrappa Venkatesh2 1Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Hamamatsu, Shizuoka, Japan 2Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore 3National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan 4Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Aichi, Japan *Corresponding author: E-mail: [email protected]. Accepted: 21 April 2011 Abstract The compact genome of fugu (Takifugu rubripes) has been used widely as a reference genome for understanding the evolution of vertebrate genomes. However, the fragmented nature of the fugu genome assembly has restricted its use for comparisons of genome architecture in vertebrates. To extend the contiguity of the assembly to the chromosomal level, we have generated a comprehensive genetic map of fugu and anchored the scaffolds of the assembly to the 22 chromosomes of fugu. The map consists of 1,220 microsatellite markers that provide anchor points to 697 scaffolds covering 86% of the genome assembly (http://www.fugu-sg.org/). The integrated genome map revealed a higher recombination rate in fugu compared with other vertebrates and a wide variation in the recombination rate between sexes and across chromosomes of fugu.
    [Show full text]
  • Metaphylogeny of 82 Gene Families Sheds a New Light on Chordate Evolution
    Int. J. Biol. Sci. 2006, 2 32 International Journal of Biological Sciences ISSN 1449-2288 www.biolsci.org 2006 2(2):32-37 ©2006 Ivyspring International Publisher. All rights reserved Research paper Metaphylogeny of 82 gene families sheds a new light on chordate evolution Alexandre Vienne and Pierre Pontarotti Phylogenomics Laboratory, EA 3781 Evolution Biologique, Université de Provence, 13331 MARSEILLE CEDEX 03, FRANCE Corresponding to: Alexandre Vienne, Phylogenomics Laboratory, EA 3781 Evolution Biologique, Place V. HUGO, Université de Provence, 13331 MARSEILLE CEDEX 03, France. Email: [email protected]. Phone: (33) 4 91 10 64 89 Received: 2006.01.15; Accepted: 2006.03.31; Published: 2006.04.10 Achieving a better comprehension of the evolution of species has always been an important matter for evolutionary biologists. The deuterostome phylogeny has been described for many years, and three phyla are distinguishable: Echinodermata (including sea stars, sea urchins, etc…), Hemichordata (including acorn worms and pterobranchs), and Chordata (including urochordates, cephalochordates and extant vertebrates). Inside the Chordata phylum, the position of vertebrate species is quite unanimously accepted. Nonetheless, the position of urochordates in regard with vertebrates is still the subject of debate, and has even been suggested by some authors to be a separate phylum from cephalochordates and vertebrates. It was also the case for agnathans species –myxines and hagfish– for which phylogenetic evidence was recently given for a controversial monophyly. This raises the following question: which one of the cephalochordata or urochordata is the sister group of vertebrates and what are their relationships? In the present work, we analyzed 82 protein families presenting homologs between urochordata and other deuterostomes and focused on two points: 1) testing accurately the position of urochordata and cephalochordata phyla in regard with vertebrates as well as chordates monophyly, 2) performing an estimation of the rate of gene loss in the Ciona intestinalis genome.
    [Show full text]
  • The Phylogeny of Ray-Finned Fish (Actinopterygii) As a Case Study Chenhong Li University of Nebraska-Lincoln
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Nebraska, Omaha University of Nebraska at Omaha DigitalCommons@UNO Biology Faculty Publications Department of Biology 2007 A Practical Approach to Phylogenomics: The Phylogeny of Ray-Finned Fish (Actinopterygii) as a Case Study Chenhong Li University of Nebraska-Lincoln Guillermo Orti University of Nebraska-Lincoln Gong Zhang University of Nebraska at Omaha Guoqing Lu University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/biofacpub Part of the Aquaculture and Fisheries Commons, Biology Commons, and the Genetics and Genomics Commons Recommended Citation Li, Chenhong; Orti, Guillermo; Zhang, Gong; and Lu, Guoqing, "A Practical Approach to Phylogenomics: The hP ylogeny of Ray- Finned Fish (Actinopterygii) as a Case Study" (2007). Biology Faculty Publications. 16. https://digitalcommons.unomaha.edu/biofacpub/16 This Article is brought to you for free and open access by the Department of Biology at DigitalCommons@UNO. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. BMC Evolutionary Biology BioMed Central Methodology article Open Access A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study Chenhong Li*1, Guillermo Ortí1, Gong Zhang2 and Guoqing Lu*3 Address: 1School of Biological Sciences, University
    [Show full text]
  • Phylogenetic Analysis of the Tenascin Gene Family: Evidence of Origin
    BMC Evolutionary Biology BioMed Central Research article Open Access Phylogenetic analysis of the tenascin gene family: evidence of origin early in the chordate lineage RP Tucker*1, K Drabikowski*2,4, JF Hess1, J Ferralli2, R Chiquet-Ehrismann2 and JC Adams3 Address: 1Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA 95616, USA, 2Friedrich Miescher Institute, Novartis Research Foundation, Basel, Switzerland, 3Dept. of Cell Biology, Lerner Research Institute and Dept. of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44118, USA and 4Institute of Biology 3, University of Freiburg, Freiburg, Germany Email: RP Tucker* - [email protected]; K Drabikowski* - [email protected]; JF Hess - [email protected]; J Ferralli - [email protected]; R Chiquet-Ehrismann - [email protected]; JC Adams - [email protected] * Corresponding authors Published: 07 August 2006 Received: 24 February 2006 Accepted: 07 August 2006 BMC Evolutionary Biology 2006, 6:60 doi:10.1186/1471-2148-6-60 This article is available from: http://www.biomedcentral.com/1471-2148/6/60 © 2006 Tucker et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Tenascins are a family of glycoproteins
    [Show full text]
  • A Brief Overview of Known Introductions of Non-Native Marine and Coastal Species Into China
    Aquatic Invasions (2017) Volume 12, Issue 1: 109–115 DOI: https://doi.org/10.3391/ai.2017.12.1.11 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Research Article A brief overview of known introductions of non-native marine and coastal species into China Wen Xiong1,2,*, Chunyan Shen1,2, Zhongxin Wu1,2, Huosheng Lu1,2 and Yunrong Yan1,2,* 1Faculty of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China 2Center of South China Sea Fisheries Resources Monitoring and Assessment, Guangdong Ocean University, Zhanjiang 524088, China E-mail addresses: [email protected] (WX), [email protected] (CS), [email protected] (ZW), [email protected] (HL), [email protected] (YY) *Corresponding author Received: 14 August 2016 / Accepted: 23 November 2016 / Published online: 30 December 2016 Handling editor: Mary Carman Abstract Non-native marine species have attracted a great deal of attention due to wide distribution and potential harmful impacts on ecosystems and economies. However, relatively little information exists about non-native marine species in China. This study provides an inventory of non-native marine and coastal species (213 species) reported to date in China (including the Bohai Sea, the Yellow Sea, the East China Sea, and the South China Sea). The main source regions were the Atlantic, Pacific, Indo-Pacific, and Indian Oceans (196 species in total, or 92.0% of species). Over one-third of non-native marine species (74 species) have established self-sustaining populations, and nearly half of the non-native species (93 species) caused negative ecological and economic impacts. The main introduction pathways of the known non-native species are ornamental trade (74 species, 34.7%), followed by aquaculture (69 species, 32.4%), shipping (65 species, 30.5%), and ecological restoration (5 species, 2.3%).
    [Show full text]
  • Retinoic Acid Signaling and the Evolution of Chordates Ferdinand Marlétaz1, Linda Z
    Int. J. Biol. Sci. 2006, 2 38 International Journal of Biological Sciences ISSN 1449-2288 www.biolsci.org 2006 2(2):38-47 ©2006 Ivyspring International Publisher. All rights reserved Review Retinoic acid signaling and the evolution of chordates Ferdinand Marlétaz1, Linda Z. Holland2, Vincent Laudet1 and Michael Schubert1 1. Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5161/INRA 1237/ENS Lyon, IFR128 BioSciences/Lyon- Gerland, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France 2. Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA Corresponding address: V. Laudet, Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5161/INRA 1237/ENS Lyon, IFR128 BioSciences/Lyon-Gerland, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France. E-mail: [email protected] - Tel: ++33 4 72 72 81 90 - Fax: ++33 4 72 72 80 80 Received: 2006.02.13; Accepted: 2006.03.15; Published: 2006.04.10 In chordates, which comprise urochordates, cephalochordates and vertebrates, the vitamin A-derived morphogen retinoic acid (RA) has a pivotal role during development. Altering levels of endogenous RA signaling during early embryology leads to severe malformations, mainly due to incorrect positional codes specifying the embryonic anteroposterior body axis. In this review, we present our current understanding of the RA signaling pathway and its roles during chordate development. In particular, we focus on the conserved roles of RA and its downstream mediators, the Hox genes, in conveying positional patterning information to different embryonic tissues, such as the endoderm and the central nervous system.
    [Show full text]
  • Global Conservation Status of Marine Pufferfishes (Tetraodontiformes: Tetraodontidae) Emilie Stump Old Dominion University
    Old Dominion University ODU Digital Commons Biological Sciences Faculty Publications Biological Sciences 4-2018 Global Conservation Status of Marine Pufferfishes (Tetraodontiformes: Tetraodontidae) Emilie Stump Old Dominion University Gina M. Ralph Old Dominion University Mia T. Comeros-Raynal Old Dominion University Keiichi Matsuura Kent E. Carpenter Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Environmental Sciences Commons, and the Marine Biology Commons Repository Citation Stump, Emilie; Ralph, Gina M.; Comeros-Raynal, Mia T.; Matsuura, Keiichi; and Carpenter, Kent E., "Global Conservation Status of Marine Pufferfishes (Tetraodontiformes: Tetraodontidae)" (2018). Biological Sciences Faculty Publications. 318. https://digitalcommons.odu.edu/biology_fac_pubs/318 Original Publication Citation Stump, E., Ralph, G. M., Comeros-Raynal, M. T., Matsuura, K., & Carpenter, K. E. (2018). Global conservation status of marine pufferfishes (Tetraodontiformes: Tetraodontidae). Global Ecology and Conservation, 14, e00388. doi:10.1016/j.gecco.2018.e00388 This Article is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Global Ecology and Conservation 14 (2018) e00388
    [Show full text]
  • Comments on Puffers of the Genus Takifugu from Russian Waters with the First Record of Yellowfin Puffer, Takifugu Xanthopterus (
    Bull. Natl. Mus. Nat. Sci., Ser. A, 42(3), pp. 133–141, August 22, 2016 Comments on Puffers of the Genus Takifugu from Russian Waters with the First Record of Yellowfin Puffer, Takifugu xanthopterus (Tetraodontiformes, Tetraodontidae) from Sakhalin Island Yury V. Dyldin1, Keiichi Matsuura2 and Sergey S. Makeev3 1 Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia E-mail: [email protected] 2 National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan E-mail: [email protected] 3 FGBI Sakhalinrybvod, ul. Emelyanova, 43A, 693000 Yuzhno-Sakhalinsk, Russia E-mail: [email protected] (Received 31 March 2016; accepted 22 June 2016) Abstract In August 2015 a single specimen of Takifugu xanthopterus was collected at the mouth of the Lyutoga River in Aniva Bay, southern Sakhalin Island in the southern Sea of Okhotsk. This is the first discovery of this species from Sakhalin Island, and represents the northernmost record for the species. Also we report eight species of Takifugu from Russia based on newly collected specimens, our survey of literature and the fish collection of the Zoological Institute, Russian Academy of Sciences. Key words : Puffers, Takifugu, taxonomy, Sakhalin, new record Introduction phyreus (Temminck and Schlegel, 1850) and T. rubripes (Temminck and Schlegel, 1850) have Sakhalin Island is the largest island of the Rus- been collected in this area (see Schmidt, 1904; sian Federation and surrounded by the Seas of Lindberg et al., 1997; Sokolovsky et al., 2011). Japan and Okhotsk (Fig. 1). The west coast of During the course of study on the fish fauna of Sakhalin is washed by the warm Tsushima Cur- Sakhalin Island by the first author, specimens of rent and the east coast by the cold East Sakhalin the genus Takifugu have become available for Current.
    [Show full text]