Pre- and Post-Processing for Optimal Noise Reduction in Cyclic Prefix

Total Page:16

File Type:pdf, Size:1020Kb

Pre- and Post-Processing for Optimal Noise Reduction in Cyclic Prefix Pre- and Post-Processing for Optimal Noise Reduction in Cyclic Prefix Based Channel Equalizers Bojan Vrcelj and P. P. Vaidyanathan Dept. of Electrical Engineering 136-93 California Institute of Technology Pasadena, CA 91125-0001 Abstract— Cyclic prefix based equalizers are widely used for It is preceded (followed) by the optimal precoder (equalizer) high-speed data transmission over frequency selective channels. for the given input and noise statistics. These blocks are real- Their use in conjunction with DFT filterbanks is especially attrac- ized by constant matrix multiplication, so that the overall com- tive, given the low complexity of implementation. Some examples munications system remains of low complexity. include the DFT-based DMT systems. In this paper we consider In the following we first give a brief overview of the cyclic a general cyclic prefix based system for communication and show prefix system with DFT matrices used as the basic ISI can- that the equalization performance can be improved by simple pre- celer. Then, we introduce a way to deal with noise suppres- and post-processing aimed at reducing the noise at the receiver. This processing is done independently of the ISI cancellation per- sion separately and derive the optimal constrained pair pre- formed by the frequency domain equalizer.1 coder/equalizer for this purpose. The constraint is that in the absence of noise the overall system is still ISI-free. The per- formance of the proposed method is evaluated through com- I. INTRODUCTION puter simulations and a significant improvement with respect to There has been considerable interest in applying the eq– the original system without pre- and post-processing is demon- ualization techniques based on cyclic prefix to high speed data strated. transmission over frequency selective channels, such as twisted Throughout this paper we assume that the frequency selec- pair channels in telephone cables [1], [2]. Cyclic prefix systems tive channel is a known FIR system of order Ä, i.e. are invariably used in conjunction with the discrete Fourier Ä transform (DFT) matrices, and one example is the DFT-based X k ´Þ µ= c´k µÞ : discrete multitone modulation (DMT) system [3]. Although it C =¼ has been shown by Kalet [9] that the use of ideal transmit and k Ì receive filters in the multitone environment can lead to achiev- Ý A The notations A and represent the transpose and trans- ing signal to noise ratio (SNR) within 8-9 dB of the channel pose conjugate of a matrix A. capacity (depending on the probability of error), in practice the DFT filterbank is most commonly used because of its low com- II. CYCLIC PREFIX SYSTEM WITH DFT MATRICES plexity. The development of these systems lead, for example, In this section we give a review of a cyclic prefix based sys- to asymmetric digital subscriber loops (ADSL) and high-speed tem for channel equalization that employs DFT filterbanks. Be- digital subscriber loops (HDSL) [2], [3]. fore we demonstrate the complete system, we first introduce the The initial goal of cyclic prefix based methods for equaliza- concept of cyclic prefix. This is a way of inserting redundancy tion is to cancel the intersymbol interference (ISI) induced by into the input data stream and it becomes useful in the process the channel. This task is achieved by introducing some redun- of channel equalization as will be explained later. Consider dancy in the form of a cyclic prefix (see Sec. II). Depending on the symbol stream from Fig. 1(a). It is divided into blocks of the nulls of the channel in question, the noise can get severely Ä length Å . The last symbols from each block are copied and amplified by the equalizer alone. In this paper we consider a inserted at the beginning of that block (we assume hereafter general cyclic prefix based system with the aim of further re- that the redundancy Ä< Å). This is achieved by “squeezing” ducing the noise at the receiver. This is achieved by perform- the samples as explained in Fig. 1(b)-(c). Obviously, this op- ing the ISI cancellation and the noise suppression separately, eration of inserting the redundancy into the input data stream in different modules. The main module for ISI cancellation is results in the bandwidth expansion. In this case the bandwidth based on cyclic prefix with DFT filterbanks and is unchanged. = ´Å · ĵ=Å expansion ratio is given by « , which can be 1 Work supported in part by the ONR grant N00014-99-1-1002, USA. made sufficiently small by making Å large. The purpose of T R A N S M I T T E R R E C E I V E R block of M q(n ) s(n ) q(n ) r(n ) s(n ) -1 channel and Γ -1 W prefix system W e n IDFT DFT DFT domain (a) e(n ) equalizer Figure 3: Conventional cyclic prefix system with DFT matrices used for ISI cancellation. (b) n room for L samples copy copy copy x(n ) thus we have ¾ ¿ C [¼] ¼ ¼ ::: ¼ (c) n Å 6 7 ¼ C [½] ¼ ::: ¼ Å 6 7 = ; 6 7 e . (2) 4 Figure 1: (a) Input symbol stream, (b)-(c) explanation of . .. 5 ¼ ¼ ::: C [Å ½] how cyclic prefix is inserted. ¼ Å È Ä j ¾kÒ=Å C [Ò]= c´k µe with Å . As we noted before, the k =¼ L L ISI cancellation is achieved by inverting C in (1). Therefore, q(n ) C(z ) discard ½ after moving the matrix Ï to the transmitter side, the com- channel M prefix plete DFT-based cyclic prefix system is shown in Fig. 3. The unblocking noise blocking M r(n ) M block labeled “channel and prefix system” is given in Fig. 2. ½ Matrix e is better known as the frequency domain equal- Figure 2: Channel with the system for cyclic prefix. izer and contains on its diagonal the reciprocals of the DFT ´Òµ coefficients of the channel. The input vector sequence × in Fig. 3 is obtained by blocking the symbol stream into blocks of e´Òµ length Å . The noise vector is obtained by blocking the · Ä physical noise process into blocks of length Å and then inserting the cyclic prefix is to allow the receiver to remove ISI discarding Ä samples out of each block (see Fig. 2). using some low-complexity operations. The main merit of the cyclic prefix system with DFT ma- As the first step in understanding how this is achieved, con- trices lies in its simplicity. From Fig. 3 we see that the trans- sider Fig. 2, ignoring the noise for the time being. The box la- mitter only needs to perform the inverse DFT operation fol- beled “blocking” is a serial to parallel converter, similarly “un- lowed by the cyclic prefix insertion. On the other hand, the blocking” performs the reverse operation and the block “prefix” receiver removes the cyclic prefix, performs the DFT operation inserts the cyclic prefix as described in Fig. 1. Notice that the and frequency domain equalization, which amounts simply to Å ´Òµ Ö´Òµ blocked sequences Õ and are related through a mul- multiplying each channel by a constant. Moreover, if is cho- ¢ Å tiplication by the Å right circulant [5] channel matrix sen as a power of two, both IDFT and DFT operations can be C Ä ·½ C. The first column of consists of the coefficients implemented using the fast radix-2 algorithm. The noise vec- e´Òµ ´k µ Å Ä ½ of the channel impulse response c followed by tor process at the receiver passes through the DFT ma- ½ 2 Ï Ï c´¼µ 6= ¼ zeros. Since we can safely assume , it follows that trix and the frequency domain equalizer e . Since C is nonsingular and the effect of the channel can be neutral- is a scaled unitary matrix, the main contribution to amplify- ized by inverting it. Next, note that any circulant matrix can be ing the noise power at the receiver comes from the multipliers ½ ½=C [Ò] C ´Þ µ e diagonalized by a DFT matrix [5]. Thus we can write [5] Å embedded in . Obviously, if the channel has zeros near the unit circle, these multipliers can get large, ½ consequently boosting the noise at the receiver and degrading C = Ï Ï ; e (1) the performance. In the next section we propose a simple mod- ification of the basic equalization structure from Fig. 3 that will Å ¢ Å where Ï is the DFT matrix and the diagonal matrix improve the performance significantly. C e has the eigenvalues of on its diagonal. Those eigenvalues, c´k µ in turn, are nothing but the Å -point DFT coefficients of , III. MODIFIED SYSTEM FOR NOISE SUPPRESSION Consider the system shown in Fig. 4(a)-(b). It consists of 2 ´Þ µ Otherwise we can shorten the impulse response of C . the same basic cyclic prefix transceiver (the middle portion) s(n ) x(n ) r(n ) -1 -1 channel and T W prefix system Our objective as mentioned before is to minimize the out- IDFT (a) put noise power (subject to the power constraint). This can be written as r(n ) x(n ) s(n ) -1 ½ ½ Ý Ý Γ Ý ÑiÒ fÌ ÏÊ Ï ´ Ì g; W e T µ e e Tr ee that is DFT DFT domain (b) Ì 4 ½ ½ ( ) Ý Ý e n equalizer Ý ÑiÒ fÈ ÈÉg; É = ÏÊ Ï ´ µ e e Tr ee (6) È Figure 4: Cyclic prefix system with separated ISI cancellation Notice that neither the objective (6) nor the constraint (5) de- and noise suppression. pend on the choice of the unitary matrix Í. This leads us to = conclude that without loss of generality we can choose Í Á Ì = È Å ,or .
Recommended publications
  • Arxiv:2105.00793V3 [Math.NA] 14 Jun 2021 Tubal Matrices
    Tubal Matrices Liqun Qi∗ and ZiyanLuo† June 15, 2021 Abstract It was shown recently that the f-diagonal tensor in the T-SVD factorization must satisfy some special properties. Such f-diagonal tensors are called s-diagonal tensors. In this paper, we show that such a discussion can be extended to any real invertible linear transformation. We show that two Eckart-Young like theo- rems hold for a third order real tensor, under any doubly real-preserving unitary transformation. The normalized Discrete Fourier Transformation (DFT) matrix, an arbitrary orthogonal matrix, the product of the normalized DFT matrix and an arbitrary orthogonal matrix are examples of doubly real-preserving unitary transformations. We use tubal matrices as a tool for our study. We feel that the tubal matrix language makes this approach more natural. Key words. Tubal matrix, tensor, T-SVD factorization, tubal rank, B-rank, Eckart-Young like theorems AMS subject classifications. 15A69, 15A18 1 Introduction arXiv:2105.00793v3 [math.NA] 14 Jun 2021 Tensor decompositions have wide applications in engineering and data science [11]. The most popular tensor decompositions include CP decomposition and Tucker decompo- sition as well as tensor train decomposition [11, 3, 17]. The tensor-tensor product (t-product) approach, developed by Kilmer, Martin, Bra- man and others [10, 1, 9, 8], is somewhat different. They defined T-product opera- tion such that a third order tensor can be regarded as a linear operator applied on ∗Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; ([email protected]). †Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China.
    [Show full text]
  • Fourier Transform, Convolution Theorem, and Linear Dynamical Systems April 28, 2016
    Mathematical Tools for Neuroscience (NEU 314) Princeton University, Spring 2016 Jonathan Pillow Lecture 23: Fourier Transform, Convolution Theorem, and Linear Dynamical Systems April 28, 2016. Discrete Fourier Transform (DFT) We will focus on the discrete Fourier transform, which applies to discretely sampled signals (i.e., vectors). Linear algebra provides a simple way to think about the Fourier transform: it is simply a change of basis, specifically a mapping from the time domain to a representation in terms of a weighted combination of sinusoids of different frequencies. The discrete Fourier transform is therefore equiv- alent to multiplying by an orthogonal (or \unitary", which is the same concept when the entries are complex-valued) matrix1. For a vector of length N, the matrix that performs the DFT (i.e., that maps it to a basis of sinusoids) is an N × N matrix. The k'th row of this matrix is given by exp(−2πikt), for k 2 [0; :::; N − 1] (where we assume indexing starts at 0 instead of 1), and t is a row vector t=0:N-1;. Recall that exp(iθ) = cos(θ) + i sin(θ), so this gives us a compact way to represent the signal with a linear superposition of sines and cosines. The first row of the DFT matrix is all ones (since exp(0) = 1), and so the first element of the DFT corresponds to the sum of the elements of the signal. It is often known as the \DC component". The next row is a complex sinusoid that completes one cycle over the length of the signal, and each subsequent row has a frequency that is an integer multiple of this \fundamental" frequency.
    [Show full text]
  • The Discrete Fourier Transform
    Tutorial 2 - Learning about the Discrete Fourier Transform This tutorial will be about the Discrete Fourier Transform basis, or the DFT basis in short. What is a basis? If we google define `basis', we get: \the underlying support or foundation for an idea, argument, or process". In mathematics, a basis is similar. It is an underlying structure of how we look at something. It is similar to a coordinate system, where we can choose to describe a sphere in either the Cartesian system, the cylindrical system, or the spherical system. They will all describe the same thing, but in different ways. And the reason why we have different systems is because doing things in specific basis is easier than in others. For exam- ple, calculating the volume of a sphere is very hard in the Cartesian system, but easy in the spherical system. When working with discrete signals, we can treat each consecutive element of the vector of values as a consecutive measurement. This is the most obvious basis to look at a signal. Where if we have the vector [1, 2, 3, 4], then at time 0 the value was 1, at the next sampling time the value was 2, and so on, giving us a ramp signal. This is called a time series vector. However, there are also other basis for representing discrete signals, and one of the most useful of these is to use the DFT of the original vector, and to express our data not by the individual values of the data, but by the summation of different frequencies of sinusoids, which make up the data.
    [Show full text]
  • Quantum Fourier Transform Revisited
    Quantum Fourier Transform Revisited Daan Camps1,∗, Roel Van Beeumen1, Chao Yang1, 1Computational Research Division, Lawrence Berkeley National Laboratory, CA, United States Abstract The fast Fourier transform (FFT) is one of the most successful numerical algorithms of the 20th century and has found numerous applications in many branches of computational science and engineering. The FFT algorithm can be derived from a particular matrix decomposition of the discrete Fourier transform (DFT) matrix. In this paper, we show that the quantum Fourier transform (QFT) can be derived by further decomposing the diagonal factors of the FFT matrix decomposition into products of matrices with Kronecker product structure. We analyze the implication of this Kronecker product structure on the discrete Fourier transform of rank-1 tensors on a classical computer. We also explain why such a structure can take advantage of an important quantum computer feature that enables the QFT algorithm to attain an exponential speedup on a quantum computer over the FFT algorithm on a classical computer. Further, the connection between the matrix decomposition of the DFT matrix and a quantum circuit is made. We also discuss a natural extension of a radix-2 QFT decomposition to a radix-d QFT decomposition. No prior knowledge of quantum computing is required to understand what is presented in this paper. Yet, we believe this paper may help readers to gain some rudimentary understanding of the nature of quantum computing from a matrix computation point of view. 1 Introduction The fast Fourier transform (FFT) [3] is a widely celebrated algorithmic innovation of the 20th century [19]. The algorithm allows us to perform a discrete Fourier transform (DFT) of a vector of size N in (N log N) O operations.
    [Show full text]
  • Circulant Matrix Constructed by the Elements of One of the Signals and a Vector Constructed by the Elements of the Other Signal
    Digital Image Processing Filtering in the Frequency Domain (Circulant Matrices and Convolution) Christophoros Nikou [email protected] University of Ioannina - Department of Computer Science and Engineering 2 Toeplitz matrices • Elements with constant value along the main diagonal and sub-diagonals. • For a NxN matrix, its elements are determined by a (2N-1)-length sequence tn | (N 1) n N 1 T(,)m n t mn t0 t 1 t 2 t(N 1) t t t 1 0 1 T tt22 t1 t t t t N 1 2 1 0 NN C. Nikou – Digital Image Processing (E12) 3 Toeplitz matrices (cont.) • Each row (column) is generated by a shift of the previous row (column). − The last element disappears. − A new element appears. T(,)m n t mn t0 t 1 t 2 t(N 1) t t t 1 0 1 T tt22 t1 t t t t N 1 2 1 0 NN C. Nikou – Digital Image Processing (E12) 4 Circulant matrices • Elements with constant value along the main diagonal and sub-diagonals. • For a NxN matrix, its elements are determined by a N-length sequence cn | 01nN C(,)m n c(m n )mod N c0 cNN 1 c 2 c1 c c c 1 01N C c21 c c02 cN cN 1 c c c c NN1 21 0 NN C. Nikou – Digital Image Processing (E12) 5 Circulant matrices (cont.) • Special case of a Toeplitz matrix. • Each row (column) is generated by a circular shift (modulo N) of the previous row (column). C(,)m n c(m n )mod N c0 cNN 1 c 2 c1 c c c 1 01N C c21 c c02 cN cN 1 c c c c NN1 21 0 NN C.
    [Show full text]
  • Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs
    Spectral Analysis of the Adjacency Matrix of Random Geometric Graphs Mounia Hamidouche?, Laura Cottatellucciy, Konstantin Avrachenkov ? Departement of Communication Systems, EURECOM, Campus SophiaTech, 06410 Biot, France y Department of Electrical, Electronics, and Communication Engineering, FAU, 51098 Erlangen, Germany Inria, 2004 Route des Lucioles, 06902 Valbonne, France [email protected], [email protected], [email protected]. Abstract—In this article, we analyze the limiting eigen- multivariate statistics of high-dimensional data. In this case, value distribution (LED) of random geometric graphs the coordinates of the nodes can represent the attributes of (RGGs). The RGG is constructed by uniformly distribut- the data. Then, the metric imposed by the RGG depicts the ing n nodes on the d-dimensional torus Td ≡ [0; 1]d and similarity between the data. connecting two nodes if their `p-distance, p 2 [1; 1] is at In this work, the RGG is constructed by considering a most rn. In particular, we study the LED of the adjacency finite set Xn of n nodes, x1; :::; xn; distributed uniformly and matrix of RGGs in the connectivity regime, in which independently on the d-dimensional torus Td ≡ [0; 1]d. We the average vertex degree scales as log (n) or faster, i.e., choose a torus instead of a cube in order to avoid boundary Ω (log(n)). In the connectivity regime and under some effects. Given a geographical distance, rn > 0, we form conditions on the radius rn, we show that the LED of a graph by connecting two nodes xi; xj 2 Xn if their `p- the adjacency matrix of RGGs converges to the LED of distance, p 2 [1; 1] is at most rn, i.e., kxi − xjkp ≤ rn, the adjacency matrix of a deterministic geometric graph where k:kp is the `p-metric defined as (DGG) with nodes in a grid as n goes to infinity.
    [Show full text]
  • 1 1.1. the DFT Matrix
    FFT January 20, 2016 1 1.1. The DFT matrix. The DFT matrix. By definition, the sequence f(τ)(τ = 0; 1; 2;:::;N − 1), posesses a discrete Fourier transform F (ν)(ν = 0; 1; 2;:::;N − 1), given by − 1 NX1 F (ν) = f(τ)e−i2π(ν=N)τ : (1.1) N τ=0 Of course, this definition can be immediately rewritten in the matrix form as follows 2 3 2 3 F (1) f(1) 6 7 6 7 6 7 6 7 6 F (2) 7 1 6 f(2) 7 6 . 7 = p F 6 . 7 ; (1.2) 4 . 5 N 4 . 5 F (N − 1) f(N − 1) where the DFT (i.e., the discrete Fourier transform) matrix is defined by 2 3 1 1 1 1 · 1 6 − 7 6 1 w w2 w3 ··· wN 1 7 6 7 h i 6 1 w2 w4 w6 ··· w2(N−1) 7 1 − − 1 6 7 F = p w(k 1)(j 1) = p 6 3 6 9 ··· 3(N−1) 7 N 1≤k;j≤N N 6 1 w w w w 7 6 . 7 4 . 5 1 wN−1 w2(N−1) w3(N−1) ··· w(N−1)(N−1) (1.3) 2πi with w = e N being the primitive N-th root of unity. 1.2. The IDFT matrix. To recover N values of the function from its discrete Fourier transform we simply have to invert the DFT matrix to obtain 2 3 2 3 f(1) F (1) 6 7 6 7 6 f(2) 7 p 6 F (2) 7 6 7 −1 6 7 6 .
    [Show full text]
  • Exact Recovery of Tensor Robust Principal Component Analysis Under Linear Transforms
    1 Exact Recovery of Tensor Robust Principal Component Analysis under Linear Transforms Canyi Lu and Pan Zhou This work studies the Tensor Robust Principal Component low-rank and sparse tensors decomposition from their sum. Analysis (TRPCA) problem, which aims to exactly recover More specifically, assume that a tensor X can be decomposed the low-rank and sparse components from their sum. Our as X = L + E where L is a low-rank tensor and E is model is motivated by the recently proposed linear transforms 0 0 0 0 based tensor-tensor product and tensor SVD. We define a new a sparse tensor. TRPCA aims to recover L0 and E0 from X . transforms depended tensor rank and the corresponding tensor We focus on the convex model which can be solved exactly nuclear norm. Then we solve the TRPCA problem by convex and efficiently, and the solutions own the theoretical guarantee. optimization whose objective is a weighted combination of the TRPCA extends the well known Robust PCA [1] model, i.e., new tensor nuclear norm and the `1-norm. In theory, we show that under certain incoherence conditions, the convex program min kLk∗ + λkEk1; s.t. X = L + E; (1) exactly recovers the underlying low-rank and sparse components. L;E It is of great interest that our new TRPCA model generalizes existing works. In particular, if the studied tensor reduces to where kLk∗ denotes the matrix nuclear norm, kEk1 denotes a matrix, our TRPCA model reduces to the known matrix the `1-norm and λ > 0. Under certain incoherence conditions, RPCA [1].
    [Show full text]
  • Basic Vector Space Methods in Signal and Systems Theory
    Basic Vector Space Methods in Signal and Systems Theory By: C. Sidney Burrus Basic Vector Space Methods in Signal and Systems Theory By: C. Sidney Burrus Online: < http://cnx.org/content/col10636/1.5/ > CONNEXIONS Rice University, Houston, Texas This selection and arrangement of content as a collection is copyrighted by C. Sidney Burrus. It is licensed under the Creative Commons Attribution 3.0 license (http://creativecommons.org/licenses/by/3.0/). Collection structure revised: December 19, 2012 PDF generated: January 10, 2013 For copyright and attribution information for the modules contained in this collection, see p. 35. Table of Contents 1 Introduction .......................................................................................1 2 A Matrix Times a Vector ..................................................... ...................3 3 General Solutions of Simultaneous Equations .................................................11 4 Approximation with Other Norms and Error Measures ......................................19 5 Constructing the Operator (Design) ...........................................................27 Bibliography ........................................................................................29 Index ................................................................................................34 Attributions .........................................................................................35 iv Available for free at Connexions <http://cnx.org/content/col10636/1.5> Chapter 1 Introduction1 1.1
    [Show full text]
  • Cayley Graphs and the Discrete Fourier Transform
    Cayley Graphs and the Discrete Fourier Transform Alan Mackey Advisor: Klaus Lux May 15, 2008 Abstract Given a group G, we can construct a graph relating the elements of G to each other, called the Cayley graph. Using Fourier analysis on a group allows us to apply our knowledge of the group to gain insight into problems about various properties of the graph. Ideas from representation theory are powerful tools for analysis of groups and their Cayley graphs, but we start with some simpler theory to motivate the use of group representations. 1 Z/nZ and L2(Z=nZ) Before we can define what the discrete Fourier transform (or DFT) is, we have to know what exactly it transforms. To introduce the ideas behind the use of the DFT, we will use G = Z/nZ as an example. The DFT doesn't actually operate on the elements of Z/nZ themselves, but rather on certain functions with Z/nZ as their domain. Definition. The set ff : G ! Cg of all functions from a finite group G to the complex numbers is denoted L2(G). Let's start with an example. The group (Z/nZ; +n) has n elements, and so any function from Z/nZ to C is determined exactly by the finite set of values ff(a): a 2 Z/nZg. Thus, we can define a vector space isomorphism φ : L2(Z/nZ) ! Cn by 1 φ(f) = (f(0); f(1); : : : ; f(n − 1)): From here, it isn't hard to see that L2(Z=nZ)) is an n-dimensional vector space over C.
    [Show full text]
  • COMPARISON on DIFFERENT DISCRETE FRACTIONAL FOURIER TRANSFORM (DFRFT) APPROACHES Ishwor Bhatta
    University of New Mexico UNM Digital Repository Electrical and Computer Engineering ETDs Engineering ETDs 1-28-2015 COMPARISON ON DIFFERENT DISCRETE FRACTIONAL FOURIER TRANSFORM (DFRFT) APPROACHES Ishwor Bhatta Follow this and additional works at: https://digitalrepository.unm.edu/ece_etds Recommended Citation Bhatta, Ishwor. "COMPARISON ON DIFFERENT DISCRETE FRACTIONAL FOURIER TRANSFORM (DFRFT) APPROACHES." (2015). https://digitalrepository.unm.edu/ece_etds/32 This Thesis is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Electrical and Computer Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Candidate Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: , Chairperson by THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of The University of New Mexico Albuquerque, New Mexico Dedication I dedicate this work to my parents for their support and encouragement. ’I am a slow walker, but I never walk back’ – Abraham Lincoln iii Acknowledgments First of all, I heartily appreciate Dr. Balu Santhanam, my advisor and thesis chair, for continuing to encourage me through the years of classroom teachings and the long number of months writing and rewriting these chapters. I hope to emmulate his professional style as I continue my career. I also want to thank the members of my thesis committee, Dr. Maria Cristina Pereyra and Dr. Majeed Hayat. I want to thank Dr. Mark Gilmore, Ex-director of the ECE Graduate Program and Dr. Sudharman Jayaweera, Director of the ECE Graduate Program, for ap- pointing me as a Project Assistant at the Electrical and Computer Engineering Department for several semesters.
    [Show full text]
  • Frame Multiplication Theory and a Vector-Valued Dft and Ambiguity Function
    FRAME MULTIPLICATION THEORY AND A VECTOR-VALUED DFT AND AMBIGUITY FUNCTION TRAVIS D. ANDREWS, JOHN J. BENEDETTO, AND JEFFREY J. DONATELLI Abstract. Vector-valued discrete Fourier transforms (DFTs) and ambiguity functions are defined. The motivation for the definitions is to provide realistic modeling of multi-sensor environments in which a useful time-frequency analysis is essential. The definition of the DFT requires associated uncertainty principle inequalities. The definition of the ambiguity function requires a component that leads to formulating a mathematical theory in which two essential algebraic operations can be made compatible in a natural way. The theory is referred to as frame multiplication theory. These definitions, inequalities, and theory are interdependent, and they are the content of the paper with the centerpiece being frame multiplication theory. The technology underlying frame multiplication theory is the theory of frames, short time Fourier transforms (STFTs), and the representation theory of finite groups. The main results have the following form: frame multiplication exists if and only if the finite frames that arise in the theory are of a certain type, e.g., harmonic frames, or, more generally, group frames. In light of the complexities and the importance of the modeling of time-varying and dynamical systems in the context of effectively analyzing vector-valued multi-sensor envi- ronments, the theory of vector-valued DFTs and ambiguity functions must not only be mathematically meaningful, but it must have constructive implementable algorithms, and be computationally viable. This paper presents our vision for resolving these issues, in terms of a significant mathematical theory, and based on the goal of formulating and developing a useful vector-valued theory.
    [Show full text]