Modeling the Optical Processes in Semiconductor Lasers

Total Page:16

File Type:pdf, Size:1020Kb

Modeling the Optical Processes in Semiconductor Lasers Research Collection Doctoral Thesis Modeling the optical processes in semiconductor lasers Author(s): Witzig, Andreas Publication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004407405 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 14694 Modeling the Optical Processes in Semiconductor Lasers A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Technical Science presented by ANDREAS WITZIG Dipl. El.-Ing. ETH born 26 10 1973 citizen of Laufen-Uhwiesen, Switzerland accepted on the recommendation of Prof. Dr. Wolfgang Fichtner, examiner Prof. Dr. Hans Melchior, co-examiner 2002 Contents Acknowledgements vii Abstract ix Zusammenfassung xi 1 Introduction 1 1.1 Motivation 1 1.2 Active Optoelectronic Devices 2 1.3 Optoelectronic Device Simulation 6 1.4 Contents 7 2 Physics of Optoelectronic Devices 9 2.1 Introduction 9 2.2 Basic Semiconductor Laser Physics 10 2.3 Empirical Laser Model: The Lumped Laser Equations 11 2.4 Eigenmode Laser Equations 18 2.4.1 Electro-Thermal Model 18 2.4.2 Optical Model 19 2.4.3 Local Electron-Photon Interaction 23 2.4.4 Device-Specific Models 26 2.4.5 Extension of the Eigenmode Laser Equations . 28 2.4.6 Beyond the Adiabatic Approximation 30 2.5 More Fundamental Laser Models 31 2.5.1 Semiconductor Bloch Equations 32 2.5.2 Slowly Varying Amplitude Approximation ... 32 i ii CONTENTS 2.6 Characteristic Time Scales 33 2.7 Diffraction Theory 36 2.8 Discussion 39 3 Optical Cavities and Waveguides 41 3.1 Introduction 41 3.2 Optical Cavities 42 3.2.1 Empirical Cavity Model 42 3.2.2 Cavity Eigenvalue Equation 44 3.2.3 Mode Designation for VCSELs 46 3.2.4 ID Cavity 49 3.2.5 Spectral Properties 52 3.3 Optical Waveguides 54 3.3.1 Waveguide Eigenvalue Equation 54 3.3.2 Slab Waveguides 55 3.3.3 Waveguide Spectrum 56 3.4 Mathematical Background 59 3.4.1 Eigenvalues and Eigenvectors 59 3.4.2 Quasi-Normal Modes 60 3.5 Discussion 62 4 Implementation 65 4.1 Introduction 65 4.2 Analysis of the Governing Equations 66 4.3 Traveling-Wave Optics 67 4.3.1 Finite-Difference Time-Domain Method .... 67 4.3.2 Transfer-Matrix Method 68 4.4 Hierarchy of Approximations for Waveguide Solutions 70 4.5 Numerical Eigenmode Solution 73 4.6 Eigenmode Laser Equations 74 4.7 Discussion 78 5 Results 81 5.1 Introduction 81 5.2 Edge-Emitting Laser Diodes 82 5.2.1 Radiation Leakage into Substrate 82 5.2.2 Spontaneous Emission Coupling 83 CONTENTS m 5.3 Surface-Emitting Lasers 89 5.3.1 Finite-Element Optical Mode Calculation ... 89 5.3.2 Optical Modes Derived by FDTD 90 5.4 Discussion 95 6 Conclusion and Outlook 99 6.1 Major Results 99 6.2 Further Development 100 A Maxwell's Equations 105 B Semiconductor Dispersion Relations 107 C Coupled Semiconductor Equations 111 D Notation 115 Bibliography 120 Curriculum Vitae 131 List of Figures 1.1 Edge-Emitting Laser 4 1.2 Vertical-Cavity Surface-Emitting Laser 5 1.3 Semiconductor Laser Design Methodology 6 2.1 Laser Characteristics 13 2.2 Modulation Response 14 2.3 Time-Domain Response 15 2.4 3D Optical Field in a DFB Laser 29 2.5 Schematic Device Physics for Diode Lasers 35 2.6 Geometry Definition for the Diffraction Theory .... 36 3.1 Body-of-Revolution Expansion of VCSEL Modes ... 48 3.2 Optical Eigenmode of a ID Cavity 50 3.3 Spectral Properties of Bragg Mirrors 52 3.4 Slab Waveguide 55 3.5 Waveguide Spectrum of Slab Structure 56 4.1 Simple Simulation Flow 76 4.2 Simulation Flow for Optical Re-Solving 76 5.1 Radiation Leakage into Substrate 82 5.2 Results of the Waveguide Eigenvalue Problem 84 5.3 Setup and Results of the FDTD Simulation 85 5.4 EEL-Simulation: Time-Domain Results 86 5.5 EEL-Simulation: Relative Power vs. Distance 87 5.6 Finite-Element Result of VCSEL Eigenmodes 90 5.7 FDTD Result of Steady-State VCSEL Field 91 v VI LIST OF FIGURES 5.8 Mode Pattern in the Active Region 92 5.9 Comparing Devices with Different Aperture Diameters 93 5.10 3D Simulation of a Tilted-Pillar VCSEL 94 Acknowledgements First of all, I would like to thank Prof. Dr. Wolfgang Fichtner for his support and for his confidence in my work. He provided an excellent working environment and put a special effort into our group. Only through him, we got to establish the connections to leading research groups and industrial partners which proved to be essential for our work. I also wish to thank Prof. Dr. Hans Melchior for accepting to be the co-examiner of this thesis and for carefully reviewing the manuscript. My interest in numerical simulations was initially sparked in an undergraduate student project. I am grateful to Dr. Pascal Leucht¬ mann who supported this project actively and taught me the secrets of electromagnetics. Furthermore, one of the reasons I finally ended up in optoelectronics was an ERASMUS exchange project with Bristol University, UK. I would like to thank Prof. Dr. John Gowar for giving me this opportunity and for spending a lot of time in discussions with me. My start at the Integrated Systems Laboratory (Institut für Inte¬ grierte Systeme, IIS) has been in the group of Dr. Peter Regli from whom I learned a lot about programming and software integration. The close collaboration with Dr. Christian Schuster, Dr. Thomas Körner, and Andreas Christ was fruitful and both a personal and professional enrichment. At this time, Dr. Bernd Witzigmann started with the laser extension of the device simulator DESSIS-ISE. I ad¬ mire Bernd for many decisions that he made in the early stage of this project. I wish to thank him for his patience and for explaining over and over again the details of semiconductor physics. Michael Pfeiffer, Matthias Streiff, Lutz Schneider, and Serguei Vll vm Acknowledgements Chevtchenko joined the group during the last three years. The in¬ teraction within our group has become considerable, and the Opto¬ electronics Modeling Group gained momentum. A great part of the motivation in my work I had from the good atmosphere in our office. I thank them all very much! As the Optoelectronics Modeling Group expanded, administrative issues and funding got some importance. I wish to express my grat¬ itude to Dr. Dölf Aemmer, the coordinator of the research activities in technology computer aided design (TCAD) at IIS. He was always there for us and I learned a lot from him about the formulation and planning of new projects. From the beginning of the optoelectronics activities at IIS, the col¬ laboration with industry was very important. First of all comes the ISE Integrated Systems Engineering AG who provided the basis for a professional software development. I am grateful to the ISE soft¬ ware developers who showed a lot of confidence in our work. On the hardware side, we had the chance to collaborate with a laser manufac¬ turer that was an off-spring of the IBM Research Lab in Riischlikon, later owned by JDS Uniphase and then by Nortel Networks. The collaboration with the strong R&D group was very profitable. Later, collaborations with Avalon Photonics Inc. and Opto Speed AG have been established. I want to thank all these partners for their active support. During my work at IIS I had the opportunity to advise or sev¬ eral students performing undergraduate research in our group. There has been considerable output from their work and we had many in¬ teresting discussions. I wish to thank Volker Mornhinweg, Thomas Eberle, Pamela Lässer, Kersten Schmidt and Adrian Bregy. In regard of the student projects, I must also thank Dr. Norbert Felber, who coordinated them. In an advanced stage of my work, Prof. Dr. Joachim Piprek invited me to the University of California in Santa Barbara (UCSB). The work at UCSB was funded by a joint ETH-UCSB scholarship that supports research collaborations between the two institutions. It was an important experience for myself and an invaluable enrichment for the development of our simulator. Abstract In modern telecommunication systems, semiconductor lasers are key components. This doctoral thesis presents a physics-based approach to simulate active optoelectronic devices. It covers the analysis of a broad range of devices, including Edge-Emitting Lasers (EELs) and Vertical-Cavity Surface-Emitting Lasers (VCSELs). A numeri¬ cal solver for the optical field has been implemented, and an interface to an electro-thermal device simulator has been built. Contributions have been made in the formulation of the physical models, and in the coupling scheme between electronics and optics. For EELs, the optical field can be separated into transverse waveg¬ uide modes and longitudinal cavity modes. The transverse eigen¬ modes have been solved in 2D applying a general but efficient finite- element method. The longitudinal modes have been calculated using the transfer-matrix method. For VCSELs, a separation into trans¬ verse and longitudinal direction is not possible. Instead, the fields can be expanded into a Fourier series and the eigenmodes are solved in 2D. In addition to the finite-element solution of the optical eigenvalue problem, the finite-difference time-domain method has been applied for the calculation of the electromagnetic wave propagation. In a post¬ processing step, the optical eigenmodes of general VCSELs have been obtained. Furthermore, the spontaneous emission coupling factor is calculated rigorously by a full-3D treatment of an EEL structure.
Recommended publications
  • Flow Routing Techniques for Environmental Modeling
    EPA/600/B-18/256 | August 2018 | www.epa.gov/research Flow Routing Techniques for Environmental Modeling photo 0 EPA/600/B-18/256 August 2018 Flow Routing Techniques for Environmental Modeling by Jan Sitterson1 , Chris Knightes2 , Brian Avant3 1 Oak Ridge Associated Universities 2 U.S. Environmental Protection Agency, Office of Research and Development 3 Oak Ridge Institute for Science and Education Chris Knightes - Project Officer Office of Research and Development National Exposure Research Laboratory Athens, GA, 30605 1 Notice The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described here. The research described herein was conducted at the Computational Exposure Division of the U.S. Environmental Protection Agency National Exposure Research Laboratory in Athens, GA. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises. This document has been reviewed by the U.S. Environmental Protection Agency, Office of Research and Development, and approved for publication. 2 Abstract This report describes a few ways to simulate the movement of water through a network of streams. Flow routing connects excess water from precipitation and runoff to the stream to other surface water as part of the hydrological cycle. Simulating flow helps elucidate the transportation of nutrients through a stream system, predict flood events, inform decision makers, and regulate water quality and quantity issues. Three flow routing techniques are presented and discussed in this paper.
    [Show full text]
  • Integration and Differential Equations
    R.S. Johnson Integration and differential equations Download free eBooks at bookboon.com 2 Integration and differential equations © 2012 R.S. Johnson & Ventus Publishing ApS ISBN 978-87-7681-970-5 Download free eBooks at bookboon.com 3 Integration and differential equations Contents Contents Preface to these two texts 8 Part I An introduction to the standard methods of elementary integration 9 List of Integrals 10 Preface 11 1 Introduction and Background 12 1.1 The Riemann integral 12 1.2 The fundamental theorem of calculus 17 1.4 Theorems on integration 19 1.5 Standard integrals 23 1.6 Integration by parts 26 1.7 Improper integrals 32 1.8 Non-uniqueness of representation 35 Exercises 1 36 2 The integration of rational functions 38 2.1 Improper fractions 38 2.2 Linear denominator, Q(x) 39 The next step for top-performing graduates Masters in Management Designed for high-achieving graduates across all disciplines, London Business School’s Masters in Management provides specific and tangible foundations for a successful career in business. This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to work in consulting or financial services. As well as a renowned qualification from a world-class business school, you also gain access to the School’s network of more than 34,000 global alumni – a community that offers support and opportunities throughout your career. For more information visit www.london.edu/mm, email [email protected] or give us a call on +44 (0)20 7000 7573.
    [Show full text]
  • The University of Chicago Finite Element Method
    THE UNIVERSITY OF CHICAGO FINITE ELEMENT METHOD AUTOMATION FOR NON-NEWTONIAN FLUID MODELS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF COMPUTER SCIENCE BY ANDY R. TERREL CHICAGO, ILLINOIS AUGUST 2010 Copyright c 2010 by Andy R. Terrel All rights reserved To my family, most especially: my wife, Cheryl, my mother, Judy, and my late grandfather, Virgil. To all the educators who have helped me along my path, most especially: my high school math teacher, Ms. Swauger, and chemistry teacher, Ms. Pirtle. TABLE OF CONTENTS LISTOFFIGURES .................................... vi LISTOFTABLES..................................... vii LIST OF ALGORITHMS . viii ACKNOWLEDGMENTS . ix ABSTRACT ........................................ x CHAPTER 1 INTRODUCTION ................................... 1 1.1 Finite Element Methods . 2 1.2 Fluid Models . 5 1.3 Algebraic Solvers . 5 2 AUTOMATED SCIENTIFIC COMPUTING . 7 2.1 Developing an automated system . 8 2.1.1 Defining the problem domain. 8 2.1.2 Building interfaces . 9 2.1.3 Optimizations and Code Generation . 10 2.2 Examples . 10 2.2.1 Linear Algebra . 11 2.2.2 Signal Processing . 12 3 AUTOMATING FINITE ELEMENT METHODS . 14 3.1 Automation of FEM Assembly . 15 3.1.1 Local assembly . 16 3.1.2 Global assembly . 22 3.2 Sieve........................................ 23 3.2.1 Reference Finite Element Method . 25 3.2.2 Functions over a Mesh . 26 3.2.3 Local Function Definition . 27 3.2.4 Global update . 28 3.2.5 Implementation Issues . 28 3.2.6 Examples . 31 iv 4 RHEOLOGY APPLICATION ENGINE: NEWTONIAN FLUIDS . 33 4.1 The Newtonian fluid model .
    [Show full text]
  • Pdemodelica a High-Level Language for Modeling with Partial Differential Equations
    Linköping Studies in Science and Technology Dissertation No. 1016 PDEModelica A High-Level Language for Modeling with Partial Differential Equations by Levon Saldamli Department of Computer and Information Science Linköpings universitet SE-581 83 Linköping, Sweden Linköping 2006 “...toboldlygowhere no man has gone before.” James T. Kirk Abstract This thesis describes work on a new high-level mathematical modeling language and framework called PDEModelica for modeling with partial differential equa- tions. It is an extension to the current Modelica modeling language for object- oriented, equation-based modeling based on differential and algebraic equations. The language extensions and the framework presented in this thesis are consistent with the concepts of Modelica while adding support for partial differential equa- tions and space-distributed variables called fields. The specification of a partial differential equation problem consists of three parts: 1) the description of the definition domain, i.e., the geometric region where the equations are defined, 2) the initial and boundary conditions, and 3) the ac- tual equations. The known and unknown distributed variables in the equation are represented by field variables in PDEModelica. Domains are defined by a geo- metric description of their boundaries. Equations may use the Modelica derivative operator extended with support for partial derivatives, or vector differential opera- tors such as divergence and gradient, which can be defined for general curvilinear coordinates based on coordinate system definitions. The PDEModelica system also allows the partial differential equation models to be defined using a coefficient-based approach, where PDE models from a library are instantiated with different parameter values. Such a library contains both con- tinuous and discrete representations of the PDE model.
    [Show full text]
  • By Gavin Lobo a Thesis Submitted in Conformity with the Requirements For
    INVESTIGATION INTO SMOOTHED PARTICLE HYDRODYNAMICS FOR NON-NEWTONIAN DROPLET MODELLING by Gavin Lobo A thesis submitted in conformity with the requirements for the degree of Master of Science in The Faculty of Science Modelling and Computational Science University of Ontario Institute of Technology August 2011 Copyright c , Gavin Lobo, 2011 Abstract Droplet splatter dynamics is an important study in the field of forensics since a crime event can produce many blood stains. Understanding the origins of the blood stains from pure observations is very difficult because much of the information about the impact is lost. A theoretical model is therefore needed to better understand the dy- namics of droplet impact and splatter. We chose to explore a fluid modelling method known as Smoothed Particle Hydrodynamics (SPH) to determine whether it is capable of modelling droplet splatter accurately. Specifically, we chose to investigate an SPH version of a non-Newtonian pressure correction method with surface tension. Three experiments were performed to analyze the different aspects of SPH. From the results of the experiments, we concluded that this method can produce stable simulations if an artificial viscosity model is included, a third-order polynomial kernel is used and the pressure boundary condition on surface particles are non-zero. ii Dedication To my parents and my brother, Calvin. iii Contents 1 Introduction 1 1.1 Objective . .1 1.2 Related Work . .2 2 Introduction to Smoothed Particle Hydrodynamics 5 2.1 Formulation of Smoothed Particle Hydrodynamics . .5 2.1.1 Function Approximation . .5 2.1.2 Derivative Approximation . .8 2.2 Kernel Functions .
    [Show full text]
  • Pure Component Equations Fitting of Pure Component Equation Parameters
    Pure Component Equations Fitting of Pure Component Equation Parameters DDBSP – Dortmund Data Bank Software Package DDBST - Dortmund Data Bank Software & Separation Technology GmbH Marie-Curie-Straße 10 D-26129 Oldenburg Tel.: +49 441 361819 0 [email protected] www.ddbst.com DDBSP – Dortmund Data Bank Software Package 2020 Contents 1 Introduction.........................................................................................................................................................3 2 List of Equations.................................................................................................................................................4 3 Using the program.............................................................................................................................................10 3.1 Initial Dialog.............................................................................................................................................10 3.2 File Menu..................................................................................................................................................11 3.3 Help Menu.................................................................................................................................................12 3.4 Component Selection.................................................................................................................................12 3.5 Check Data Availability............................................................................................................................13
    [Show full text]
  • Semi-Lagrangian Computations in the Cycle 45 of Arpege/Ifs
    SEMI-LAGRANGIAN COMPUTATIONS IN THE CYCLE 45 OF ARPEGE/IFS. YESSAD K. (METEO-FRANCE/CNRM/GMAP/ALGO) June 28, 2017 Abstract: The general purpose of this documentation is to describe the set of equations used, and also the way to integrate the dynamics of the model with the semi-Lagrangian method currently implemented in ARPEGE/IFS. The following points will be described: semi-Lagrangian formulation and discretisation for different sets of equations, semi-Lagrangian trajectory research, horizontal and vertical interpolations done in the semi-Lagrangian scheme, specific geometric problems met in this type of discretisation. An organigramme is provided. An example of namelist is provided. An introduction to tangent linear and adjoint code is provided. R´esum´e: Le but g´en´eral de cette documentation est de d´ecrire le jeu d'´equationsutilis´e,et ´egalementla fa¸conde discr´etiser ces ´equationsavec un sch´emad'advection semi-Lagrangien tel qu'il est utilis´edans ARPEGE/IFS. On d´ecrit les points suivants: formulation lagrangienne des ´equations,leur discr´etisationavec un sch´emasemi-lagrangien, recherche de trajectoire, interpolations horizontales et verticales faites dans le sch´emasemi-lagrangien, probl`emes de g´eom´etriesp´ecifiques. On fournit un organigramme et un exemple de namelist. Une introduction au code tangent lin´eaire et adjoint est ´egalement propos´ee. 1 Contents 1 Introduction. 5 2 Definition of Eulerian and semi-Lagrangian schemes. 6 2.1 Eulerian scheme. 6 2.2 Semi-Lagrangian scheme. 6 3 The 2D equations. 7 3.1 Denotations for the 2D equations. 7 3.2 The 2D shallow-water system of equations in spherical geometry.
    [Show full text]
  • Introduction to Maxima
    Introduction to Maxima Maxima is a symbolic-based mathematical software providing a number of functions for algebraic manipulation, calculus operations, matrix and linear algebra, and other mathematical calculations. Maxima web page The Maxima web page is located at: http://maxima.sourceforge.net/ Read the description of Maxima shown in this page. The page also includes a number of links including a Download link. Download and install Maxima in your computer as indicated in the download page. The Maxima web page also includes a Documentation link with a number of tutorials on the use of Maxima. xMaxima and wxMaxima The figure below shows the listing of programs and documents available for Maxima 5.14.0 in a Windows Vista installation. You will notice that there are two possible instances of Maxima called XMaxima and wxMaxima. While both allow the user access to the Maxima commands, the difference is in the graphic user interface (GUI) used to communicate with Maxima. XMaxima An example of the XMaxima interface is shown in Figure 1.1. The top of the GUI is the input window for Maxima commands. The lower part is a display of a Maxima Primer document providing the user with some information about getting started with Maxima. In between the top and lower part of the display you will find buttons labeled File, Back, 1-1 © Gilberto E. Urroz, 2008 Forward, Edit, Options, and Url: The last button refers to the file specification shown in the field immediately to its right. In this case, the file specification reads: file:/C:/PROGRA~/MAXIMA~1.0/share/maxima/514~1.0/xmaxima/INTRO~1.HTM The full reference to this file should be: file:/C:/Program Files/Maxima-5.14.0/share/maxima/5.14.0/xmaxima/intro.html The XMaxima GUI abbreviates some of the sub-folders in the first file specification producing the reference shown above, which could be a bit confusing.
    [Show full text]
  • An Introduction to Partial Differential Equations
    R.S. Johnson An introduction to partial differential equations 2 Download free eBooks at bookboon.com An introduction to partial differential equations © 2012 R.S. Johnson & bookboon.com ISBN 978-87-7681-969-9 3 Download free eBooks at bookboon.com An introduction to partial differential equations Contents Contents Part I 10 First-order partial differential equations 10 List of examples 11 Preface 12 1 Introduction 13 1.1 Types of equation 13 Exercises 1 14 2 The quasi-linear equation 15 2.1 Of surfaces and tangents 15 2.2 The Cauchy (or initial value) problem 18 2.3 The semi-linear and linear equations 22 2.4 The quasi-linear equation in n independent variables 23 Exercises 2 24 GET THERE FASTER Some people know precisely where they want to go. Others seek the adventure of discovering uncharted territory. Whatever you want your professional journey to be, Oliver Wyman is a leading global management consulting firm that combines you’ll find what you’re looking for at Oliver Wyman. deep industry knowledge with specialized expertise in strategy, operations, risk management, organizational transformation, and leadership development. With Discover the world of Oliver Wyman at oliverwyman.com/careers offices in 50+ cities across 25 countries, Oliver Wyman works with the CEOs and executive teams of Global 1000 companies. DISCOVER An equal opportunity employer. OUR WORLD 4 Click on the ad to read more Download free eBooks at bookboon.com An introduction to partial differential equations Contents 3 The general equation 25 3.1 Geometry again 25
    [Show full text]
  • The Microchannel Flow of a Micropolar Fluid Guohua Liu Louisiana Tech University
    Louisiana Tech University Louisiana Tech Digital Commons Doctoral Dissertations Graduate School Fall 1999 The microchannel flow of a micropolar fluid Guohua Liu Louisiana Tech University Follow this and additional works at: https://digitalcommons.latech.edu/dissertations Part of the Fluid Dynamics Commons, and the Other Mechanical Engineering Commons Recommended Citation Liu, Guohua, "" (1999). Dissertation. 176. https://digitalcommons.latech.edu/dissertations/176 This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.
    [Show full text]
  • The Three-Dimensional Structure of Magnetic Reconnection in SSX
    The Three-Dimensional Structure of Magnetic Reconnection in SSX Matt Landreman [email protected] Swarthmore College Department of Physics and Astronomy 500 College Avenue, Swarthmore, PA 19081 Senior Honors Thesis March 22, 2003 Abstract In plasma physics it is a commonly cited and often valid approximation that magnetic fieldlines are “frozen” to the plasma fluid. However, in certain situations in solar and astrophysics, as well as in fusion engineering, this approx- imation of “ideal magnetohydrodynamics” leaves out important physical processes. Large gradients in the field can arise, causing effects that were previously negligible to become significant, and allowing the fieldlines to slip through the plasma. Mysteriously, this “magnetic reconnection” effect appears to be much more significant than a back-of-the- envelope calculation would suggest. Reconnection is investigated in the Swarthmore Spheromak Experiment (SSX), a laboratory plasma device. The reconnecting field configuration in SSX is both largely reproducible and also more three-dimensionally complicated than in previous experiments elsewhere. The principle diagnostic discussed herein utilizes an array of small pick-up loops to measure the magnetic field. Use is made of a novel inexpensive high- speed multiplexing data acquisition system, which for the first time permits observations of a plasma’s complicated dynamics in all three dimensions and their variation from shot to shot. Custom visualization software has been devel- oped to explore the complicated four-dimensional datasets. The magnetic probe exhibits an uncertainty of 2%, and it correctly reproduces the theoretical expected fields for simple known current geometries. The probe provides evi- dence that both a driven and a slower steady-state variety of reconnection do in fact occur in SSX, and several unique three-dimensional properties distinguish the plasma configuration from previous “two-dimensional” experiments.
    [Show full text]
  • Differential Equations
    Differential equations Classification of differential equations Differential equations (DEs) form the basis of physics. Every physical process evolving in time, within classical of quantum mechanics, is described by a DE. Also many time independent physical situations are describable in terms of DEs. Examples are problems of electrostatics and magnetostatics, theory of elasticity, stationary states in quantum mechanics. Differential equations are equations for functions that contain their derivatives, such as x t ′ f t, x t . @ D @ @ DD DE containing derivatives with respect to only one variable, as above, are called ordinary differential equations (ODEs). If there are derivatives of multivariate functions over different variables in the equation, it is called partial differential equation (PDE). In this chapter we study ODEs. The highest order of derivatives in a DE defines the order of the DE. Above is the first-order DE. Higher-order DE can be rewritten in a form of systems of first-order differential equations by considering lower-order derivatives as additional functions. For instance, the second-order DE x t ′′ f t, x t ′, x t @ D @ @ D @ DD can be rewritten as the system of two first-order DE v t ′ f t, v t , x t @ D @ @ D @ DD x t ′ == v t . @ D @ D Combined order of a system of DEs is the sum of the orders of the individual equations (2 in the example above). Rewriting a differential equation as a system of first-order DEs does not change the combined order. DEs can be resolved or unresolved with respect to the highest derivative.
    [Show full text]