Infrared Astronomy – Seeing the Heat

Total Page:16

File Type:pdf, Size:1020Kb

Infrared Astronomy – Seeing the Heat Infrared Astronomy – Seeing the Heat from William Herschel to the Herschel Space Observatory K23161_FM.indd 1 10/9/14 2:04 AM Infrared Astronomy – Seeing the Heat from William Herschel to the Herschel Space Observatory David L. Clements Imperial College London, UK K23161_FM.indd 3 10/9/14 2:04 AM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2015 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20150608 International Standard Book Number-13: 978-1-4822-3728-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To Amanda, who got missed out last time vi The preamble to Chapter 6 previously appeared in a different form in lablit.com and is used here by kind permission of the editor, Jenny Rohn. The preamble to Chapter 7 previously appeared in a different form in the Rocket Science anthology, published by Mutation Press, and is used here by kind permission of the editor, Ian Sales. Contents List of Figures xiii Foreword: The Arp 220 Moment xix Preface xxi Author xxiii Chapter 1 Finding the Heat 1 1.1 REDDER THAN RED 1 1.2 THE ELECTROMAGNETIC SPECTRUM 3 1.3 THERMAL RADIATION 4 1.4 SPECTRAL LINES AND QUANTUM MECHANICS 7 1.5 THE STUFF OF THE UNIVERSE 11 1.6 A VERY BRIEF HISTORY OF THE UNIVERSE 15 1.7 THE PRACTICAL: TELESCOPES 16 1.8 OBSERVATIONAL STARS 18 1.8.1 Ground-basedtelescopes 18 1.8.2 Space-basedobservatories 23 1.9 CONCLUSIONS 28 Chapter 2 Feeling the Heat 29 2.1 THE PASTY DETECTOR 29 2.2 THE HISTORY OF ASTRONOMY: THE HISTORY OF DE• TECTION 29 2.3 ASTROPHOTOGRAPHY 32 2.4 MAKING ELECTRONS FROM PHOTONS 33 2.5 THE DIGITAL AGE 36 vii viii Contents 2.6 INTO THE INFRARED 39 2.7 LONGER WAVELENGTHS 41 2.8 INTO THE RADIO 44 2.9 THE ENEMY: WHAT GETS IN THE WAY 44 2.10 DEFEATING THE ENEMY: CLIMB A MOUNTAIN 48 2.11 FLY A PLANE, FLOAT A BALLOON, BUILD A ROCKET 50 2.12 THE OTHER ENEMY: BACKGROUNDS 52 2.13 CONCLUSIONS 53 Chapter 3 Local Heat 55 3.1 THE GREAT COLLISION OF 1994 55 3.2 LOCAL GEOGRAPHY: A TOUR OF THE SOLAR SYSTEM 56 3.3 INFRARED ASTRONOMY IN THE SOLAR SYSTEM 63 3.4 PLANETS • PEERING THROUGH CLOUDS, STUDYING ATMOSPHERES 63 3.5 MOONS: ICY, VOLCANIC, SMOGGY 65 3.6 ASTEROIDS 66 3.7 COMETS 69 3.8 THE OUTER SOLAR SYSTEM AND THE PROBLEM OF PLUTO 71 3.9 THE FORMATION AND EARLY EVOLUTION OF THE SO• LAR SYSTEM 71 3.10 THE DISCOVERY OF EXOPLANETS 73 3.11 CHARACTERISING EXOPLANETS 75 3.12 CONCLUSIONS 77 Chapter 4 The Heat of the Stars 79 4.1 THE STAR•FILLED SKIES 79 4.2 THE MAIN SEQUENCE 80 4.3 THE LIFE OF STARS 84 4.4 THE SIZES OF STARS 85 4.5 BEYOND THE BOTTOM OF THE MAIN SEQUENCE 91 4.6 WHEN IS A STAR NOT A STAR? WHEN IT’S A FREE FLOAT• ING PLANET 94 4.7 THE REMNANTS OF PLANET FORMATION 95 Contents ix 4.8 AGEING STARS, LOSING WEIGHT 97 4.9 STELLAR DEATH 100 4.10 SUPERNOVAE 101 4.11 CONCLUSIONS 103 Chapter 5 Young Heat 105 5.1 HOLES IN THE SKY 105 5.2 INTRODUCTION 105 5.3 THE INTERSTELLAR MEDIUM 106 5.4 FROM GIANT MOLECULAR CLOUDS TO COLLAPSING CORES 111 5.5 PROTOSTARSTOSTARS•THEBIGPICTURE 113 5.6 PLANET FORMATION 114 5.7 PROTOSTARS: THE OBSERVATIONS 118 5.8 GROUPS AND BINARIES 119 5.9 HIGH MASS STARS 124 5.10 THE ORIGIN OF THE INITIAL MASS FUNCTION 125 5.11 CONCLUSION 127 Chapter 6 Distant Heat 129 6.1 FORGETTING TO BREATHE 129 6.2 GALAXIES • STARS AND SO MUCH MORE 130 6.3 GALAXIES ACROSS THE ELECTROMAGNETIC SPECTRUM 136 6.4 M31: OUR NEAREST NEIGHBOUR 139 6.5 THE IRAS REVOLUTION 140 6.6 THE NORMAL UNIVERSE 141 6.7 THE ACTIVE GALAXY MENAGERIE 142 6.8 AGN UNIFICATION 145 6.9 GALAXIES AND AGN 149 6.10 STARBURST GALAXIES 151 6.11 GALAXY MERGERS 152 6.12 CONCLUSION 156 x Contents Chapter 7 Ancient Heat 159 7.1 LAUNCH DAY 159 7.2 GALAXY EVOLUTION 161 7.3 GALAXY EVOLUTION IN THE OPTICAL 165 7.4 REDDER FIELDS, HIGHER REDSHIFTS 168 7.5 THE MOST DISTANT GALAXIES KNOWN 172 7.6 THE COSMIC INFRARED BACKGROUND 174 7.7 SCUBA AND SUBMILLIMETRE GALAXIES 176 7.8 SUBMILLIMETRE GALAXIES AT OTHER WAVELENGTHS 179 7.9 THE HDF850.1 STORY 180 7.10 THE HERSCHEL REVOLUTION 181 7.11 THE MOST DISTANT DUSTY GALAXIES 183 7.12 GALAXIES AS TELESCOPES 186 7.13 ALMA • THE NEXT REVOLUTION 188 7.14 CONCLUSIONS 189 Chapter 8 FirstHeat 193 8.1 NOT EVEN WRONG 193 8.2 INTRODUCTION 194 8.3 THE DISCOVERY OF THE CMB 195 8.4 THE EVIDENCE FOR THE BIG BANG 197 8.5 A BRIEF HISTORY OF THE UNIVERSE 200 8.6 THE SEARCH FOR ANISOTROPY 204 8.7 NOISE IN THE DARKNESS 204 8.8 THE NUMBERS THAT MAKE A UNIVERSE 208 8.9 CMB OBSERVATIONS 213 8.10 THE PLANCK REVOLUTION 214 8.11 THE PLANCK VIEW OF THE UNIVERSE 216 8.12 CMB ANOMALIES 217 8.13 PROSPECTS FOR THE FUTURE 219 8.14 CONCLUSIONS 220 Chapter 9 Future Heat 221 9.1 THE DAWN OF A NEW MACHINE 221 Contents xi 9.2 WHAT REMAINS TO BE DONE 222 9.3 SPACE VS. GROUND 225 9.4 THE EUROPEAN EXTREMELY LARGE TELESCOPE (E•ELT) 227 9.5 OTHER GIANT TELESCOPES 229 9.6 THE JAMES WEBB SPACE TELESCOPE (JWST) 231 9.7 THE ATACAMA LARGE MILLIMETRE ARRAY (ALMA) 233 9.8 THE CERRO CHAJNANTOR ATACAMA TELESCOPE (CCAT) 234 9.9 THE SPACE INFRARED TELESCOPE FOR COSMOLOGY AND ASTROPHYSICS (SPICA) 236 9.10 EUCLID 236 9.11 CORE/PRISM 238 9.12 ASTRONOMY AS DATA SCIENCE 239 9.13 OTHER WAVELENGTHS 241 9.14 CONCLUSIONS 241 Chapter 10 Further Reading 245 10.1 CHAPTER 1: FINDING THE HEAT 245 10.2 CHAPTER 2: FEELING THE HEAT 245 10.3 CHAPTER 3: LOCAL HEAT 246 10.4 CHAPTER 4: THE HEAT OF THE STARS 246 10.5 CHAPTER 5: YOUNG HEAT 246 10.6 CHAPTER 6: DISTANT HEAT 246 10.7 CHAPTER 7: ANCIENT HEAT 247 10.8 CHAPTER 8: FIRST HEAT 247 10.9 CHAPTER 9: FUTURE HEAT 248 Bibliography 249 Index 261 List of Figures 1.1 William Herschel discovering infrared light. 2 1.2 The electromagnetic spectrum. 4 1.3 The spectrum of black body radiation at different temperatures. 6 1.4 Standing waves in a cavity. 8 1.5 A cat, Domino, as seen in the mid-infrared. 9 1.6 How energy levels produce spectral emission and absorption lines. 10 1.7 Diagrammatic representation of atoms of hydrogen, deuterium and helium, and an ion of helium. 13 1.8 Diagrammatic representation of nuclear fusion and fission. 14 1.9 The internal structure of protons and neutrons. 15 1.10 Diagram of a typical reflecting telescope. 17 1.11 UKIRT:theUKInfraredTelescope. 19 1.12 The Keck Telescopes. 20 1.13 The European Southern Observatory Very Large Telescope. 21 1.14 The James Clerk Maxwell Telescope. 22 1.15 Millimetre Valley on Mauna Kea. 24 1.16 The IRAS Satellite. 25 1.17 The WFC3 Instrument. 26 1.18 The ISO and Spitzer Satellites. 27 2.1 The Mark One Eyeball. 30 2.2 A 1910 diagram of a gold leaf electroscope [113]. 34 2.3 The operation of an electroscope. 35 2.4 The DECam camera, to be used for the Dark Energy Survey at the 4 m Blanco Telescope in Chile. 38 2.5 Impurities in a semiconductor. 39 2.6 Stressed infrared detectors. 40 2.7 How a bolometer functions.
Recommended publications
  • 136, June 2008
    British Astronomical Association VARIABLE STAR SECTION CIRCULAR No 136, June 2008 Contents Group Photograph, AAVSO/BAAVSS meeting ........................ inside front cover From the Director ............................................................................................... 1 Eclipsing Binary News ....................................................................................... 4 Experiments in the use of a DSLR camera for V photometry ............................ 5 Joint Meeting of the AAVSO and the BAAVSS ................................................. 8 Coordinated HST and Ground Campaigns on CVs ............................... 8 Eclipsing Binaries - Observational Challenges .................................................. 9 Peer to Peer Astronomy Education .................................................................. 10 AAVSO Acronyms De-mystified in Fifteen Minutes ...................................... 11 New Results on SW Sextantis Stars and Proposed Observing Campaign ........ 12 A Week in the Life of a Remote Observer ........................................................ 13 Finding Eclipsing Binaries in NSVS Data ......................................................... 13 British Variable Star Associations 1848-1908 .................................................. 14 “Chasing Rainbows” (The European Amateur Spectroscopy Scene) .............. 15 Long Term Monitoring and the Carbon Miras ................................................. 18 Cataclysmic Variables from Large Surveys: A Silent Revolution
    [Show full text]
  • I. Is There an Accretion Mode Dichotomy in Radio-Loud AGN?
    MNRAS 440, 269–297 (2014) doi:10.1093/mnras/stu263 Advance Access publication 2014 March 10 An X-ray survey of the 2 Jy sample – I. Is there an accretion mode dichotomy in radio-loud AGN? B. Mingo,1,2‹ M. J. Hardcastle,1 J. H. Croston,3 D. Dicken,4 D. A. Evans,5 R. Morganti6,7 and C. Tadhunter8 1School of Physics, Astronomy & Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 2Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 3School of Physics and Astronomy, University of Southampton, Southampton SO17 1SJ, UK 4Institut d’Astrophysique Spatiale, Universite´ Paris Sud, F-91405 Orsay, France 5Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo, the Netherlands 7Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands 8Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK Accepted 2014 February 6. Received 2014 February 6; in original form 2013 May 31 ABSTRACT We carry out a systematic study of the X-ray emission from the active nuclei of the 0.02 <z< 0.7 2 Jy sample, using Chandra and XMM–Newton observations. We combine our results with those from mid-infrared, optical emission-line and radio observations, and add them to those of the 3CRR sources. We show that the low-excitation objects in our samples show signs of radiatively inefficient accretion. We study the effect of the jet-related emission on the various luminosities, confirming that it is the main source of soft X-ray emission for our sources.
    [Show full text]
  • Star Formation Relations and CO Sleds Across the J-Ladder and Redshift 3 on the ESA Herschel Space Observatory20 (Pilbratt Et Al
    Draft version July 17, 2014 Preprint typeset using LATEX style emulateapj v. 5/2/11 STAR FORMATION RELATIONS AND CO SPECTRAL LINE ENERGY DISTRIBUTIONS ACROSS THE J-LADDER AND REDSHIFT T. R. Greve1, I. Leonidaki2, E. M. Xilouris2, A. Weiß3, Z.-Y. Zhang4,5, P. van der Werf6, S. Aalto7, L. Armus8, T. D´ıaz-Santos8, A.S. Evans9,10, J. Fischer11, Y. Gao12, E. Gonzalez-Alfonso´ 13, A. Harris14, C. Henkel3, R. Meijerink6,15, D. A. Naylor16 H. A. Smith17 M. Spaans15 G. J. Stacey18 S. Veilleux14 F. Walter19 Draft version July 17, 2014 ABSTRACT 0 We present FIR[50 − 300 µm]−CO luminosity relations (i.e., log LFIR = α log LCO + β) for the full CO rotational ladder from J = 1 − 0 up to J = 13 − 12 for a sample of 62 local (z ≤ 0:1) (Ultra) 11 Luminous Infrared Galaxies (LIRGs; LIR[8−1000 µm] > 10 L ) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 (sub)- millimeter selected dusty star forming galaxies from the literature with robust CO observations, and sufficiently well-sampled FIR/sub-millimeter spectral energy distributions (SEDs) so that accurate FIR luminosities can be deduced. The addition of luminous starbursts at high redshifts enlarge the range of the FIR−CO luminosity relations towards the high-IR-luminosity end while also significantly increasing the small amount of mid-J/high-J CO line data (J = 5 − 4 and higher) that was available prior to Herschel. This new data-set (both in terms of IR luminosity and J-ladder) reveals linear FIR−CO luminosity relations (i.e., α ' 1) for J = 1 − 0 up to J = 5 − 4, with a nearly constant normalization (β ∼ 2).
    [Show full text]
  • RESEARCH PROGRAMS 140-Foot Telescope
    VS/G LI NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia r Quarterly Report October 1, 1981 - December 31, 1981 RESEARCH PROGRAMS 140-foot Telescope Hours Scheduled observing 1955.75 Scheduled maintenance and equipment changes 179.25 Scheduled tests and calibration 1.00 Time lost due to: equipment failure 34.75 power 9.50 weather 133.25 interference 0.00 The following line programs were conducted during this quarter. No. Observer (s) Program T-156 I. Kazes (Meudon, France) Observations to study giant molecular B. Turner clouds at the main 18 cm OH line frequencies. T-145 B. Turner Search within the 13-16 GHz range for new molecular species. S-233 L. Buxton (Illinois) Observations at 20.9 and 24.4 GHz to E. Campbell (Illinois) search for the HCN dimer (HCN) 2 . W. Flygare (Illinois) P. Jewell (Illinois) M. Schenewerk (Illinois) L. Snyder (Illinois) B-381 R. Brown Observations at 5-cm to confirm and extend the detection of recombination line emission from 3C 245 and a search for this type of emission from other QSOs. S-246 M. Bell (NRC, Canada) Search at 5 cm for recombination lines E. Seaquist (Toronto) in compact extragalactic sources. No. Observer(s) Program M-176 L. Avery (NRC, Canada) Observations at 18.2 GHz of the J=241 N. Broten (NRC, Canada) transition of HC3N, generally toward J. MacLeod (NRC, Canada) dark clouds. H. Matthews (NRC, Canada T. Oka (Chicago) The following continuum programs were conducted during this quarter. No. Observer (s) Program C-194 M. Condon (unaffiliated) Survey at 14.5 cm of extragalactic J.
    [Show full text]
  • Australia Telescope National Facility Annual Report 2002
    Australia Telescope National Facility Australia Telescope National Facility Annual Report 2002 Annual Report 2002 © Australia Telescope National CSIRO Australia Telescope National Facility Annual Report 2002 Facility ISSN 1038-9554 PO Box 76 Epping NSW 1710 This is the report of the Steering Australia Committee of the CSIRO Tel: +61 2 9372 4100 Australia Telescope National Facility for Fax: +61 2 9372 4310 the calendar year 2002. Parkes Observatory PO Box 276 Editor: Dr Jessica Chapman, Parkes NSW 2870 Australia Telescope National Facility Design and typesetting: Vicki Drazenovic, Australia Australia Telescope National Facility Tel: +61 2 6861 1700 Fax: +61 2 6861 1730 Printed and bound by Pirion Printers Pty Paul Wild Observatory Narrabri Cover image: Warm atomic hydrogen gas is a Locked Bag 194 major constituent of our Galaxy, but it is peppered Narrabri NSW 2390 with holes. This image, made with the Australia Australia Telescope Compact Array and the Parkes radio telescope, shows a structure called Tel: +61 2 6790 4000 GSH 277+00+36 that has a void in the atomic Fax: +61 2 6790 4090 hydrogen more than 2,000 light years across. It lies 21,000 light years from the Sun on the edge of the [email protected] Sagittarius-Carina spiral arm in the outer Milky Way. www.atnf.csiro.au The void was probably formed by winds and supernova explosions from about 300 massive stars over the course of several million years. It eventually grew so large that it broke out of the disk of the Galaxy, forming a “chimney”. GSH 277+00+36 is one of only a handful of chimneys known in the Milky Way and the only one known to have exploded out of both sides of the Galactic plane.
    [Show full text]
  • Aperture Synthesis Imaging of the Carbon AGB Star R Sculptoris? Detection of a Complex Structure and a Dominating Spot on the Stellar Disk
    A&A 601, A3 (2017) Astronomy DOI: 10.1051/0004-6361/201630214 & c ESO 2017 Astrophysics Aperture synthesis imaging of the carbon AGB star R Sculptoris? Detection of a complex structure and a dominating spot on the stellar disk M. Wittkowski1, K.-H. Hofmann2, S. Höfner3, J. B. Le Bouquin4, W. Nowotny5, C. Paladini6, J. Young7, J.-P. Berger4, M. Brunner5, I. de Gregorio-Monsalvo8; 9, K. Eriksson3, J. Hron5, E. M. L. Humphreys1, M. Lindqvist10, M. Maercker10, S. Mohamed11; 12; 13, H. Olofsson10, S. Ramstedt3, and G. Weigelt2 1 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 3 Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden 4 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 5 Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria 6 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Brussels, Belgium 7 Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK 8 Joint ALMA Office, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19, Chile 9 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 10 Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 43992 Onsala, Sweden 11 South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa 12 Astronomy Department, University of Cape Town, 7701 Rondebosch, South Africa 13 National Institute for Theoretical Physics, Private Bag X1, 7602 Matieland, South Africa Received 7 December 2016 / Accepted 31 January 2017 ABSTRACT Aims.
    [Show full text]
  • An Independent Distance Estimate to the AGB Star R Sculptoris M
    A&A 611, A102 (2018) https://doi.org/10.1051/0004-6361/201732057 Astronomy & © ESO 2018 Astrophysics An independent distance estimate to the AGB star R Sculptoris M. Maercker1, M. Brunner2, M. Mecina2, and E. De Beck1 1 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 43992 Onsala, Sweden e-mail: [email protected] 2 Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, 1180 Vienna, Austria Received 6 October 2017 / Accepted 22 November 2017 ABSTRACT Context. Distance measurements to astronomical objects are essential for understanding their intrinsic properties. For asymptotic giant branch (AGB) stars it is particularly difficult to derive accurate distance estimates. Period-luminosity relationships rely on the corre- lation of different physical properties of the stars, while the angular sizes and variability of AGB stars make parallax measurements inherently inaccurate. For the carbon AGB star R Sculptoris, the uncertain distance significantly affects the interpretation of observa- tions regarding the evolution of the stellar mass loss during and after the most recent thermal pulse. Aims. We aim to provide a new, independent measurement of the distance to R Sculptoris, reducing the absolute uncertainty of the distance estimate to this source. Methods. R Scl is a semi-regular pulsating star, surrounded by a thin shell of dust and gas created during a thermal pulse ≈2000 years ago. The stellar light is scattered by the dust particles in the shell at a radius of ≈1900. The variation in the stellar light affects the amount of dust-scattered light with the same period and amplitude ratio, but with a phase lag that depends on the absolute size of the shell.
    [Show full text]
  • MEMORIA IAC 2013 Pero No Todo Son Balances Positivos
    MEMORIA 2013 “INSTITUTO DE ASTROFÍSICA DE CANARIAS” EDITA: Unidad de Comunicación y Cultura Científica (UC3) del Instituto de Astrofísica de Canarias (IAC) MAQUETA E IMPRIME: Printisur DEPÓSITO LEGAL: 7- PRESENTACIÓN Índice general 8- CONSORCIO PÚBLICO IAC 12- LOS OBSERVATORIOS DE CANARIAS 14- - Observatorio del Teide (OT) 15- - Observatorio del Roque de los Muchachos (ORM) 16- COMISIÓN PARA LA ASIGNACIÓN DE TIEMPO (CAT) 20- ACUERDOS 22- GRAN TELESCOPIO CANARIAS (GTC) 26- ÁREA DE INVESTIGACIÓN 29- - Estructura del Universo y Cosmología 47- - El Universo Local 80- - Física de las estrellas, Sistemas Planetarios y Medio Interestelar 107- - El Sol y el Sistema Solar 137- - Instrumentación y Espacio 161- - Otros 174- ÁREA DE INSTRUMENTACIÓN 174- - Ingeniería 188- - Producción 192- - Oficina de Proyectos Institucionales y Transferencia de Resultados de Investigación (OTRI) 201- ÁREA DE ENSEÑANZA 201- - Cursos de doctorado 203- - Seminarios científicos 207- - Coloquios 207- - Becas 209- - Tesis doctorales 209- - XXIV Escuela de Invierno: ”Aplicaciones astrofísicas de las lentes gravitatorias” 211- ADMINISTRACIÓN DE SERVICIOS GENERALES 211- - Instituto de Astrofísica 213- - Oficina Técnica para la Protección de la Calidad del Cielo (OTPC) 216- - Observatorio del Teide 216- - Observatorio del Roque de los Muchachos 217- - Centro de Astrofísica de la Palma 218- - Ejecución del Presupuesto 2013 219- GABINETE DE DIRECCIÓN 219- - Ediciones 220- - Carteles 220- - Comunicación y divulgación 232- - Web 234- - Visitas a las instalaciones del IAC 237-
    [Show full text]
  • Dust Production 680-850 Million Years After the Big Bang
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 July 12, 2018 Dust production 680–850 million years after the Big Bang Michał J. Michałowski ⋆ SUPA , Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK, [email protected] Received 12 January 2015; accepted 23 March 2015 ABSTRACT Dust plays an important role in our understanding of the Universe, but it is not obvious yet how the dust in the distant universe was formed. I derived the dust yields per asymptotic giant branch (AGB) star and per supernova (SN) required to explain dust masses of galaxies at z = 6.3–7.5 (680–850 million years after the Big Bang) for which dust emission has been detected (HFLS3 at z = 6.34, ULAS J1120+0641 at z = 7.085, and A1689-zD1 at z = 7.5), or unsuccessfully searched for. I found very high required yields, implying that AGB stars could not contribute substantially to dust production at these redshifts, and that SNe could explain these dust masses, but only if they do not destroy most of the dust they form (which is unlikely given the upper limits on the SN dust yields derived for galaxies where dust is not detected). This suggests that the grain growth in the interstellar medium is likely required at these early epochs. Key words. stars: AGB and post-AGB – supernovae: general – dust, extinction – galaxies: high-redshift – galaxies: ISM – quasars: general 1. Introduction Theoretical models predict that a SN can produce at most ∼ 1.3 M⊙ of dust (Todini & Ferrara 2001; Dust plays an important role in our understanding of the Nozawa et al.
    [Show full text]
  • Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
    Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1).
    [Show full text]
  • Type II Supernovae As Probes of Environment Metallicity: Observations of Host H II Regions J
    A&A 589, A110 (2016) Astronomy DOI: 10.1051/0004-6361/201527691 & c ESO 2016 Astrophysics Type II supernovae as probes of environment metallicity: observations of host H II regions J. P. Anderson1, C. P. Gutiérrez1; 2; 3, L. Dessart4, M. Hamuy3; 2, L. Galbany2; 3, N. I. Morrell5, M. D. Stritzinger6, M. M. Phillips5, G. Folatelli7, H. M. J. Boffin1, T. de Jaeger2; 3, H. Kuncarayakti2; 3, and J. L. Prieto8; 2 1 European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile e-mail: [email protected] 2 Millennium Institute of Astrophysics, Casilla 36-D, Santiago, Chile 3 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 4 Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Boulevard de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France 5 Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile 6 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark 7 Instituto de Astrofísica de La Plata, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, CONICET, Paseo del Bosque S/N, B1900FWA, La Plata, Argentina 8 Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago, Chile Received 3 November 2015 / Accepted 28 January 2016 ABSTRACT Context. Spectral modelling of type II supernova atmospheres indicates a clear dependence of metal line strengths on progenitor metallicity. This dependence motivates further work to evaluate the accuracy with which these supernovae can be used as environment metallicity indicators. Aims.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]