Chapter 1 Elements of Algebraic Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Projective Geometry: a Short Introduction
Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g. -
A Zariski Topology for Modules
A Zariski Topology for Modules∗ Jawad Abuhlail† Department of Mathematics and Statistics King Fahd University of Petroleum & Minerals [email protected] October 18, 2018 Abstract Given a duo module M over an associative (not necessarily commutative) ring R, a Zariski topology is defined on the spectrum Specfp(M) of fully prime R-submodules of M. We investigate, in particular, the interplay between the properties of this space and the algebraic properties of the module under consideration. 1 Introduction The interplay between the properties of a given ring and the topological properties of the Zariski topology defined on its prime spectrum has been studied intensively in the literature (e.g. [LY2006, ST2010, ZTW2006]). On the other hand, many papers considered the so called top modules, i.e. modules whose spectrum of prime submodules attains a Zariski topology (e.g. [Lu1984, Lu1999, MMS1997, MMS1998, Zah2006-a, Zha2006-b]). arXiv:1007.3149v1 [math.RA] 19 Jul 2010 On the other hand, different notions of primeness for modules were introduced and in- vestigated in the literature (e.g. [Dau1978, Wis1996, RRRF-AS2002, RRW2005, Wij2006, Abu2006, WW2009]). In this paper, we consider a notions that was not dealt with, from the topological point of view, so far. Given a duo module M over an associative ring R, we introduce and topologize the spectrum of fully prime R-submodules of M. Motivated by results on the Zariski topology on the spectrum of prime ideals of a commutative ring (e.g. [Bou1998, AM1969]), we investigate the interplay between the topological properties of the obtained space and the module under consideration. -
Lecture 1 Course Introduction, Zariski Topology
18.725 Algebraic Geometry I Lecture 1 Lecture 1: Course Introduction, Zariski topology Some teasers So what is algebraic geometry? In short, geometry of sets given by algebraic equations. Some examples of questions along this line: 1. In 1874, H. Schubert in his book Calculus of enumerative geometry proposed the question that given 4 generic lines in the 3-space, how many lines can intersect all 4 of them. The answer is 2. The proof is as follows. Move the lines to a configuration of the form of two pairs, each consists of two intersecting lines. Then there are two lines, one of them passing the two intersection points, the other being the intersection of the two planes defined by each pair. Now we need to show somehow that the answer stays the same if we are truly in a generic position. This is answered by intersection theory, a big topic in AG. 2. We can generalize this statement. Consider 4 generic polynomials over C in 3 variables of degrees d1; d2; d3; d4, how many lines intersect the zero sets of each polynomial? The answer is 2d1d2d3d4. This is given in general by \Schubert calculus." 4 3. Take C , and 2 generic quadratic polynomials of degree two, how many lines are on the common zero set? The answer is 16. 4. For a generic cubic polynomial in 3 variables, how many lines are on the zero set? There are exactly 27 of them. (This is related to the exceptional Lie group E6.) Another major development of AG in the 20th century was on counting the numbers of solutions for n 2 3 polynomial equations over Fq where q = p . -
The Projective Geometry of the Spacetime Yielded by Relativistic Positioning Systems and Relativistic Location Systems Jacques Rubin
The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques Rubin To cite this version: Jacques Rubin. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems. 2014. hal-00945515 HAL Id: hal-00945515 https://hal.inria.fr/hal-00945515 Submitted on 12 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems Jacques L. Rubin (email: [email protected]) Université de Nice–Sophia Antipolis, UFR Sciences Institut du Non-Linéaire de Nice, UMR7335 1361 route des Lucioles, F-06560 Valbonne, France (Dated: February 12, 2014) As well accepted now, current positioning systems such as GPS, Galileo, Beidou, etc. are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. In a first step, we show how this conformal aspect can be the four-dimensional projective part of a larger five-dimensional geometry. -
Convex Sets in Projective Space Compositio Mathematica, Tome 13 (1956-1958), P
COMPOSITIO MATHEMATICA J. DE GROOT H. DE VRIES Convex sets in projective space Compositio Mathematica, tome 13 (1956-1958), p. 113-118 <http://www.numdam.org/item?id=CM_1956-1958__13__113_0> © Foundation Compositio Mathematica, 1956-1958, tous droits réser- vés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Convex sets in projective space by J. de Groot and H. de Vries INTRODUCTION. We consider the following properties of sets in n-dimensional real projective space Pn(n > 1 ): a set is semiconvex, if any two points of the set can be joined by a (line)segment which is contained in the set; a set is convex (STEINITZ [1]), if it is semiconvex and does not meet a certain P n-l. The main object of this note is to characterize the convexity of a set by the following interior and simple property: a set is convex if and only if it is semiconvex and does not contain a whole (projective) line; in other words: a subset of Pn is convex if and only if any two points of the set can be joined uniquely by a segment contained in the set. In many cases we can prove more; see e.g. -
Arxiv:1509.06425V4 [Math.AG] 9 Dec 2017 Nipratrl Ntegoercraiaino Conformal of Gen Realization a Geometric the (And in Fact Role This Important Trivial
TRIVIALITY PROPERTIES OF PRINCIPAL BUNDLES ON SINGULAR CURVES PRAKASH BELKALE AND NAJMUDDIN FAKHRUDDIN Abstract. We show that principal bundles for a semisimple group on an arbitrary affine curve over an algebraically closed field are trivial, provided the order of π1 of the group is invertible in the ground field, or if the curve has semi-normal singularities. Several consequences and extensions of this result (and method) are given. As an application, we realize conformal blocks bundles on moduli stacks of stable curves as push forwards of line bundles on (relative) moduli stacks of principal bundles on the universal curve. 1. Introduction It is a consequence of a theorem of Harder [Har67, Satz 3.3] that generically trivial principal G-bundles on a smooth affine curve C over an arbitrary field k are trivial if G is a semisimple and simply connected algebraic group. When k is algebraically closed and G reductive, generic triviality, conjectured by Serre, was proved by Steinberg[Ste65] and Borel–Springer [BS68]. It follows that principal bundles for simply connected semisimple groups over smooth affine curves over algebraically closed fields are trivial. This fact (and a generalization to families of bundles [DS95]) plays an important role in the geometric realization of conformal blocks for smooth curves as global sections of line bundles on moduli-stacks of principal bundles on the curves (see the review [Sor96] and the references therein). An earlier result of Serre [Ser58, Th´eor`eme 1] (also see [Ati57, Theorem 2]) implies that this triviality property is true if G “ SLprq, and C is a possibly singular affine curve over an arbitrary field k. -
Positivity in Algebraic Geometry I
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics 48 Positivity in Algebraic Geometry I Classical Setting: Line Bundles and Linear Series Bearbeitet von R.K. Lazarsfeld 1. Auflage 2004. Buch. xviii, 387 S. Hardcover ISBN 978 3 540 22533 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 1650 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Introduction to Part One Linear series have long stood at the center of algebraic geometry. Systems of divisors were employed classically to study and define invariants of pro- jective varieties, and it was recognized that varieties share many properties with their hyperplane sections. The classical picture was greatly clarified by the revolutionary new ideas that entered the field starting in the 1950s. To begin with, Serre’s great paper [530], along with the work of Kodaira (e.g. [353]), brought into focus the importance of amplitude for line bundles. By the mid 1960s a very beautiful theory was in place, showing that one could recognize positivity geometrically, cohomologically, or numerically. During the same years, Zariski and others began to investigate the more complicated be- havior of linear series defined by line bundles that may not be ample. -
MATH 763 Algebraic Geometry Homework 2
MATH 763 Algebraic Geometry Homework 2 Instructor: Dima Arinkin Author: Yifan Wei September 26, 2019 Problem 1 Prove that a subspace of a noetherian topological space is noetherian in the induced topology. Proof Because in the subspace X the closed sets are exactly restrictions from the ambient space, a descending chain of closed sets in X takes the form · · · ⊃ Ci \ X ⊃ · · · , taking closure in the ambient space we get a descending chain which stablizes to, say Cn \ X, and we have for all i Ci \ X ⊂ Cn \ X. And the inequality can clearly be restricted to X, which means the chain in X stablizes. Problem 2 Show that a topological space is noetherian if and only if all of its open subsets are quasi-compact. Proof If the space X is noetherian, then any open subset is noetherian hence quasi-compact. Conversely, if we have a descending chain of closed subsets C1 ⊃ C2 ⊃ · · · , then we have an open covering (indexed by n): \ [ [ X − Ci = X − Ci; n i≤n S − \ − By quasi-compactness we have X Ci is equal to i≤n X Ci for some n, which means the descending chain stablizes to Cn. Problem 3 Let S ⊂ k be an infinite subset (for instance, S = Z ⊂ k = C.) Show that the Zariski closure of the set X = f(s; s2)js 2 Sg ⊂ A2 1 is the parabola Y = f(a; a2)ja 2 kg ⊂ A2: Proof Consider the morphism ϕ : k[x; y] ! k[t] sending x to t and y to t2, its kernel is precisely the vanishing ideal of the parabola Y . -
Commutative Algebra
Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions . -
Positive Geometries and Canonical Forms
Prepared for submission to JHEP Positive Geometries and Canonical Forms Nima Arkani-Hamed,a Yuntao Bai,b Thomas Lamc aSchool of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA bDepartment of Physics, Princeton University, Princeton, NJ 08544, USA cDepartment of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA Abstract: Recent years have seen a surprising connection between the physics of scat- tering amplitudes and a class of mathematical objects{the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra{which have been loosely referred to as \positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic sin- gularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of \positive geometries" and their associated \canonical forms" as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones{via \triangulation" on the one hand, and \push-forward" maps between geometries on the other. We present numerous examples of positive geome- tries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest \simplex-like" geometries and the richer \polytope-like" ones. -
Choomee Kim's Thesis
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE The Zariski Topology on the Prime Spectrum of a Commutative Ring A thesis submitted in partial fulllment of the requirements for the degree of Master of Science in Mathematics by Choomee Kim December 2018 The thesis of Choomee Kim is approved: Jason Lo, Ph.D. Date Katherine Stevenson, Ph.D. Date Jerry Rosen, Ph.D., Chair Date California State University, Northridge ii Dedication I dedicate this to my beloved family. iii Acknowledgments With deep gratitude and appreciation, I would like to rst acknowledge and thank my thesis advisor, Professor Jerry Rosen, for all of the support and guidance he provided during the past two years of my graduate study. I would like to extend my sincere appreciation to Professor Jason Lo and Professor Katherine Stevenson for serving on my thesis committee and taking time to read and advise. I would also like to thank the CSUN faculty and cohort, especially Professor Mary Rosen, Yen Doung, and all of my oce colleagues, for their genuine friendship, encouragement, and emotional support throughout the course of my graduate study. All this has been truly enriching experience, and I would like to give back to our students and colleagues as to become a professor who cares for others around us. Last, but not least, I would like to thank my husband and my daughter, Darlene, for their emotional and moral support, love, and encouragement, and without which this would not have been possible. iv Table of Contents Signature Page.................................... ii Dedication...................................... iii Acknowledgements.................................. iv Table of Contents.................................. v Abstract........................................ vii 1 Preliminaries.................................. -
Exercises for Helsinki Algebraic Geometry Mini-Course
Exercises for Helsinki Algebraic Geometry Mini-Course Professor Karen E Smith 2010 Toukokuun 17. 18. ja 19. Reading: Most of the material of the lectures, can be found in the book Johdettelua Algebralliseen Geometriaan by Kahanp¨a¨aet al, or in An Invitation to algebraic geometry, by Smith et al, which is the same book in english. Two other good (much more comprehensive) books for beginners are Shafarevich's Basic Algebraic Geometry, I (original language: Russian) and Harris's Algebraic Geom- etry: An first course. Students who wish to get credit for the course can complete (or attempt) the following problems and send a pdf file (handwritten and scanned is fine) to [email protected]. If you are a student at any Finnish University, I will read these and assign a grade any time; for deadlines regarding whether or not credits can be assigned, please ask your professor(s) at your own university; of course, I am happy to contact them regarding the amount of work you completed for the course. Problem 1: The Zariski Toplogy. n n 1. Show that an arbitrary intersection of subvarieties of C is a subvariety of C . n n 2. Show that a finite union of subvarieties of C is a subvariety of C . n 3. Show that C can be given the structure of a topological space whose closed sets n n are the subvarieties of C . This is called the Zariski Topology on C . n 4. Show that the Zariski topology on C is strictly coarser than the standard Eu- n clidean topology on C .