Patentamt 01101 77 JEuropaisch.esEuropean Patent Office ® Publication number: B1 Office europeen des brevets

EUROPEAN PATENT SPECIFICATION

(§) Date of publication of patent specification: 22.03.89 (§) Int. CI.4: C 07 F 17/00, C 07 D 213/08, C 07 D 213/16 (ft)^ Application number: 83110927.7

@ Date of filing: 02.11.83

(S) Substituted cyclopentadienyl complexes and synthesis of pyridine homologues by means of the complexes.

(§) Priority: 06.11.82 JP 193951/82 (73) Proprietor: DENKI KAGAKU KOGYO KABUSHIKI 09.06.83 JP 101721/83 KAISHA 09.06.83 JP 101722/83 4-1 , Yuraku-cho 1 -chome Chiyoda-ku Tokyo (JP) (tt) Date of publication of application: (73) Proprietor: RIKAGAKU KENKYUSHO 13.06.84 Bulletin 84/24 2-1 Hirosawa Wako-shi Saitama-ken (JP) (§) Publication of the grant of the patent: 22.03.89 Bulletin 89/12 (72) Inventor: Yamazaki, Hiroshi 10-29, Maruyama (84) Designated Contracting States: Kamifukuoka-shi Saitama-ken (JP) DEFRGBIT Inventor: Wakatsuki, Yasuo 6-8-502, Tate 1 -chome (3) References cited: Shiki-shi Saitama-ken (JP) EP-A-0 009 685 Inventor: Fujii, Chiyuki 4166-18, Shimotsuruma J. ORG. CHEM., vol. 35, no. 10, 1970, pages Yamato-shi (JP) J.E. SHEATS Kanagawa-ken 3245-3249, Washington D.C., US; Inventor: Watanabe, Seiichi of et al.:"Synthesis and properties No. 319, Oaza Teraji Ohmi-cho salts. I. of cobalticinium Synthesis Nishikubiki-gun Niigata-ken (JP) CO monosubstituted cobalticinium salts" JOURNAL OF ORGANOMETTALIC CHEMISTRY, vol. 112, 1976, page 189-199, (74) Representative: Wachtershauser, Giinter, Dr. Elsevier Sequoia S.A., Lausanne, CH; N. EL Tai29 MURR: "Proprietes spectroscopiques et D-8000 Miinchen 2 (DE) polarographiques de quelques derives du cobalticinium"

Note: Within nine months from the publication of the mention of the grant ot tne turopean paieni, any perbun may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be deemed have been filed until the opposition fee has been Q. be filed in a written reasoned statement. It shall not to (Art. 99(1 ) European patent convention). UJ paid. Courier Press, Leamington Spa, England. EP 0 110 177 B1

(§) References cited: CHEMICAL ABSTRACTS, vol. 74, no. 23, 7th June 1971, page 388, abstract no. 124564], Columbus, Ohio, US; M. ROSENBLUM:"Fluxional behavior of dicobalt complex. Example of metal-carbon sigma-pi interconversion", & J. ORGANOMETAL. CHEM. 1971,28(1), C17-C19 CHEMICAL ABSTRACTS, vol. 87, no. 9, 29th August 1977, page 532, abstract no. 681 68n, Columbus, Ohio, US; & JP - A - 77 25 780 (INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH) 25.02.1977 SYNTHESIS, January 1976, pages 26-28, Stuttgart, DE; Y. WAKATSUKI et al.:"Cobaltocene catalyzed synthesis of pyridines" IP 0 110 177 B1 Description n.5- The present invention relates to a novel complex of an electron attracting group-substituted cyclopentadienylcobalt with a polyene or an acetylene, and a process for preparing a pyridine homologue 5 from an alkyne and a nitrile by using the complex as a catalyst. Cyclopentadienylcobalt cyclic diene complexes and their use as catalysts for the synthesis of a substituted pyridine from an alkyne and a nitrile, have already been known. For instance, of cycloalkadienylcobalt cycloalkadiene complexes and their use as catalysts for the cyclization two molecules of an alkyne and one molecule of an nitrile at the respective triple bond portions to form a and ■o substituted pyridine, have been known (Japanese Unexamined Patent Publications No. 135084/1975 No. 25780/1977 and U.S. Patent No. 4,267,329 and EP—A— 9685). JP— A— 25780/1977 in particular discloses ri-cyclopentadienyl (1-cyanomethyl cyclopenta-2,4-diene) cobalt and the corresponding 1-trichloromethyl compound, as such catalysts. However, these catalysts do not provide an adequate catalytic activity. A synthesis of pyridine or its homologues by reacting an alkyne with a nitrile to co-cyclize them at their disclosed that '5 triple bonds a single step is a superb process. Some of the present inventors have previously for such a cobalt compound, particularly an tf-cyciopentadienyl-cobalt derivative, is an effective catalyst a reaction (Japanese Examined Patent Publications No. 13153/1976 and No. 15597/1977). However, a catalyst having a still higher catalytic activity has been desired. cobalt As a highly active catalyst for such a reaction, it has been proposed to use a borabenzene is to complex (European Patent No. 64268). However, this catalyst has drawbacks that its preparation cumbersome and it is very expensive. A n5-cyclopentadienyl cobalt complex having a methoxycarbonyl substituent is known (Chem. Abstr. 74: 124564J). However, no catalytical-properties of this complex are reported. It is accordingly an object of the present invention to provide a highly active catalyst which can readily nitrile. •5 be prepared and is useful for the synthesis of a pyridine homologue from an alkyne and a As a result of extensive researches, the present inventors have found that a cobalt complex having an electron attractive substituent on its cyclopentadienyl ring as defined in claim 1 exhibits a superior catalytic activity. The present invention has been accomplished based on this discovery. Thus, the present invention provides, novel complexes of an electron attracting group-substituted r\ - homologue to cyclopentadienycobalt with a polyene or an acetylene, and a process for preparing a pyridine which comprises reacting an alkyne with a nitrile in the presence of the novel compound as the catalyst. The novel complex of the present invention is represented by the general formula

or irom uiui,D >» <»■ a,™^a, uu„y. 40 where A is a C,— C4 alkyl group and/or a phenyl group, n is an integer in which the alkoxy moiety contains from 1 to 3 carbon atoms or a C,— C4 acyl group, m is an integer group 4 double bonds, which is of 1 or 2, and Q is -^Co=Rn (wherein Rn is a C4— C12 polyene having from 2 to of C4 alkyl unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting a C,— and cyanomethylene and group, a C,— C4 alkoxycarbonyl group, a phenyl group, a cyano group a group cobalt atom at its diene portion, provided R1 excludes a polyene 4S which forms a coordinate bond with the composed solely of an aromatic ring), — Co=R2

P

■3 EP 0110177 B1 i) A method in which an alkoxycarbonyl- or acyl-substituted cyclopentadienyl complex is reacted with a tris-triphenylphosphine cobalt monohalogenide, followed by a reaction with a polyene or an acetylene to obtain the desired complex. ii) A method in which an alkoxycarbonyl- or acyl-substituted cyclopentadienyl alkali metal complex, a cobalt(ll) halide and a polyene or an acetylene, are reacted in the presence of a reducing agent. In the process for the synthesis of pyridine or its homologue by reacting an alkyne with a nitrile, the complex of an electron attracting group-substituted cyclopentadienylcobalt with a polyene or an acetylene exhibits an extremely high catalytic activity. Especially, the complex having an alkoxycarbonyl group or an acyl group as the electron attractive substituent, is particularly effective to provide a far superior reaction 10 rate as compared with conventional catalysts of this type, and its catalytic efficiency is as high as from 1.5 to 20 times that of the conventional catalysts. Further, it effectively serves to suppress the formation of aromatic hydrocarbons as by-products of the reaction to a level of at most 1/10. Furthermore, by virtue of the high catalytic activity of the complex, it is possible to substantially reduce the pressure for the reaction. This is extremely effective to prevent the decomposition or explosion when a lower acetylene is used as the 15 starting material. Thus, this is very important for an industrial application. The general formula I covers the following types of complexes:

20 B_ (II) m — Co=Ft,

25

(Ml) B, •Co=Ro2 m I 30 P(C6H5>3

35 B (IV) m — Co- Ft, P(C6H5>3 40

45

so In the formulas II to V, A, B, n, m, Rv R2 and R3 are as defined above with respect to the general formula I. The complex of the formula III is a substance in which two molecules of acetylene or its derivative (R2') are reacted, and the triple bond portion of the acetylene in the reaction product forms together with cobalt a metallocyclic cyclopentadiene ring, and triphenylphosphine forms a coordinate bond with cobalt. The complex of the formula V although this is not a novel substance has a structure in which instead of the 55 triphenylphosphine in the formula III, a substituted r)5-cyciopentadienylcobalt is bonded to form a cobalt- cobalt bond, which further establishes a diene coordination with the cobaltacyclopentadiene ring. The polyene to be used in the present invention may be selected from a wide range of polyenes. For instance, there may be mentioned butadiene, isoprene, cyclopentadiene, dicyclopentadiene, hexadiene, norbornadiene, indene, cyclooctadiene, cyclooctatetraene, azulene, cyclododecatriene, or alkyl- or phenyl- 60 substituted derivatives thereof or alkoxycarbonyl-, cyano- or cyanomethylene-substituted derivatives thereof. However, polyenes composed solely of an aromatic ring such as benzene, toluene or xylene are not useful for the present invention as they are not reactive. As the acetylene to be used in the present invention, there may be mentioned acetylene, methylacetylene, ethylacetylene, hexadiyne, phenylacetylene, or alkoxycarbonyl- or cyano-substituted 65 derivatives thereof.

4 EP 0 110 177 Bl

Most complexes of the present invention are novel compounds, and their structures have been ascertained by elementary analysis, infrared spectrum, and NMR. The unsubstituted or substituted if-alkoxycarbonyl- or r)s-acyl-cyclopentadienylcobalt complexes of the present invention have been found to exhibit an extremely high catalytic activity when used as catalysts 5 for the synthesis of an unsubstituted or substituted pyridine from an alkyne and a nitrile. Cycloalkadienylcobalt complexes usually have a catalytic activity for the synthesis of pyridine derivatives by co-cyclization reaction of an alkyne and a nitrile. However, cyclopentadienylcobalt conriplexes having an electron attracting substituent on its cyclopentadienyl ring have a higher catalytic activity. The unsubstituted or substituted n5-alkoxycarbonyl- or if-acyl-cyclopentadienylcobalt complexes of w the present invention exhibit especially good catalytic activity. When the catalyst is used in an amount of at least 0.1 mmol/liter in the reaction system, an effective mmol/ catalytic activity is obtainable. It is usually unnecessary to bring the concentration higher than 100 'lterThe of starting materials may be selected from wide ranges of alkynes and nitrites when the catalysts 15 the present invention are used, like in the cases where conventional catalysts are used. As the alkynes, there may be employed acetylene, a mono substituted alkyne such as an alkyl-, alkenyl- or aryl- acetylene, a di-substituted acetylene such as a dialkyl-, diaryl-, alkyl-alkenyl- or alkyl-aryl-acetylene, used. or a mixture of such alkynes. Further, an ether- or alcohol- derivatives thereof may also be On the other hand, as the nitriles, there may be advantageously employed a mononitrile such as of nitrile 20 hydrogen cyanide, or an alkyl-, aryl- or alkenyl-nitrile, or a polyfunctional nitrile having a plurality groups. The molar ratio of the alkyne to the nitrile may optionally selected within a range of from 0.01 to 100. However, in order to minimize the formation of by-products, it is preferred that the nitrile is used in excess of the amount of the alkyne. added to 25 The process of the present invention may be conducted in such a manner that the catalyst is a from 15 200°C, nitrile in the presence or absence of a solvent, and an alkyne is added at a temperature of to whereby the reaction will proceed. As the solvent, there may be used a variety of solvents such as an aromatic hydrocarbon, an alcohol, an amine, an ether, an ester or an alkylcarboxyamide. However, such a solvent is not necessarily required since the starting material nitrile serves as a solvent. of 30 The complex obtained according to the present invention may directly be used for the synthesis a for the pyridine homologue without isolation or purification before use. This is extremely advantageous practical application of the catalyst to an industrial operation. The feature of the process of the present invention is that the catalytic activity and the reaction rate are high.... u 35 Another important feature is that it is thereby possible to substantially reduce aromatic hydrocarbons which are likely to form as by-products in the synthesis of the pyridine homologues. Accordingly, it is readily possible to attain the productivity and the concentration of the product which adequately satisfy the industrial requirements. Especially when a lower alkyne such as acetylene is used as a starting material, it is possible to conduct reaction i.e. under 40 the reaction at a pressure substantially lower than that of a conventional system, 20 kg/cm2G) and at pressure of from 1 to 31 bar (0 to 30 kg/cm2G), preferably from 6 to 21 bar (5 to an adequately practical reaction rate. This is practically very important in that the lower alkyne is likely to head to decomposition or explosion when pressurized. invention to It may be said that it has been made possible for the first time by the present produce such a-picoline or 45 readily and in an industrial scale an industrially important product as vinyl pyridine, pyridine from acetylene and a nitrile. Heretofore, an n5-cyclopentadienylcobalt polyene complex has been usually prepared by reacting dicarbonyl-n5-cyclopentadienylcobalt with a polyene or an acetylene [Shin Jikken Kagaku Koza Vol. 12, it has been difficult to pages 189—190 (Maruzen)]. However, according to such a conventional process, and so produce an electron attracting group-substituted if-cyclopentadienylcobalt polyene complex an electron attracting group-substituted rf-cyclopentadienylcobalt monoyne complex of the present invention. As a result of extensive researches, the present inventors have found novel methods for the synthesis. The present invention has been accomplished by this discovery. The n,5-alkoxycarbonyl- or if-acyl-cyclopentadienylcobalt complex of the present invention is prepared 55 by the following routes.

/^6"5'3 U-M vi 60 + CoXLP(C6H5)3j3 Co y ; NsP(C6H5)3

65 EP 0110177 B1

■Co + R1 : vn > XP(C6H5)3

In the formula VI, M is an alkali metal and X is a halogen atom, and in the formula VII, is a C4 — C12 polyene having from 2 to 4 double bonds, which is unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting of a C-, — C4 alkyl group, a C, — C4 alkoxycarbonyl group, a phenyl group, a cyano group and a cyanomethylene group. However, Ri excludes a polyene composed solely of an aromatic ring. A is a hydrogen or a C, — C4 alkyl group and/or a phenyl group, n is 0 to 2, B is an alkoxycarbonyl group in which the alkoxy moiety contains from 1 to 4 carbon atoms, or an acyl group, and m is 1 or 2. Instead of the process of the formula VIII, a process of the formula VIII may be employed.

P(C6H5)3

2R2' — Co=R0 (VIII) P3 P3 In the formula VIII, R2' is an acetylene which is unsubstituted or substituted by one or two substituents selected from the group consisting of a C,— C4 alkyl group, a C,— C4 alkoxycarbonyl group, a phenyl group and a cyano group, and R2 is an organic residue of a metalocycliccyclopentadiene, which is composed of 2 molecules of R2' and a cobalt atom, which may have the same substituents as R2'. Instead of the process of the formula VII, a process of the fomula IX may be employed.

P(C6H5)3 IX) "3 Co-Ro P(C6H5)3 P(C6H5>3 In the formula IX, R3 is a substituted acetylene having the same substituents as R2'. Instead of the process of the formula VII, a process of the formula X may be employed.

P(C6H5)3 2Fy P(C6H5>3

X) In the formula X, R2' and R2 are as defined above with respect to the formula VIII. Instead of the triphenylphosphine in the formula VIII, a substituted r|5-cyclopentadienylcobalt is bonded to form a cobalt- cobalt bond, which further establishes.a diene coordination with the cobaltacyclopentadiene ring. The starting material of the formula VI such as an alkoxycarbonyl- or acyl-cyclopentadienyl sodium may be obtained by the process of Rausch [J. Am. Chem. Soc, 102, 1196 (1980)]. The alkoxycarbonyl group or the acyl group represented by B includes a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, a formyl group, an acetyl group, a propionyl group or a butylyl group, and it is synthesized respectively from the corresponding carbonate, chloroformate or carboxylate and a cyclopentadienyl alkali metal complex. The introduction of an alkyl group and/or a phenyl group may be conducted by a conventional method, for instance, by reacting an alkali metal complex such as a cyclopentadienyl sodium with a corresponding halogenated alkyl or phenyl, and, if necessary, repeating this reaction. This reaction is preferably, conducted prior to the introduction of the B group. The tris-triphenylphosphine cobalt monohalogenides may readily be obtained by reacting a cobalt halide with triphenylphosphine in the presence of a reducing agent [Inorg. Chim. Acta., 3, 227 (1969)]. The reaction of the formula VI may be conducted by reacting a substantially equimolar amount or a slightly excess amount of an alkoxycarbonyl- or acyl-cyclopentadienyl aklali metal complex in a solvent at a temperature of from 0 to 80°C for 0.1 to 24 hours. The reaction product thereby obtained may be isolated ;P 0 110 17/ Bl

and purified, but may directly be used for the subsequent reaction wunoui sucn lauiduuu ui yuimuauw... The reactions of the formulas VII, VIII, IX and X may be conducted by adding a polyene or an acetylene the mixture corresponding to the desired substance to the reaction solution of the formula VI and reacting at a temperature of from 0 to 150°C for from 0.5 to 24 hours. the of These reactions may preferably be conducted in an inert atmosphere free from presence oxygen. After concentrating the reaction product solutions, the reaction products may be isolated or purified by column chromatography.. The substituted n.5-cyclopentadienylcobalt polyene complexes thus obtained are stable in air. A feature of the present invention resides in that a cyclopentadienyl alkali metal complex wherein one is used two hydrogen atoms on the ring are substituted by an alkoxycarbonyl group or an acyl group, as 3 or cobalt a starting material, and the starting material is reacted with a tris-triphenylphosphine monohalogenide and the reaction product solution is directly reacted with a corresponding polyene or used acetylene. The reaction of the formula VI has been known wherein a cyclopentadienyl sodium is as a has been starting material. However, an alkoxycarbonyl- or acyl-cyclopentadienyl alkali metal complex the reaction of this 5 used as the starting material for the first time by the present invention. Furthermore, reaction product with a polyene or an acetylene has not been known before. The rf-alkoxycarbonyi- and rf-acyl-cyclopentadienylcobalt complexes represented by the general formula II also be prepared by the following method. may the Namely, i) at least one of substituted cyclopentadienylcobalt monohalogenides represented by o formula XI: .

where A, B, X, m and n are as defined above, with respect to ine Tormuia ai, anu h;

/ EP 0110177 B1

From the reaction product solution thus obtained, a pure product of the substituted n.5- cyclopentadieny!cobalt-n.4-polyene complex may be obtained. This isolation'operation can more readily be conducted than the isolation operation of the above-mentioned system wherein triphenylphosphine is used. However, when the complex is used as a catalyst for the process of the present invention, such an 5 isolation operation is not necessarily required, and the reaction product solution may be used as it is. This system is particularly advantageous as compared with the above-mentioned system wherein is used triphenyl phosine, since the expensive isolation operation is not required. Now, the present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is by no means restricted by such specific Examples. 10 Examples 1 to 24: Various complexes of n.s-alkoxycarbonyl- and rf-acylcyclopentadienylcobalt with polyenes or acetylenes were prepared. The preparation conditions are shown in Table 1, the data for the determination of the structures are shown in Table 2, and the structures of the complexes are shown in Table 3. 15 The preparation of typical complexes will be described below.

(i) Preparation of n,4-norbomadiene-qs-methoxycarbonyl cyclopentadienylcobalt Dimethyl carbonate (1.5 ml) was added to a solution of cyclopentadienyl sodium (7 ml of a 2 mmol/ml solution), and the mixture was refluxed for 1 hour in a nitrogen atmosphere. The reaction 20 solution thereby obtained was added to a suspension of tris-triphenylphosphine cobalt monochloride (8.81 g, 10 mmol) in benzene (20 ml). The color of the solution immediately turned red. To complete the reaction, the solution was stirred for a while and then norbornadiene (3 ml) was added and the mixture was refluxed for 1 hour on a hot water bath. After cooling, the reaction mixture was passed through a short alumina column to remove insoluble matters, whereby a reddish orange solution eluted by benzene was 25 collected. The solvent was distilled off by heating under reduced pressure. Hexane (20 ml) was added to the residue, and the mixture was left to stand overnight. The precipitated triphenylphosphine (4.64 g) was removed by decantation, and the red solution was again subjected to alumina chromatography. From the colorless solution eluted by hexane, triphenylphosphine (2.06 g) was further recovered. The solvent was distilled off under reduced pressure from the reddish orange solution eluted by benzene/hexane (1 : 1 ). The 30 residue was dissolved in hexane under heating, and then left to stand in a refrigerator, whereby orange crystals (2.0 g, yield: 73%) were obtained. (ii) Preparation of r)4-1,5-cyclooctadiene-n,s-acetylcyclopentadienyl cobalt In accordance with the Rausch method, 10 ml of a tetrahydrofuran solution of cyclopentadienyl sodium 35 (20 mmol/10 ml THF) and 4 ml of methylacetate were mixed in a nitrogen atmosphere, and refluxed for 20 minutes to obtain acetylcyclopentadienyl sodium. To the solution containing colorless crystals thereby obtained, 40 ml of benzene was added, and 10.6 g of tris-triphenylphosphine cobalt monochloride was further added whereby a red solution of bistriphenylphosphine-r)5-acetylcyclopentadienyl cobalt was immediately obtained. The solution was stirred at room temperature for about 1 hour. Then, an aqueous 40 ammonium chloride solution was added to remove the excess acetylcyclopentadienyl sodium by transferring it to the aqueous phase. The organic phase was dried over sodium sulfate and then filtered. To the solution thereby obtained, 5 ml of 1,5-cyclooctadiene was added, and the mixture was refluxed for 1 hour on a hot water bath, and then concentrated under reduced pressure. The product was subjected to alumina column chromatography, whereupon an orange brown fraction eluted by a mixture of benzene/ 45 hexane (1 : 1) was isolated. The solvent was distilled off, and the product was recrystallized from benzene/ hexane to obtain 0.32 g of brown crystals.

(iii) Preparation of n,4-1,5-cyclooctadiene-r|s-1,3-dimethoxycarbonylcyclopentadienylcobalt and the 1,2- dimethoxycarbonyl substituted isomer so To a tetrahydrofuran solution of methoxycarbonyl cyclopentadienyl sodium (28 mmol/28 ml) preparared by the Rausch method, a tetrahydrofuran solution of methyl chloroformate (2 g/30 ml) was added under cooling with ice. When the solution reached room temperature, it was filtered and concentrated under reduced pressure. Then, methylene chloride was added thereto to precipitate slightly pink precipitates. The precipitates were collected by filtration and dried to obtain 1.23 g of 55 dimethoxycarbonylcyclopentadienyl sodium. This solid (0.6 g) was dissolved in water, and mixed with a suspension of tris-triphenylphosphine cobalt monochloride in benzene (1.76 g, 2 ml), whereby the benzene phase turned reddish brown. To this mixed solution, 1,5-cyclooctadiene (2 ml) was added and mixed for 2 hours. Then, the organic phase was separated and dried over sodium sulfate, and filtered through a short alumina column. The solution was so concentrated by heating under reduced pressure to remove the solvent, and the precipitated triphenylphosphine was removed by decantation. The solution was subjected to alumina chromatography. The solvent was distilled off under reduced pressure from two types of yellow fractions eluted by benzene/ hexane (1 : 1), and the residue was dissolved in hexane under heating, and then left to stand in a refrigerator, whereupon reddish brown crystals were obtained. (Total amount: 360 mg, yield: 52%, 65 production ratio 1 : 3.5)

8 o m£ ■ c___ ro£ _ __ = E £ E £ o £ oj E E gCOCMi-*T-C* CM OJ CM CM <

g CO g 2 g g g 5 ■ 8 > "8 > "2 • 2 s 3 « « H °§ 1 8 S g -2 g § -2 §

! o J, §. 1 | 8 J. o. J,

"5 1 Si e L!§ §■ o> ?•o >*

- _ > -£.2 -£.& -£s j cf = c £ o £ _ o aJ ,- o c» r 3 J 5 .2 -i. -e & § « §■ | -e §• e ,_ t:-n >-T3~ ta 7? .2 • w «J

X 03 Q. O i- CM || & ci ci I ci ci ci ci ci ci ci ci

CD Q. £

9 £0 i ^_ > C 01 to O , ii _ o 1 a * 3 ™<=>2 -| 5 5 E-o I ?7'D>' 5 to to " co co £0 O tS « S- T m

to 03 0) 03 0) 05 03 O) 2 05 LO CO Ifl 05 LO CO CM cn 03 O T T CM tO O Or- CO > CN O O O © O O <~

1*1 *. 8 ° c§ -5_J2 "SJ2 i2 » » CJ2 > = to-^—Cnj „ „ i-oj c^ co ceo Era -"co 5 to =K co «§ ^S> ffl £• io g >• £ £• g >• • ■£ CT (/) o c n o Qo Q -O. o O o CO o QoDQoi-o

CM <- v: r. r. r. ^ cm r: <~ CM »- CM 03 (13 *~ C >• 0303 03 CC 03 03 CC C CO CO C =f= -££2.(0 C CO CO CO X X • <0 .5 f0 X XX X 0303 X O !=. CO 0303 03 -C -C 03 8 c? ======"35 "S == CO +■< 03 03 03 03 03 C C 03. C 2 C =CC C C0303 C •—Cm£ 0303 03 Q)NNNCC 03N £§gc N CCNN NC C CO 03 C £ 03 0303 03 03 CO 03 03 < o CO 00 00 CQ 03** 03

.£ -g

5 5 r- N i- M CM 5- «— «- «- «-

ou d = F , i_ ° ° •.p .S r» cc cc cc cc cc r-r-

X _03 I* « 7 7 T T 7 7 7 7 7 7 7 7

03to Q. p_ CM CO ^ LOCO r«» 00 05 CO X ID

10 to ' jjj 1 1 £ £ £ 8 1 "= 1 » CM CM £ LO CO CO O O If) < . CD c 2« c .2 ® - "2 a> CO CO = » « ■=m o CO ^ « o "2 ra 2- « co o 2 -r o . c

$ ?l J § Z I . CO v- ^ LJ

> 1 : "c C LO LO LO j-O, 2 LO 2 LO ™ - co COCO

0

2 £ S ° cn lo 8 <» coco Z = ^ ""1 Si i ,i C CO /-> — ' I , , 03 0) *S -2 +- > i-llili'fi t|i tpilt 11 a a > > i e*> ! > > ! » .3- 8 >• £ 2 o o .2 S.8 j lS^ <=o <:u ! H CCT3 < Q. Q o co

X | » 2 s s s s . s s s s e ii i i i j, j, i i i i

CO05 a E CD o r- CN CO <=f LO ^£22 X(O^-t— T— 5— 1

11 • O CM 7 > > CO 1 CO O 3 O 3 •n co -a 0 £2 co-aci c° -o r§ 3?11 OT CD ±T <- CD ±i tt 5 F <~ = 3 CM C 3 * ^ § 1 E E = E 5 o .2 O £ -co 6 £ -m

O) D> O) 030>0)0)0)D)C350) ? CM LO 00 ^•LOCMCOr-'Sf^-CO CO O t— CO CO O «— r— *~. d d d d d d ddd d d c o n CD CD CD CO 1= ^ J2 £ ^c "g^ ■§ cn E co E co is — co c ° - := 5 ^ § S ; c ill -13. 311 *if. " '§ 'II. ii 1: g > co 2 £• a>o)>- co £ > cucrz a> " £■ « cs OH o Q J2 o ecu Qoiu CC J3 O CC J3 o C£ o

t— r- I— r- CD CD c c CO CO CDx CDX 15 CD CD c : : sec ; CD CDN CDN CN c C CD CD CD ca CQ CQ

k_ U. L i— i— i_ .c w k. j: i..c -c sl -= ^- •= ^ "=

H H H" H H H ™oo cc £co cc cc £oo cc cc cc

co lo coi^cocnot-cMco t— *— t — t— r- t— t— CMCMCMCM cl ci ci ci ci ci ci ci ci ci ci

O CN CO lo co r-» CO t— T— v— t— t— t— r—

12 C _ _ OJ — O) j O) O £ ' E uq E in ; in £Z CN CN d cn d ; d < I

0) CD c = = co £ 6 =5 >• 2 J. ;c CO £ CO Q) >■ !>■ coOco 8 <° "g ® S • io s i :S. is£ .* > lit cf 1 | 11 |S U.O.C0 t- Q Z Sa.o-c

_ i

° 53 S o ■§ i io f £ c.r c cc.-j=i lo lo in lo uq m 2 C += 9" TO CN CN CN CN CN ; CN

in I c :{ 3 _O O C ! C c CO CO CO CO CO ; CO Ie 1

1 -i i _t ° 1 it ti >-.£ >-.2 S "> «= .2 o co-oc 5. c E||| ^S.| ^g.| § =5 ^g.E |g.E : : ■o»S? 3" o .2 £■ o .2 q, S £• o .2 £o = S)3coo 9 y>o"co y>-o LL. 10 Q. O < o> coo < o to 0- Q. < co to Soco

_co ! Q. CO Pv 03 CD t- : CN is 7 7 7 7 7 '7 o z ci ci 6 ci 6;u

CDCO a. ! E cn or- cm co 3; fO r- CM CM CM CN : CM LU

13 03 03 CO co .....CO - co "O +-03 CO T3 0 CO CO03 ZD 3 <0 03 en 1 § 2 > d ^

CO — v*. 03 O ° -5 CO CO co 03 .2 c 3 c 15 ■K E 5 o 2 co So -o»2.2 jg 2 > ; to o oc .q > Qxicj ■a 03 c > 3 , c j= +3 5 <0 c O ^ o o O;? O <" IS 05 - •! 1 s

<; < O OQ

03 ^ -C -C .= -= J; cocaoE c M. ■= CC'ZS'Zi CM CM CM CM o

o 6 d Sol H h-HH 1- H cc £ 2 oc cc cc cc cc cc

X _03 Q. CO r» CO 03 r- CM is 7 7 T 7 T T oz 6 06600

03CO 2" o cm oo "J E ^-en CM CMr; CM CM CM CO * X - "J

14 iP 0 110 177 Bl

— 1 : rf-Norbornadiene-n. -methoxycarbonyl cyclopentadienyl cooait —2: rj4-1,5-Cyclooctadiene-r|5-methoxycarbonyl cyclopentadienyl cobalt — 3: n,4-Cyclooctatetraene-ns-methoxycarbonyl cyclopentadienyl cobalt —4: r|4-Butadiene-n5-methoxycarbonyl cyclopentadienyl cobalt :— 5: Triphenylphosphine-(n5-methoxycarbonyl cyclopentadienyi)tetraphenyl cobaltacyclopentadiene —6: [ri5-Methoxycarbonylcyclopentadienyl-(cobaltacyclopentadiene)]-ri5-methoxycarbonylcyclopenta- ienyi cobalt (Co-Co) —7: n4-1,5-Cyclooctadiene-(n5-1-methoxycarbonyl, 3-methyl cyclopentadienyDcobalt :— 8: n4-1,5-Cyclooctadiene-(ns-1-methoxycarbonyl, 2-methyl cyclopentadienyDcobalt :— 9:Triphenylphosphine-(ns-1-methoxycarbonyl,2-methylcyclopentadienyl)tetraphenylcobaltacyclo- entadiene :— 10: Triphenylphosphine-(r|s-1-methoxycarbonyl, 3-methyl, cyclopentadienyDtetraphenyl- obaltacyclopentadiene I— 11: T]4-1(5-Cyclooctadiene-(n5-methoxycarbonyl, benzylcyclopentadienyDcobalt :— 12: r)4-1,5-Cyclooctadiene-

Ii3 o o co wot <-*--r cn_cn cot . «- cg_co cn CO LOin-| COtp- in'^LO^LO^Lri^LOLO.£ CN e> ofP.oSoT^i^i coOcoOcoOcoOcocoOcoJco A ^ A 00 A « rt n n c X X X Q X <» Z-l ri \ ^ \ \ ri \ "Tt ^ ww0 0 0 0 CO LO , ^ , ■ , M 1 en o asS X co S X in co 1 T SI. 31 5 31 i A rf * < x= J , — — Srn —too CO 1 OT cn Ot cm —— cJTa» — co cp cm0--i cn r~ J!cn cj co *r 'T-' r>T. «- co co'-l «-

S II i= O

o O 05 CN S £ 5 £: . O O O O w LO LO LO cm cn r" cm C r" r- r" t— t— r— *~ T- r— *—

o" to CO CMco .CNcn CO

co CO r».oocNj-oLO rt cn CO<— ' T T I J, I 7 I & o co co co COco CD t—in CO CO <— CD - o 5 CMCO f LO CO fs. CO °? °? *7 1? wwlwci ci ii iii

16 3 ro_ r» <»-, cm-, to-. cn- ©-, 0 3"! ,31 «-1 cm 1 05 r- CN ^ „ LO * -r' £ * X* LO £ * £ LO £ LO £ LO £ fl ^-1 ^1 ^ lo" lo-j eo

; £ fs o 5! £ <$ £ S £ 5 £ S £ j U ? o NO«OriUcoOcn«J|g-| CO -Xrt u 0 00 CO- CO- CM— CM_- U5o ^1 (p. Z~\ co co H-1 O co CO m co «i CJ » pi « « eo * S S ^S, ^ ^ — » co ~(f co 2h N (J ™ (J CN — CJ CN"(J » CM — O 0 O CO o p, S r< r» co co 1 _:E0 "J to

O IT5 CJ S S iii ■ i= r= O

O "5 LO o 1 to f° £ i"*

D LO lo o co ° O 1 8 ES S S 5 p p 1 " ?1 r- r- r- c- 1^

3? co "* °°. i°c f*: to|^ q (DCDtO-P-iCOLOliJLOrfLO^lCSCgCO Pno

17 CO

\ / Cj- o n

u o o

I

— U

c

LO LO i

/ \ ? - o I

J

3 C

I* s- ex

\ \ /

CO01

i re" i I

1 T CL O

i r u nu it t di

examples u iu o i or n - Table 4 shows examples for the preparation of complexes wherein a lf-alkoxycarbonyl- alkali metal complex is reacted with a cobalt halide, and the reaction product was acylcyclo-pentadienyl thereby further reacted with a polyene in the presence of a reducing agent. The structures of the complexes be described below. obtained are shown in Table 3. Typical methods for the preparation will

(i) Preparation of n4-1,5-cyclooctadiene-n5-methoxycarbonyl cyclopentadienylcobalt ml of tetrahydrofuran and 3 ml Into 100 ml container, 1 .0 (7.7 mmol) of anhydrous cobalt chloride, 1 5 a g 5 ml (7.mmol) of a of 1,5-cyclooctadiene were introduced in a nitrogen stream. While stirring the mixture added at 15 C. The tetrahydrofuran solution of methoxycarbonyl cyclopentadienyl sodium was dropwise i the addition non-uniform blue-colored mixed solution became dark red and uniform as dropwise sodium (0.7 of sodium) To prepared in another container comprising mercury amalgam of g a system After for 10 ml of tetrahydrofuran, the above solution was added at 15°C under stirring. stirring and 10 The the was separated, and the solvent was distilled off under reduced pressure. ,- minutes, supernatant alumina column residue dissolved in a small amount of benzene/hexane (1 :1), and subjected to was collected and the solvent chromatography (5% of water and added). The eluted reddish brown fraction was distilled off, whereby the desired n4-1,5-cyclooctadiene-n5-methoxycarbonyl cyclopentadienylcobalt was washed with a small (the same substance as C-2) was obtained in the form of crystals. This product was 620 of the product was obtained. > amount of hexane and dried under reduced pressure, whereupon mg

5

0

5

15

)0

55

SO

65 CD ■73 i i £ C CO ? CO CD C3) O) g) co c fS CO p o C •1 E £ £ 3 .2 .3 3 : ; ; 73 T3 73 T3 CD O O O CC CO CO CO

| -= E - E E I O C LO C LO LO LO E CO t- f * T-^r^ r-^ <

jjj CD CD <2 CD g

° cn o C "O „, £ CO =, T5 8 S 1 i 8 = |e § 1 2(UO C C CD E CD o E

0- CO »- Z CQ CJ O r^TS Z

cn c 3 _O oc P_ r-» p o p lo lo p o o oo E r» r»» i< co cd co co co cn cn < £_

£ >-"C 33 >r- .2 CD — CD CD 5,2 o 5.23 , Ss 3 |.2 g >• 'g t- != o tj 1= 73 — 2-a-= a -o •= cTS |S 1 Ssg -^5 82 ■§ |s -5 gj "g |S £gc = ^SEo g-g.g Sgp= nr = S-= OQ. = *; O Q.™ ^ — 73 *- 8o.C+i s >-o_C+^ 3? Il-^l !!«"§ |o,2| go.2« >-o-i-5 co «=: >• o o «= >. o .c 9 co o ^= >. o o s in o o o Q.O SowCj S 0 0 0 < Q.O 5owO LU0S0 < 0 ~ O

X _CD O- LO LO •rf O " EuJCNI CN Yf^0^ CO 0 0 - oz 6 6 0 0 00 0

CD03 a m lo co r> 00 03 0 t- x CM CN CN CN CN CO CO LU

22 ! 1 c o 5 to0 a o

•i -S £ 3 » 1 8 S O ' CO ^ w 5 05 1R c O x co CO £ E 2 '"S a ^ "O o O

CO CO O) TO O) CM r^ LO 3 —CO CO t— CM <3| > d do o

coCO -Q5 ^° 8 8 -5 e .52 = 1 si sltf ! '■W CQ C - •£

<* o ° LU C > CD ■ ^ £ 8 „ cq5q.co ?-9_>2 iS 1= S .1 §>•§.-§

HIS« g = S^g-§fcT^S|2=- ii 8 : l-P^I II a^ flllfl

>.2 -3o £ -s. °o i ■= .8 2 § >• _ co E _ ■= E w w T mot o ^ "i in c3cd?c!s> CC 4= *3 t- r-Or- r- r- O r- U a § « J» ^ >< .2 .a H5 >- co o Jg-Sfg-0. o *= ° V. F, -= 6 a. Lo.ooij o ooo c5-> 73 £ *= O ^ is 7 7 7 T 7 7? sifill

Z « CJ r-~Z co Tv V V o. V eV cr sr cr C lo co P* CO cnorr t .. C CN CM CN CN CM CO CO .. W .. U> >Ct O - ooiooci

23 EP 0110177 B1 Example 32 Synthesis of 2-vinyipyridine Into a 100 ml stainless steel autoclave, 76 mg (0.26 mmol) of n4-1,5-cyclooctadiene-r|s-methoxy- carbonylcyclopentadienylcobalt (C-2) prepared in Example 2 and dissolved in 60 ml of toluene was fed in an argon atmosphere, and 20 g of acrylonitrile was further fed. The autoclave was flushed with acetylene and heated to 150°Cfrom atmospheric pressure, and then acetylene was continuously supplied to maintain the pressure at 14 bar (13 kg/cm2G). The reaction was continued for 60 minutes, whereby 2-vinylpyridine was synthesized. The reaction solution was analyzed by gas chromatography. The results are shown in Table 5. The concentration of 2-vinylpyridine in the reactant solution was 18%, and STY of the reaction reached 168 g/liter.hr.

Examples 33 to 54 2-Vinylpyridine was synthesized in the same manner as in Example 32 by using different complexes. The reaction conditions and the results are shown in Table 5.

Examples 55 to 67 2-Vinylpyridine was synthesized in the same manner as in Example 32 by using r)4-1 ,5-cyclooctadiene- n5-methoxycarbonylcyciopentadienylcobalt and changing the reaction conditions. The results are shown in Table 6.

24 O o in co V £2 2 2 s° llH« 8 8 5 8 8 8 8 3 S S 8 S 8 8 S 8 S | Escfe* ddddddci d oooooooooo i- CO CD O .Q >.i u. n

|.|f|r s j s i s s i s nnnsff f cj % «2 Q.

c 111 §§§§§§§ s sssss§§§§§ CO 'B cc

g £a ■SgEmnncomwco CO COCOCOCOMCOCOCOCOCO r- «—«—*—«— r- ffl/lur-rrrrrrCO "S, OCO i- CD < a.*

•w o § co oo f": oo£cooi^Lor«iooo o ooo'to^'crooo CC0~ CM r— CM CM CM CM CNCMCMt-CN*-»-CNCMCM < o

<2 co = □ h- c — Q O O O O O OOOLOOLOLOOOO 00>£cOL£5J) 00 LOCOCOCO CD CDCOCQ^-CQ^'«crcDCOCO E "5 <( CO

«2 co > 3 = : = : = = = S S S S S o .o CO l~

co ' CO £ S2.2cOCO[^-COOOCOCN CM C005COO)C3)COCOCO ^^j^EcNCNOCNOCMr- <- rf^CMOCMOOCMCMCM C t < oCO

>.. «tf ©*-CMCO'tfLOtOr-»COLOCD . 2 66606600000UOOOOO00- 0

CD Q.. cocMCO'd'LOcoi^oo cn ot-cNCO^LOcor^oocn cjzcocococococo.co co ^'*'*'a-«cr'cr'*rf^''* X in | 1 1 1 1 1 L 1— 1 1 1 1 1 1— 1

25 .2 jj >. co 5L c c .£ S <- «* ■* o — <» €r CM <~ T CO O % £ a.

c •2 CO Sc.:c o o o o o g .= C CO CO CO CD CO CD ** or

CD 3" 3. CO t CO CO CO CO CO —o ro ffl'= <- CN <- <- «- LO" ?*. C LU < O _l CQ < H £2 co c c 3 m o o in lo »tf o to > tp co co lo E o < CO

<2 CD c5 CD 5 3 t : = = o o to H

CO (0 5 §. 2 CM CD CO CO CO ^5„_ — E O CM «- <- CM n d ciSr-cao'ddfc <5 coo > to > . 00 OT o CM -=OCMCMr-CMCMCMCO tSzoouoou« I I I I 1 1 u

CD Q.. CO O t- CN CO f£ 2 LO LO LO U3 LO X LU

26 O co cj.

IllL S 8 2 S 8 § S§,2|| | E'scS* do odd d oo'ooo o ■- CO CO o <- n >■i u. ja

§ f.i -iir s s S § ? ° a s ? ? ^ s

III s s § § § § sgssss s E T~ cuco s cc

• §£« iilfococo uoo o oooooo o 00 CD "s. < a. j* lu a 6 -J £. m CO CO ■ CO 00 00 CO CO > — SOO-tfOM 8 * CO « < g |i CN CO CO « S S S S CN < o

w CO c c ooooo o oo ogoo o g^S 1 1 SSScdo § 8 § § § § § § E o <^ CO CD >2 £ co c o .= >.co >-2-~"" * " ' Soco.2'cE£ % £ 5 O Q Q« SS

is=§-|8SS8o> - o q q q q q 2°™_ddddco co tj- co co co co co t c < COo

C..CNCNCNCNCM CN CM CM CN CN CN CN CN •c5S 66666 6 666660 0 CO * 0

_CD 2*COirifnr^cncT» O CN CO LO CD EoggtSgS co 5t— 3 CO CO CO CO CO Xco ~Z. LU

27 i- CO CO o .a >i U_ XI

.2 o > £ .£ := cn oo cn * •§ > 2 T <=° co o

e .2 co c £ c p co co co a> *^ co .£ fc CC > c 3 3 o t5 c ° CJ ufO CO g £U « S « g 5« CO CD £ coc/3 E£ co co co coo*'no ~ -5. wW o l-r- r—t— 14-h- c^ i_»- =5 8 £"5>£"5) s• 8 egg =? "Z""Zl coCO j_, £~ -Q-a Oo §g 1' cH I CO = >.-2 § 3 O CD LU ill0510ou'SOLO ^LO 10LO C!2m9-s« a ™ = m § c c55« < < O T3 X C » 1— '=1.2 ° £ 1 g- a-o E 8 O co ~ C c C U£ 3*-CD"?0 O O > J) 5) iH o O > E CO 00 CO < _c 3 CN < " _ E o > a. C CD (- CO C o = o^ § to cd •- ja x "CD ™ C 5 T3 LU 5co .. „ OCQQ.C--

wH E 2 cd s .£ ® Z % £ £ 3 5 .£2>. §^»o CO co co g o"g c Sc o O O "5. g « O = 3 > c ° ® g CD c.2 « , ||' .Q o „ o ^*; 3 c >-M-O 'J3 "O CD ■K5 O r- CM C.^SO 3 CO QCC CO. © O O CD O O CO q_B CO O <- *- <- 73 'j= CO O ^

o O o ^ ~ g E ™ CD . S E CD 3

28 ■P 0 110 177 B1 Comparative examples i to d The same operation as in Example 57 was conducted by using conventional catalyst. As the catalyst, biscyclopentadienyl cobalt (C-100), r|4-1,5-cyclooctadiene-r|5-cyclopentadienylcobalt (C-101) and tyM-exo- cyanomethylene cyclopentadiene-tf-cyclopentadienyl cobalt (C-102) were used. The results thereby obtained are shown in Table 6. It is evident that the complexes prepared in Examples 1 to 31 have high catalytic activities, whereby the formation of benzene as a by-product is minimum. Examples 68 to 71 5 Into a 100 ml stainless steel autoclave, 24 mg (0.087 mmol) of n4-1,5-cyclooctadiene-if-acetylcyclo- pentadienyl cobalt as a catalyst and 66.6 g of acetonitrile were fed in an argon atmosphere, and reacted at a temperature of 150°C for 60 minutes under acetylene pressure of 14 bar (13 kg/cm2G) to obtain a-picoline. Similar reactions were conducted by using other complexes identified in Table 7.

ABLE 7

Catalytic Formation ratio efficiency for of benzene by- a-picoline product 0 Example Catalyst a-Picoline mol/ Benzene/a- Nos. Nos. Co g atom picoline Notes 68 C-13 1093 0.02

5 C-9 Mixture of 69 330 0.02 C-9/C-10 C-10 at 1/2

The reaction solution J0 obtained in Example 70 C-2 1140 0.02 25 was used by itself as the catalyst 71 C-24 870 0.02 J5 - I I -1 ' '

Examples n to /o

A predetermined amount of a complex, 12 ml of benzene, 12 ml of acetonitrile and about 4 g of methyl acetylene were sealed in an ample, and heated to 95°C and reacted for 29 hours. The results are shown in Table 8.

29 O O) +j w w ^

■+= ° •£ g -a co r- p> in cm COoAJnOt- CM <~ CM CM £-=E=o.d 6 d o o

"> -C P .= o 03 Is* O 00 %-a § cn cn . lo 2 >(i:-=LO CO CM CM «- g to a « >* 'O CM it 00 co uj .2 " CO ^ > < 2 5 1— CO 03 CO ° E ~ ^ CM OO LO CO •— co r» LO 00 o £ 'C LO CO CM CM r- CO Q. CO CM

CO CO C CO LO LO 3*. 5» CM CM *t "* LO 00150 q q q q E IS 0 0 0 0 0 < 0

.>■ CO cn 0 <— CM 0 C0OCNr-CMCOCO«- If *3ooZoaoo —7 1 1 1 1 01 cj1 0

CO ~ _ a ■ 2 ^ E§ S £2 S S co q, x ^ £ uj LU 0 a

30 :P 0 110177 B1 Examples /b to Acetylene and hydrogen cyanide were reacted in the same manner as in Example 32. 0.26 mmol of the complex, 2.5 ml of hydrogen cyanide and 43 ml of toluene were fed, and the reaction was conducted at a temperature of 150°C for 62 minutes under pressure of from 16 to 19 bar (15 to 18 kg/cm2G). The resulting pyridine was analyzed by gas chromatography. The results are shown in Table 9. TABLE 9

Catalytic efficiency ro Example Catalyst for pyridine Nos. Nos. Pyridine mol/Co g atom

76 C-2 46 15 77 C-19 29

78 C-20 45

79 C-23 12 ,0 80 C-24 40

81 C-25 7.5 '5 82 C-30 10

Comparative C-100 trace Example 5 !0 . Comparative C-101 trace Example 6

Comparative C-102 trace Example 7 J5

example ad 40 26 mg (0.09 mmol) of r|4-1,5-cyclooctadiene-r|s-methoxycarbonylcyclopentadienylcobalt (C-2) as a reacted catalyst, 10 g of phenyl acetylene, 20 g of acetonitrile and 50 ml of toluene were fed, and at a temperature of 130°C for 120 minutes. The product was analyzed by liquid chromatography, whereby the production of 2-methyldiphenyl pyridines were found to be 2.24 g, and the catalytic efficiency was found to be 100 mol/Co g atom. 45 Example 84 By using 76 mg of the same catalyst (C-2) as in Example 83, acetylene and benzonitrile were reacted. of 20 g of benzonitrile and 60 mi of toluene were fed, and the reaction was conducted at a temperature 130°C for 60 minutes under pressure of 11 bar (10 kg/cm2G). so The product was analyzed by gas chromatography, whereby it was found that 20.2 g of 2-phenyl- pyridine was obtained, and the catalytic efficiency was 458 mol/Co g atom. Example 85 Into a 100 ml pressure-resistant glass reactor, 30 mg (0.107 mmol) of n,4-cyclooctatetraene-r|5-methoxy- fed. 55 carbonylcyclopentadienylcobalt (C-3) as a catalyst, 2.5 g of acetonitrile and 60 ml of toluene were Then, while cooling the reactor, ethylacetylene was blown into the reactor in small portions, whereby about 10 ml of liquid ethylacetylene was condensed. The reactor was sealed and heated at 120°C for 4 hours. After cooling, reaction solution was analyzed by gas chromatography, whereby it was found that 0.72 g of 2-methyldiethyl pyridines were obtained, and the catalytic efficiency was 44 mol/Co g atom. 60 Example 86 The reaction was conducted in the same manner as in Example 85 except that 25 mg (0.104 mmol) of r|4-butadiene-ri5-methoxycarbonylcyclopentadienylcobalt was used as the catalyst. As the result, 0.47 g of 2-methyldiethyl pyridines were obtained, and the catalytic efficiency was 30 G5 mol/Co g atom.

31 EP 0 110177 B1

Claims

1. A complex of an electron attracting group-substituted r)5-cyclopentadienylcobalt comprising polyene or an acetylene, which is represented by the general formula A_

B_ m ■Q (I) 10

wherein A is a Ci— C4 alkyl group and/or a phenyl group, n is an integer of from 0 to 2, B is an alkoxy- carbonyl group in which the alkoxy moiety contains from 1 to 3 carbon atoms or a C-,— C4 acyl group, m is an integer of 1 or 2, and Q is — Co=R1 where R1 is a C4 — C12 polyene having from 2 to 4 double bonds, which 15 is unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting of a C, — C4 alkyl group, a — C4 alkoxycarbonyl group, a phenyl group, a cyano group and a cyanomethylene group and which forms a coordinate bond with the cobalt atom at its diene portion, provided R-, excludes a polyene composed solely of an aromatic ring,

20 — Co=R2 I P(C6H5)3

where R2 is an organic residue of a metallo-cyclic cyclopentadiene which is unsubstituted or substituted by 25 from 1 to 4 substituents selected from the group consisting of a G, — C4 alkyl group, a C, — C4 alkoxycarbonyl group, a phenyl group and a cyano group, or

— Co— R3

30 P(C6H5)3

where R3 is an acetylene which is substituted by one ortwo substituents selected from the group consisting of a Ci — C4 alkyl group, a C-, — C4 alkoxycarbonyl group, a phenyl group and a cyano group and which forms a coordinate bond with the cobalt atom at its triple bond portion.. 35 2. The complex according to Claim 1, which is represented by the formula:

B. 40 m — Co=R,

where A, n, m and R-, are as defined in Claim 1 and B is an alkoxycarbonyl group in which the alkoxy moiety contains from 1 to 3 carbon atoms. 45 3. The complex according to Claim 1, which is represented by the formula: A„n

B, 50 Bm_^JJ-Co=R2m P(C6H5>3 wherein A, n, m and R2 are as defined in Claim 1 and B is an alkoxycarbonyl group in which the alkoxy moiety contains from 1 to 3 carbon atoms. 55 4. The complex according to Claim 1, which is represented by the formula:

B -Co-Ro 60 m P«W3

wherein A, n, m and R3 are as defined in Claim 1 and B is an alkoxycarbonyl group in which the alkoxy 65 moiety contains from 1 to 3 carbon atoms.

32 EP 0110177 B1

5. The complex according to Claim 1, which is represented by the formula:

— Co=R1

wherein A, n, m and R, are as defined m Claim 1, and B is a o,— u, acyi group. which is the formula: w 6. The complex according to Claim 1, represented by

— U0=Mo ii 15 I P«W8

wherein A, n, m and R2 are as defined in Claim 1, and B is a U,— U4 acyl group. 7. The complex according to Claim 1, which is represented by the formula: 20 1

— Co-Ro 111 25 pw3

wherein A, n, m and R3 are as defined in Claim 1 and B is a C-,— C4 acyl group. nitrile in 8. A process for preparing a pyridine homologue which comprises reacting an alkyne with a with 30 the presence of a complex of an electron attracting group-substituted if-cyclopentadienylcobalt a. polyene or acetylene, wherein the complex is selected from the group consisting of complexes represented by the formulas:

35

Ml 0 Co=R1

40 where A is a C^ C4 alkyl group and/or a phenyl group, n is an integer of trom 0 to i, u is an aiKoxycaroonyi of 1 2, is C4— C12 group in which the alkoxy moiety contains from 1 to 3 carbon atoms, m is an integer or a polyene having from 2 to 4 double bonds, which is unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting of a C,— C4 alkyl group, a C4 alkoxycarbonyl group, a phenyl group, the cobalt atom at its a cyano group and a cyanomethyiene group and which forms a coordinate bond with 45 diene portion, provided Ri excludes a polyene composed solely of an aromatic ring;

UO=Ho ( III ) 50 ii P(C6H5>3

where A, B, n and m are as defined above, and R2 is an organic residue of metallo-cyclic cyclopentadiene 55 which is unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting of a. C, — C4 alkyl group, a C, — C4 alkoxycarbonyl group, a phenyl group and a cyano group;

60 B n ■UO-Ro ^6^3

65

33 EP 0110177 B1 where A, B, n and m are as defined above, and R3 is an acetylene which is substituted by one or two substituents selected from the group consisting of a C, — C4 alkyl group, a C-,— C4 alkoxycarbonyl group, a phenyl group and a cyano group and which forms a coordinate bond with the cobalt atom at its triple bond portion; and

— Co — Co- (V) 10

where A, B, n, m and R2 are as defined above. 9. A process for preparing a pyridine homologue which comprises reacting an alkyne with a nitrile in the presence of a complex of an electron attracting group-substituted n.5-cyclopentadienylcobalt with a 15 polyene or acetylene, wherein the complex is selected from the group consisting of complexes represented by the formulas:

20 — Co^FL, (VI)

where A is a Cn— C4 alkyl group and/or a phenyl group, n is an integer of from 0 to 2, B is a C,— C4 acyl 2 4 double bonds, which is 25 group, m is an integer of 1 or 2, R, is a C4— C12 polyene having from to unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting of a C,— C4 alkyl and group, a C4 alkoxycarbonyl group, a phenyl group, a cyano group and a cyanomethylene group which forms a coordinate bond with the cobalt atom at its diene portion, provided R1 excludes a polyene composed solely of an aromatic ring; 30

(VII

35

where A, B, n and m are as defined above, and R2 is an organic residue of metallo-cyclic cyclopentadiene which is unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting of a C1— C4 alkyl a C,— C4 alkoxycarbonyl group, a phenyl group and a cyano group; 40 group,

— Co-Ro (VIII) 45

where A, B, n and m are as defined above, and R3 is an acetylene which is substituted by one or two 50 substituents selected from the group consisting of a C,— C4 alkyl group, a C,— C4 alkoxycarbonyl group, a phenyl group and a cyano group and which forms a coordinate bond with the cobalt atom at its triple bond portion; and A„ An

55 (IX)

where A, B, n, m and R2 are as defined above. 60 10. The process according to Claim 8 or 9, wherein the alkyne is unsubstituted acetylene or acetylene substituted by an alkyl, alkenyl, aryl, dialkyl, diaryl, alkylalkenyl, alkylaryl, ether or alcohol, or a mixture thereof; and wherein the nitrile is hydrogen cyanide, an alkyl-, aryl- or alkenyl-nitrile, or a polyfunctional nitrile wherein a plurality of nitrile groups are bonded to the alkyl-, aryl- or alkenyl-nitrile. 11. The process according to any of Claims 8 to 10, wherein a hydrocarbon, an alcohol, an amine, an 65 ester or an alkylcarboxyamide or the starting material nitrile is used as a solvent.

34 IP 0 110 177 B1

12. The process according to any ot Claims 8 to i 1, wnerein xne complex is ure&e.u ... u.e imwu.. nitrile is within ystem in an amount of from 0.1 to 100 mmol/liter; and the molar ratio of the alkyne to the a ange of from 0.01 to 100, preferably from 1 to 100. 13. The process according to any of Claims 8 to 12, wherein the reaction is conducted at a temperature if from 15 to 200°C.. acetonitrile 14. The process according to any of Claims 8 to 13, wherein acetylene and acrylonitnle or ire reacted to form 2-vinyl pyridine or opicoline, respectively. 30 15. The process according to Claim 14, wherein the partial pressure of acetylene is from 0 to kg/cm lauge. 16. The process according to any of Claims 8 to 15, wherein the complex is prepared by reacting an ilkoxycarbonyl- or acyl-substituted cyclopentadienyl alkali metal complex with a tris-triphenyl- phosphine :obalt monohalogenide, and reacting a bis-triphenyl-phosphine complex of the alkoxycarbonyl- or acyl- substituted cyclopentadienylcobalt thereby obtained, with a polyene or an acetylene; or wherein a C4— C12 )olyene having from 2 to 4 double bonds, which is unsubstituted or substituted by from 1 to 4 substituents selected from the group consisting of a C,— C4 alkyl group, a C,— C4 alkoxycarbonyl group, a phenyl group, of the formula II i cyano group and a cyanomethylene group, is used as the polyene to form the complex ind VI, or wherein an acetylene which is unsubstituted or substituted by one or two substituents selected and rom the group consisting of a C,— C4 alkyl group, a Cn— C4 alkoxycarbonyl group, a phenyl group a is reacted in a ratio of two molecules to one cobalt atom to form a complex of the formula III :yano group, VIII. jr VII; or in the ratio of one molecule to one cobalt atom to form a complex of the formula IV or o is further reacted 17. The process according to Claim 16, wherein the complex of the formula III and VII substituted rf- with a substituted rf-cyclopentadienylcobalt-bis-triphenylphosphine complex or wherein a :yclopentadienylcobalt-bis-triphenylphosphine complex is reacted with an unsubstituted or substituted acetylene to form the complex of the formula V and IX. 18. The according to any of Claims 8 to 15, wherein the complex of the formula II and IV is '5 process in arepared by reacting an alkoxycarbonyl- or acyl-cyclopentadienylcobalt monohalogenide with a polyene metal :he presence of a reducing agent selected from the group consisting of an alkali amalgam, hydride, Dorohydride or aluminium hydride, an alkyl aluminium or an alkyl zinc; or by reacting an alkoxycarbonyl- jr acyl-cyclopentadienyl alkali metal complex with a cobalt (II) halide, and then reacting the resulting with in the of a 10 alkoxycarbonyl- or acyl-cyclopentadienylcobalt monohalogenide a polyene presence -educing agent selected from the group consisting of alkali metal amalgam, hydride, borohydride, aluminium hydride, an alkyl aluminium and an alkyl zinc.

'atentanspriiche

1. Komplex eines mit Elektronen anziehender Gruppe substituierten ns-Cyclopentadienylkobalts, jmfassend ein Polyen Oder ein Acetylen, dargestellt durch die allgemeine Formel to

i5 wobei A eine C^-Alkylgruppe und/oder eine Phenylgruppe oeaeutet, n rur erne gdiu» «... «u„ « *. Kohlenstoffatome enthalt, steht, B eine Alkoxycarbonylgruppe ist, bei der die Alkoxy-Einheit von 1 b.s 3 steht, wobei R, ein Oder eine C, 4-Acylgruppe ist, m eine ganze Zahl von 1 oder 2 ist und Q fur-Co=R1 oder substituiert mit 1 bis 4 C4_1,-Polyen mit 2 bis 4 Doppelbindungen bedeutet, das unsubstituiert ist .-Alkoxy- ausgewahlt aus der Gruppe, bestehend aus einer C^-Alkylgruppe, einer C1 50 Substituenten, und das mit carbonylgruppe, einer Phenylgruppe, einer Cyanogruppe und einer Cyanomethylengruppe, der MalSgabe, daft ein seinem Dienbereich eine Koordinationsbindung mit dem Kobaltatom bildet, mit ist; fur Polyen, welches allein aus einem aromatischen Ring besteht, bei ausgeschlossen

55

steht wobei R2 fur einen organischen Rest eines metano-cyciiscnen uyuu^induicn:. otc.n, ^ der bestehend aus 60 unsubstituiert ist oder substituiert mit 1 bis 4 Substituenten, ausgewahlt aus Gruppe, einer Cn_4-Alkylgruppe, einer C^-Alkoxycarbonylgruppe, einer Phenylgruppe und einer Cyanogruppe; oder fur — uo — rc2

HC6r15)3 EP 0 110177 B1

steht, wobei R3 ein Acetylen bedeutet, das substituiert ist durch einen oderzwei Substituenten, ausgewahlt aus der Gruppe, bestehend aus einer CT_4-Alkylgruppe, einer Cn_4-Alkoxycarbonylgruppe, einer Phenyl- gruppe une einer Cyanogruppe, und das mit seinem Dreifachbindungsbereich eine Koordinationsbindung mit dem Kobaltatom bildet. 2. Komplex gemafc Anspruch 1, dargestellt durch die Formel

10 — Co=Rh

wobei A, n, m und R, wie in Anspruch 1 definiert sind und B fur eine Alkoxycarbonylgruppe steht, bei der die Alkoxyeinheit 1 bis 3 Kohlenstoffatome enthalt. 3. gemalS Anspruch 1, dargestellt durch die Formel 15 Komplex

— Tl Co=R2 20 ' P(C6H5>3 wobei A, n, m und R2 wie in Anspruch 1 definiert sind und B fur eine Alkoxycarbonylgruppe steht, bei der die Alkoxyeinheit 1 bis 3 Kohlenstoffatome enthalt. durch die Formel 25 4. Komplex gemaS Anspruch 1, dargestellt

B • •Co- Ho 30 m

wobei A, n, m und R3 wie in Anspruch 1 definiert sind und B fur eine Alkoxycarbonylgruppe steht, bei der 35 die Alkoxyeinheit 1 bis 3 Kohlenstoffatome enthalt. 5. Komplex gemaS Anspruch 1, dargestellt durch die Formel An

40 B, Co=FL|

wobei A, n, m und R-, wie in Anspruch 1 definiert sind und B fur eine C,_4-Acylgruppe steht. 6. Komplex gemaS Anspruch 1, dargestellt durch die Formel 45

50 B,m Co=Rp P(C6H5>3

wobei A, n, m und R2 wie in Anspruch 1 definiert sind und B fur eine C^-Acylgruppe steht. 55 7. Komplex gemaB Anspruch 1, dargestellt durch die Formel n

B — Co-Rr, 60 m P(C6H5>3 wobei A, n, m und R3 wie in Anspruch 1 definiert sind und B fur eine C^-Acylgruppe steht. 8. Verfahren zur Herstellung eines Pyridinhomologen, umfassend die Umsetzung eines Alkins mit 65 einem Nitril in Gegenwart eines Komplexes eines mit Elektronen anziehender Gruppe substituierten rf-

36 P 0 11U 1// Dl yclopentadienyikobalts mit emem Koiyen oaer Acetyien, wouei uei iwihij.cv au*a~«— k ruppe, bestehend aus Komplexen der Formeln

5 aromatischen Ring besteht, ausgeschlossen Z der MaBgabe, dafc fur R, ein Polyen, das allein aus einem st;

!0 ' ' * /

P(C6H5>3 !5 vobei A, B, n und m wie oben definiert sind und K2 Tur einen organiscnen nest von metano-cyciiscnem ^yclopentadien steht, das unsubstituiert ist oder substituiert mit 1 bis 4 Substituenten, ausgewahlt aus der 3ruppe, bestehend aus einer C^-Alkylgruppe, einer C^-Alkoxycarbonylgruppe, einer Phenylgruppe und jiner Cyanogruppe; (0

35

wobei A, B, n und m wie oben definiert sind una n3 Tur em Acetyien stem, uas suu&uimeu ioi mu cmc... oder zwei Substituenten, ausgewahlt aus der Gruppe, bestehend aus einer C^-Alkylgruppe, einer C^- seinem Dreifach- 40 Alkoxycarbonylgruppe, einer Phenylgruppe und einer Cyanogruppe, und das mit bindungsbereich eine Koordinationsbindung mit dem Kobaltatom bildet; und

32 45 — uu WJ I \ • I

50 wobei A, B, n, m und Rz wie oben definiert sind. 9. Verfahren zur Herstellung eines Pyridinhomologen, umfassend eie Umsetzung eines Alkins mit einem Nitril in Gegenwart eines Komplexes eines mit Elektronen anziehender Gruppe substituierten n. - Cyclopentadienylkobalts mit einem Polyen oder Acetyien, wobei der Komplex ausgewahlt ist aus der Gruppe, bestehend aus Komplexen der Formeln: 55

—— uu — so n.j

wobei A eine C-^-Alkylgruppe und/oder eine Phenylgruppe bedeutet, n fur eine ganze Zahl von 0 bis 2 fur eine Zahl 1 oder 2 steht, R, ein C4_12-Polyen mit 2 bis 4 65 steht, B eine C-,_4-Acylgruppe ist, m ganze von EP 0110177 B1 Doppeibindungen bedeutet, das unsubstituiert ist oder substituiert mit 1 bis 4 Substituenten, ausgewahlt aus der Gruppe, bestehend aus einer C^-Alkylgruppe, einer C^-Alkoxycarbonylgruppe, einer Phenyl- gruppe, einer Cyanogruppe und einer Cyanomethylengruppe, und das mit seinem Dienbereich eine Ko- ordinationsbindung mit dem Kobaltatom bildet, mit der MaBgabe, daB bei Rt ein Polyen, das allein aus 5 einem aromatischen Ring besteht, ausgeschlossen ist; An

10 B,m — Co=R5 (VII) P(C6H5>3

wobei A, B, n und m wie oben definiert sind und R2 fur einen organischen Rest von metallo-cyclischem w Cyclopentadien steht, das unsubstituiert ist oder substituiert mit 1 bis 4 Substituenten, ausgewahlt aus der Gruppe, bestehend aus einer C^-Alkylgruppe, einer Ci_4-Alkoxycarbonylgruppe, einer Phenylgruppe und einer Cyanogruppe; i n

25 wobei A, B, n und m wie oben definiert sind und R3 fur ein Acetyien steht, das substituiert ist durch einen oder zwei Substituenten, ausgewahlt aus der Gruppe, bestehend aus einer C-,_4-Alkylgruppe, einer C,.,,- Alkoxycarbonylgruppe, einer Phenylgruppe und einer Cyanogruppe, und das mit seinem Dreifach- bindungsbereich eine Koordinationsbindung mit dem Kobaltatom bildet; und

30

(IX)

wobei A, B, n, m und R2 wie oben definiert sind. 10. Verfahren gemaft Anspruch 8 oder 9, wobei das Alkin unsubstituiert.es Acetyien ist oder Acetyien, substituiert mit einem Alkyl, Alkenyl, Aryl, Dialkyl, Diaryl, Alkylalkenyl, Alkylaryl, Ether oder Alkohol oder 40 einem Gemisch derselben; und wobei das Nitril Cyanwasserstoff, ein Alkyl-, Aryl- oder Alkenyl-nitril oder ein polyfunktionelles Nitril ist, wobei eine Vielzahl von Nitrilgruppen an das Alkyl-, Aryl- oder Alkenylnitril gebunden ist. 11. Verfahren gemaB einem der Anspriiche 8 bis 10, wobei man einen Kohlenwasserstoff, einen Alkohol, ein Amin, einen Ester oder ein Alkylcarboxyamid oder das Ausgangsmaterial-Nitril als ein 45 Losungsmittel verwendet. 12. Verfahren gemaB einem der Anspriiche 8 bis 11, wobei der Komplex in dem Reaktionssystem in einer Mengevon 0,1 bis 100 mMol/l anwesend ist; und das Molverhaltnis des Alkinszu dem Nitril innerhalb eines Bereiches von 0,01 bis 100, vorzugsweise von 1 bis 100, liegt. 13. Verfahren gemaB einem der Anspriiche 8 bis 12, wobei man die Umsetzung bei einer Temperatur so von 15 bis 200°C durchfiihrt. 14. Verfahren gemaB einem der Anspriiche 8 bis 13, wobei Acetyien und Acrylnitril oder Acetonitril umgesetzt werden zur Bildung von 2-Vinylpyridin bzw. a-Picolin. 15. Verfahren gemaB Anspruch 14, wobei der Partialdruck des Acetylens 0 bis 30 kg/cm2/Uberdruck betragt. 55 16. Verfahren gemaB einem der Anspriiche 8 bis 15, wobei der Komplex hergestellt wird durch Umset- zung eines Alkoxycarbonyl- oder Acyl-subst.-cyclopentadienyl-Alkalimetall-Komplexes mit einem Tris-tri- phenyl-phosphinkobaltmonohalogenid und Umsetzung eines dabei erhaltenen Bis-triphenyl-phosphin- Komplexes des Alkoxycarbonyl- oder Acyl-subst.-cyclopentadienylkobalts mit einem Polyen oder einem Acetyien; oder wobei ein C4_i2-Polyen mit 2 bis 4 Doppeibindungen, welches unsubstituiert ist oder so substituiert mit 1 bis 4 Substituenten, ausgewahlt aus der Gruppe, bestehend aus einer C^-Alkylgruppe, einer C,_4-Alkoxycarbonylgruppe, einer Phenylgruppe, einer Cyanogruppe und einer Cyanomethylen- gruppe, als das Polyen verwendet wird, um den Komplex der Formel II und VI zu bilden; oder wobei ein Acetyien, welches unsubstituiert ist oder substituiert durch einen oder zwei Substituenten, ausgewahlt aus der Gruppe, bestehend aus einer Ci_4-Alkylgruppe, einer C-,_4-Alkoxycarbonylgruppe, einer Phenylgruppe 65 und einer Cyanogruppe, in einem Verhaltnis von zwei Molekulen zu einem Kobaltatom umgesetzt wird zur

38 :P 0 110 177 HI Bildung eines Komplexes der Formel III oder VII oder in dem verrtaltnis von einem Moieiaii zu einem Kobaltatom zur Bildung eines Komplexes der Formel IV oder VIII. 17. Verfahren gemaB Anspruch 16, wobei der Komplex der Formel III und VII weiter umgesetzt wird mit einem substituierten r)5-Cyclopentadienylkobalt-bis-triphenylphosphin-Komplex oder wobei ein substituierter r|5-Cyclopentadienyikobalt-bis-triphenylphosphin-Komplex mit einem unsubstituierten oder substituierten Acetyien umgesetzt wird zur Bildung des Komplexes der Formel V und IX. 18. Verfahren gemaB einem der Anspriiche 8 bis 15, wobei der Komplex der Formel II und VI hergestellt wird durch Umsetzung eines Alkoxycarbonyl- oder Acyl-cyclopentadienylkobalt-monohalogenids mit einem Polyen in Gegenwart eines Reduktionsmittels, ausgewahlt aus der Gruppe, bestehend aus einem oder einem j Alkalimetallamalgam, -hydrid, -borhydrid oder -aluminiumhydrid, einem Alkylaluminium Alkylzink; oder durch Umsetzung eines Alkoxycarbonyl- oder Acyl-cyclopentadienyl-Alkalimetall- Komplexes mit einem KobaltOD-halogenid und nachfolgende Umsetzung des resultierenden Alkoxy- carbonyl- oder Acyl-cyclopentadienylkobalt-monohalogenids mit einem Polyen in Anwesenheit eines Reduktionsmittels, ausgewahlt aus der Gruppe, bestehend aus Alkalimetall-amalgam, -hydrid, -borhydrid-, ; -aluminiumhydrid, einem Alkylaluminium und einem Alkylzink. Revendications

1. Complexe d'un rf-cyclopentadienylcobalt substitue par un groupe attracteur a electrons, avec un polyene ou un acetylene, qui est represente par la formule generale: 20

1 25 II 1 1

dans laquelle: A est un groupe alkyle en d— C4 et/ou un groupe phenyle; n est un nombre entier allant de 0 a 2; 30 de 1 3 atomes de carbone, ou B est un groupe alcoxycarbonyle, dans lequel la fraction alcoxy contient a un groupe acyle en Cn — C4; m est un nombre entier valant 1 ou 2; et Q — Co=R1( represente . , substitue. ^ ■ ■ est„„«. est polyene en C4-C12, presentant de 2 a 4 doubles liaisons, qui n est pas ou qui 35 ou Ri un les substitue 1 4 substituants choisis dans le groupe constitue par les groupes alkyle en c,— c4, par a et d-C4)carbonyle, le group phenyle, le groupe cyano et le groupe cyanomethylene, groupes (alcoxy en toutefois qui forme une liaison de coordination avec I'atome de cobalt a sa partie dienique, R1 ne pouvant representor un polyene compose uniquement d'un noyau aromatique; 40 — Co=R2

P(C6H5)3 metallo-cyclique, qui n'est pas substitue ou qui est ou R2 est un residu organique d'un cyclopentadiene les 45 slstitul le constitue par les groupes alkyle en d-C4, par 1 a 4 substituants choisis dans groupe phenyle et le groupe cyano; ou groupes (alcoxy en d-C4)carbonyle, le groupe — Co— R3 I 50 P(C6H5)3

ou R3 est un acetylene qui est substitue par un ou deux substituants cnoisis aans le groupe consume pai ies et le et groupes alkyle en d— C4, les groups (alcoxy en d~ C4)carbonyle, le groupe phenyle groupe cyano, qui forme une liaison de coordination avec I'atQme de cobalt a sa partie de triple liaison. 55 2. Complexe selon la revendication 1, qui est represente par la formule:

60 oo-i-i- in I

dans laquelle: 1 65 A, n, m et sont tels que definis a la revendication ; et

ay EP 0110177 B1

B est un groupe alcoxycarbonyle dans lequel la fraction alcoxy contient de 1 a 3 atomes de carbone. 3. Complexe selon la revendication 1, qui est represente par la formule:

3. —

P8 '0 dans laquelle: A, n, m et R2 sont tels que definis a la revendication 1; et carbone. B est un groupe alcoxycarbonyle dans lequel la fraction alcoxy contient de 1 a 3 atomes de 4. Complexe selon la revendication 1, qui est represente par la formule: 15

B ■ CO-FU 111m

dans laquelle: A, n, m et R3 sont tels que definis a la revendication 1 ; et de 1 3 atomes de carbone. 15 B est un groupe alcoxycarbonyle dans lequel la fraction alcoxy contient a 5. Complexe selon la revendication 1, qui est represente par la formule:

30 — Tl Co=R.|

dans laquelle: 35 A, n, m et R-, sont tels que definis a la revendication 1 ; et B est un groupe acyle en C1 — C4. 6. Complexe selon la revendication 1, qui est represente par la formule:

40

P(C6H5>3 45 dans laquelle: A, n, m et R2 sont tels que definis a la revendication 1 ; et B est un groupe acyle en C-, — C4. 7. Complexe selon la revendication 1, qui est represente par la formule: 50

BnT-ttJJ-f-R3 55 P3

dans laquelle: A, n, m et R3 sont tels que definis a la revendication 1 ; et B est un groupe acyle en C-i — C4. 60 8. Procede de fabrication d'un homologue de la pyridine, qui consiste a faire reagir un alcyne avec un nitrile, en presence d'un complexe d'un n.5-cyclopentadienylcobalt substitue par un groupe attracteur

65

40 ip o no 17/ bi

I'electrons, avec un polyene ou un acetylene, le compiexe etant cnoisi aans ie groupe uun&uiuw ua. iCO omplexes representes par les formules:

— m ou -rvj

o ou: A est un groupe alkyle en d— W et/ou un groupe pnenyie; n est un nombre entier allant de 0 a 2; B est un groupe alcoxycarbonyle, dans lequel la fraction alcoxy contient de 1 a 3 atomes de carbone; m est un nombre entier valant 1 ou 2; 5 F?! est un polyene en C4— C12, presentant de 2 a 4 doubles liaisons, qui n'est pas substitue ou qui est les substitue par 1 a 4 substituants choisis dans le groupe constitue par les groupes alkyle en C,— C4, et jroupes (alcoxy en d— C4)carbonyle, le groupe phenyle, le groupe cyano et le groupe cyanomethylene, iui forme une liaison de coordination avec I'atome de cobalt a sa partie dienique, 5n ne pouvant toutefois epresenter un polyene compose uniquement d'un noyau aromatique; 10

, 1,1 / 25

3u: A, B, n et m sont tels que aennis ci-aessus; ei n'est substitue■_■'■ ou est+ R2 est un residu organique d'un cyclopentadiene metallo-cyclique, qui pas qui les alkyle en d— C4, les 30 substitue par 1 a 4 substituants choisis dans le groupe constitue par groupes le groupes (alcoxy en d~ C4)carbonyie, le groupe phenyle et groupe cyano;

35 ts ■ oo— mi ii rig r^6n5'3 ou: 40 A, B, m et n sont tels que aeTinis ci-aessus; et . , R3 est un acetylene que est substitue par un ou deux substituants choisis dans le groupe constitue par les alkyle en d— C4, les groupes (alcoxy en d— C4)carbonyle, le groupe phenyle et le groupe groupes de liaison; et cyano, et qui forme une liaison de coordination avec I'atome de cobalt a sa partie triple 45

50 A, B, m et R2 sont tels que definis ci-dessus. ou n, , . avec un 9 Procede de fabrication d'un homologue de la pyridine qui consiste a faire reagir un alcyne d'un complexe d'un if-cyclopentadienylcobalt substitue par un groupe attracteur nitrile, en presence constitue les d'electrons, avec un polyene ou un acetylene, le complexe etant choisi dans le groupe par formules: 55 complexes representes par les

60 Bm-^-c<,=F V VI I

ou: A est un groupe alkyle en d— C4 et/ou un 9rouPe Pnenyie, entier allant de 0 a 2; 65 n est un nombre

4 i EP 0 110 177 B1

B est un groupe acyle en Ci—C4; m est un nombre entier valant 1 ou 2; R-, est un polyene en C4 — C12, presentant de 2 a 4 doubles liaisons, qui n'est pas substitue ou qui est substitue par 1 a 4 substituants choisis dans le groupe constitue par les groupes alkyle en C, — C4, les groupes (alcoxy en — C4)carbonyle, le groupe phenyle, le groupe cyano et le groupe cyanomethylene, et qui forme une liasion de coordination avec I'atome de cobalt a sa partie dienique, R-, ne pouvant toutefois representor un polyene compose uniquement d'un noyau aromatique;

10

B,m — Co=Ro (VII P(C6H5>3 15 ou: A, B, n et m sont tels que definis ci-dessus; et R2 est un residu organique d'un cyclopentadiene metallo-cyclique qui n'est pas substitue ou qui est substitue par 1 a 4 substituants choisis dans le groupe constitue par les groupes alkyle en C-, — C4, les groupes (alcoxy en C, — C4)carbonyle, le groupe phenyle et le groupe cyano; 20

B -Co-Ro VIII) m 25 P(C6H5>3 ou: A, B, n et m sont tels que definis ci-dessus; et R3 est un acetylene qui est substitue deux substituants choisis dans le constitue 30 par un ou groupe par les groupes alkyle en C, — C4, les groupes (alcoxy en — C4)carbonyle, le groupe phenyle et le groupe cyano, et qui forme une liaison de coordination avec I'atome de cobalt a sa partie de triple liaison; et

35 A l (IX) B — Co Co- m — -B.m

40 ou A, B, n, m et R2 sont tels que definis ci-dessus. 10. Procede selon la revendication 8 ou 9, dans lequel I'alcyne est l'acetylene non substitue, ou l'acetylene substitue par un alkyle, alcenyle, aryle, dialkyle, diaryle, alkylalcenyle, alkylaryle, ether ou alcool, ou encore un melange de ceux-ci; et dans lequel le nitrile est le cyanure d'hydrogene, un alkyl-, aryl- 45 ou alcenyl-nitrile, ou un nitrile polyfonctionnel dans lequel plusieurs groupes nitrile sont lies a I'alkyl-, aryl- ou alcenyl-nitrile. 11. Procede selon I'une des revendications 8 a 10, dans lequel on utilise, comme solvant, un hydro- carbure, un alcool, une amine, un ester ou un alkylcarboxyamide ou le nitrile constituant la matiere de depart. 50 12. Procede selon I'une des revendications 8 a 1 1, dans lequel le complexe est present dans le systeme reactionnel en une quantite allant de 0,1 a 100 mmoles/litre; et le rapport molaire de I'alcyne au nitrile se situe dans la plage allant de 0,01 a 100, de preference, de 1 a 100. 13. Procede selon I'une des revendications 8 a 12, dans lequel on conduit la reaction a une temperature allant de 15 a 200°C. 55 14. Procede selon I'une des revendications 8 a 13, dans lequel on fait reagir l'acetylene et I'acrylonitrile ou I'acetonitrile pour former respectivement la vinyl-2 pyridine ou I'a-picoline. 15. Procede selon la revendication 14, dans lequel la pression partielle d'acetylene est de 0 a 30 kg/cm2 au manometre. 16. Procede selon I'une des revendications 8 a 15, eo dans lequel on prepare le complexe en faisant reagir un complexe cyclopentadienyl-metal alcalin, substitue par alcoxycarbonyle ou acyle, avec un monohalogenure de tris-triphenyl-phosphine cobalt, et en faisant reagir le complexe de bis-triphenyl-phosphine du cyclopentadienylcobalt substitue par alcoxy- carbonyle ou acyle ainsi obtenu, avec un polyene ou un acetylene; ou dans lequel on utilise, comme polyene pour former le complexe de la formule (II) ou (VI), un polyene en 65 C4 — C12, presentant de 2 a 4 doubles liaisons, qui n'est pas substitue ou qui est substitue par 1 a 4

42 EP 0110177 B1

substituants choisis dans le groupe constitue par les groupes alkyle en C,— C4, les groupes (alcoxy en Ci— C4)carbonyle, le groupe phenyle, le groupe cyano et le groupe cyanomethylene; ou dans lequel on fait reagir un acetylene qui n'est pas substitue ou qui est substitue par un ou deux substituants choisis dans le groupe constitue par les groupes alkyle en C-|— C4, les groupes (alcoxy en 5 c, — C4)carbonyle, le groupe phenyle et le groupe cyano, dans un rapport de deux molecules a un atome de cobalt, afin de former un complexe de formule (III) ou (VII); ou dans le rapport d'une molecule a un atome de cobalt, afin de former le complexe de formule (IV) ou (VIII). 17. Procede selon la revendication 16, dans lequel on fait reagir encore le complexe de formule (III) ou io (VII) avec un complexe n5-cyclopentadienylcobalt-bis-triphenyl-phosphine substitue, ou dans lequel on fait reagir un complexe r)s-cyclopentadienylcobalt-bis-triphenyl-phosphine substitue, avec un acetylene non substitue ou substitue, afin de former le complexe de formule (V) ou (IX). 18. Procede selon I'une des revendications 8 a 15, dans lequel on prepare le complexe de la formule (II) ou (VI) en faisant reagir un monohalogenure d'alcoxycarbonyl- ou acyl-cyclopentadienylcobalt avec un 15 polyene, en presence d'un agent reducteur choisi dans le groupe constitue par les amalgames de metaux alcalins, les hydrures, les borohydrures ou les hydrures d'aluminium, les alkyl aluminium ou les alkyl zinc; ou en faisant reagir un complexe alcoxycarbonyl- ou acyl-cyclopentadienyl-metal alcalin avec un haiogenure de cobalt (II), puis en faisant reagir le monohalogenure d'alcoxycarbonyl- ou d'acyl-cyclo- pentadienylcobalt resultant avec un polyene, en presence d'un agent reducteur choisi dans le groupe 20 constitue par les amalgames de metaux alcalins, les hydrures, les borohydrures, les hydrures d'aluminium, les alkyl aluminium ou les alkyl zinc.

25

30

35

40

45

50

55

60

65

43