Lithuanian Mathematical Journal, Vol. 46, No. 1, 2006 ROUGH FUNCTIONS: p-VARIATION, CALCULUS, AND INDEX ESTIMATION R. Norvaiša Institute of Mathematics and Informatics, Akademijos 4, LT-08663 Vilnius; Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania (e-mail:
[email protected]) Abstract. In this paper, we give an overview of several dissipated results on the p-variation property of a function presented in a suitable way. More specifically, we attempt to show: (1) usefulness of this property in a calculus of rough functions; (2) a relatively thorough knowledge of the p-variation property of a sample function of basic stochastic processes; and (3) an almost unexplored area of statistical analysis seeking to estimate the p-variation index. Keywords: -variation, interval functions, refinement Young–Stieltjes integral, Kolmogorov integral, product integral, Nemyt- skii operator, integral equations, sample functions of stochastic processes, p-variation index, Orey index, oscillation summing index. 1. INTRODUCTION The p-variation is a generalization of the total variation of a function. More specifically, for 0 <p<∞ and −∞ <a<b<+∞,thep-variation of a real-valued function f on an interval [a,b] is vp(f ) := vp f ;[a,b] n p := sup f(ti) − f(ti−1) : a = t0 <t1 < ···<tn = b, n 1 . (1) i=1 We say that f has bounded p-variation if vp(f ) < ∞. Thus, a function has bounded total variation if it has bounded 1-variation. A regulated function f is called rough if it has infinite 1-variation, that is, if v1(f ) =+∞. The p-variation gives a convenient way to measure a degree of roughness.