APPENDICES CONTENTS

Appendix A Chemistry Skill Handbook 785 Measurement in Science 785 The International System of Units 785 Other Useful Measurements 786 SI Prefixes 786 Relating SI, Metric, and English Measurements 788 Making and Interpreting Measurements 791 Expressing the Accuracy of Measurements 793 Expressing Quantities with Scientific Notation 795 Computations with the Calculator 799 Using the Factor Method 801 Organizing Information 804 Making and Using Tables 804 Making and Using Graphs 805

Appendix B Supplemental Practice Problems 809

Appendix C Safety Handbook 839 Safety Guidelines in the Chemistry Laboratory 839 First Aid in the Laboratory 839 Safety Symbols 840

Appendix D Chemistry Data Handbook 841 Table D.1 Symbols and Abbreviations 841 Table D.2 The Modern Periodic Table 842 Table D.3 Alphabetical Table of the Elements 844 Table D.4 Properties of Elements 845 Table D.5 Electron Configurations of the Elements 848 Table D.6 Useful Physical Constants 850 Table D.7 Names and Charges of Polyatomic Ions 850 Table D.8 Solubility Guidelines 851 Table D.9 Solubility Product Constants 851 Table D.10 Acid-Base Indicators 852

Appendix E Answers to In-Chapter Practice Problems 853

Appendix F Try at Home Labs 863

784 Appendices Contents APPENDIX A Chemistry Skill Handbook

Measurement in Science It’s easier to determine if a runner wins a race than to determine if the runner broke a world’s record for the race. The first determination requires that you sequence the runners passing the finish line—first, sec- ond, third....The second determination requires that you carefully mea- sure and compare the amount of time that passed between the start and finish of the race for each contestant. Because time can be expressed as an amount made by measuring, it is called a quantity. One second, three minutes, and two hours are quantities of time. Other familiar quantities include length, volume, and mass.

The International System of Units In 1960, the metric system was standardized in the form of Le Système International d’Unités (SI), which is French for the “International System of Units.” These SI units were accepted by the international scientific community as the system for measuring all quantities. SI Base Units The foundation of SI is seven independent quantities and their SI base units, which are listed in Table A.1.

Table A.1 SI Base Units

Quantity Unit Unit Symbol Length meter m Mass kilogram kg Time second s Temperature kelvin K Amount of substance mole mol Electric current ampere A Luminous intensity candela cd

SI Derived Units You can see that quantities such as area and volume are missing from the table. The quantities are omitted because they are derived—that is, computed—from one or more of the SI base units. For example, the unit of area is computed from the product of two perpen- dicular length units. Because the SI base unit of length is the meter, the SI derived unit of area is the square meter, m2. Similarly, the unit of volume is derived from three mutually perpendicular length units, each represent- ed by the meter. Therefore, the SI derived unit of volume is the cubic meter, m3. The SI derived units used in this text are listed in Table A.2.

Appendix A / Chemistry Skill Handbook 785 Table A.2 SI Derived Units

Quantity Unit Unit Symbol Area square meter m2 Volume cubic meter m3 Mass density kilogram per cubic meter kg/m3 Energy joule J Heat of fusion joule per kilogram J/kg Heat of vaporization joule per kilogram J/kg Specific heat joule per kilogram-kelvin J/kgK Pressure pascal Pa Electric potential volt V Amount of radiation gray Gy Absorbed dose of radiation sievert Sv

Other Useful Measurements Metric Units As previously noted, the metric system is a forerunner of SI. In the metric system, as in SI, units of the same quantity are related to each other by orders of magnitude. However, some derived quantities in the metric system have units that differ from those in SI. Because these units are familiar and equipment is often calibrated in these units, they are still used today. Table A.3 lists several metric units that you might use.

Table A.3 Metric Units

Quantity Unit Unit Symbol Volume liter (0.001 m3)L Temperature Celsius degree °C Specific heat joule per kilogram- J/kg°C degree Celsius Pressure millimeter of mercury mm Hg Energy calorie cal

SI Prefixes When you express a quantity, such as ten meters, you are comparing the distance to the length of one meter. Ten meters indicates that the distance is a length ten times as great as the length of one meter. Even though you can express any quantity in terms of the base unit, it may not be conve- nient. For example, the distance between two towns might be 25 000 m. Here, the meter seems too small to describe that distance. Just as you would use 16 miles, not 82 000 feet, to express that distance, you would use a larger unit of length, the kilometer, km. Because the kilometer represents a length of 1000 m, the distance between the towns is 25 km.

786 Appendix A / Chemistry Skill Handbook In SI, units that represent the same quantity are related to each other by some factor of ten such as 10, 100, 1000, 1/10, 1/100, and 1/1000. In the example above, the kilometer is related to the meter by a factor of 1000; namely, 1 km 1000 m. As you see, 25 000 m and 25 km differ only in zeros and the units. To change the size of the SI unit used to measure a quantity, you add a prefix to the base unit or derived unit of that quantity. For example, the pre- fix centi- designates one one-hundredth (0.01). Therefore, a centimeter, cm, is a unit one one-hundredth the length of a meter and a centijoule, cJ, is a unit of energy one one-hundredth that of a joule. The exception to the rule is in the measurement of mass in which the base unit, kg, already has a pre- fix. To express a different size mass unit, you replace the prefix to the gram unit. Thus, a centigram, cg, represents a unit having one one-hundredth the mass of a gram. Table A.4 lists the most commonly used SI prefixes.

Table A.4 SI Prefixes

Prefix Symbol Meaning Multiplier Numerical value Expressed as scientific notation Greater than 1 giga- G billion 1 000 000 000 1 109 mega- M million 1 000 000 1 106 kilo- k thousand 1 000 1 103 Less than 1 deci- d tenth 0.1 1 101 centi- c hundredth 0.01 1 102 milli- m thousandth 0.001 1 103 micro- millionth 0.000 001 1 106 nano- n billionth 0.000 000 001 1 109 pico- p trillionth 0.000 000 000 001 1 1012

Practice Problems Use Tables A.1, A.2, and A.3 to answer the following questions. 1. Name the following quantities using SI prefixes. Then write the sym- bols for each. a) 0.1 m d) 0.000 000 001 m b) 1 000 000 000 J e) 103 g c) 1012 m f) 106 J 2. For each of the following, identify the quantity being expressed and rank the units in increasing order of size. a) cm, m, dm d) pg, cg, mg b) Pa,MPa,kPa e) mA, MA, A c) kV, cV, V f) dGy, mGy, nGy

Appendix A / Chemistry Skill Handbook 787 Relating SI, Metric, and English Measurements Any measurement tells you how much because it is a statement of quanti- ty. However, how you express the measurement depends on the purpose for which you are going to use the quantity. For example, if you look at a room and say its dimensions are 9 ft by 12 ft, you are estimating these measurements from past experience. As you become more familiar with SI, you will be able to estimate the room size as 3 m by 4 m. On the other hand, if you are going to buy carpeting for that room, you are going to make sure of its dimensions by measuring it with a tape measure no mat- ter which system you are using. Estimating and using any system of measurement requires familiarity with the names and sizes of the units and practice. As you will see in Fig- ure 1, you are already familiar with the names and sizes of some common units, which will help you become familiar with SI and metric units.

Figure 1 Relating Measurements 1.0 dm

1.0 mm 1.0 cm

Length A clip and your hand are useful approximations for SI units. For approximating, a meter and a yard are similar lengths. To convert length measurements from one sys- tem to another, you can use the relationships shown here.

1 2 3 4 5 6 7 8 9 90 91 92 93 94 95 96 97 98 99 cm

centimeters

1 2 3 36 37 38 39 in inches 2.54 cm = 1.00 in. 1.00 m = 39.37 in.

788 Appendix A / Chemistry Skill Handbook Volume For approximating, a liter and a quart are similar volumes. Kitchen measuring spoons are used in estimating small volumes.

1.0 liter 1quart (947 mL)

0.10 m 1.00 dm3 m 0 0.06 qt .1 0.10 m 0 1.00 dm3 = 1.0 liter = 1.06 qt. = 1000 mL

K °C °F

110 380 373.15 100.00 212.00 100 370 210 200 90 360 190 80 180 350 170 Temperature 70 160 Normal 340 150 60 140 Body Having a body temperature of 37° 330 130 Temperature 50 or 310 sounds unhealthy if you 320 120 110 310 K40 37°C 98.6°F don’t include the proper units. In 310 100 30 90 fact, 37°C and 310 K are normal 300 80 20 70 body temperatures in the metric 290 60 10 50 280 system and SI, respectively. 273.15 0.00 40 32.00 0 270 30 20 –10 260 10

–250 20 –420 –430 –260 10 –440 0.00 –270 –273.15 –450 –459.67 0 –460

Appendix A / Chemistry Skill Handbook 789 Mass and Weight One of the most useful ways of describing an amount of stuff is to state its mass. You measure the mass of an object on a bal- ance. Even though you are measuring mass, most people still refer to it as weighing. You might think that mass and weight are the same quantity. They are not. The mass of an object is a measure of its inertia; that is, its resistance to changes in motion. The inertia of an object is determined by its quantity of mass. A pint of sand has more matter than a pint of water; therefore, it has more mass. The weight of an object is the amount of gravitational force acting on the mass of the object. On Earth, you sense the weight of an object by holding it and feeling the pull of gravity on it. An important aspect of weight is that it is directly proportional to the mass of the object. This relationship means that the weight of a 2-kg object is twice the weight of a 1-kg object. Therefore, the pull of gravity on a 2-kg object is twice as great as the pull on a 1-kg object. Because it’s easier to measure the effect of the pull of gravity rather than the resistance of an object to changes in its motion, mass can be determined by a weigh- Figure 2 ing process. Two instruments used to determine mass are the double-pan balance Measuring Mass In a double-pan balance, and a triple-beam balance. How each functions is illustrated in Figure 2. the pull of gravity on the You can read how an electronic balance functions in How it Works in mass of an object placed in Chapter 12. one pan causes the pan to rotate downward. To bal- ance the rotation, an equal downward pull must be exerted on the opposite pan, as in a seesaw. You can produce this pull by placing calibrated masses on the opposite pan. When the two pulls are balanced, the masses in each pan are equal. ᮣ

ᮤ In a triple-beam balance, weights of different sizes are placed at notched locations along each of two beams, and a third is slid along an arm to balance the object being weighed. To deter- mine the mass of the object, you add the numbered positions of the three weights. Using a triple- beam balance is usually a much quicker way to determine the mass of an object than using a double-pan balance.

790 Appendix A / Chemistry Skill Handbook Figure 3 illustrates several familiar objects and their masses.

Figure 3 Mass Because weight and mass are so closely related, the contents of cans and are labeled both in pounds and ounces, the British/ American weight units, and grams or kilograms, the metric mass units.

Making and Interpreting Measurements Using measurements in science is different from manipulating numbers in math class. The important difference is that numbers in science are almost always measurements, which are made with instruments of varying accu- racy. As you will see, the degree of accuracy of measured quantities must always be taken into account when expressing, multiplying, dividing, adding, or subtracting them. In making or interpreting a measurement, you should consider two points. The first is how well the instrument mea- sures the quantity you’re interested in. This point is illustrated in Figure 4.

Appendix A / Chemistry Skill Handbook 791 Figure 4 Determining Length Using the calibrations on the top ruler, you know that the length of the strip is between 4 cm and 5 cm. Because there are no finer calibrations between 4 cm and 5 cm, you have to estimate the length beyond the last calibration. An estimate would be 0.3 cm. Of course, someone might estimate it as 0.2 cm; others as 0.4 cm. Even though you record the measurement of the strip’s length as 4.3 cm, you and others reading the mea- surement should interpret the measure- ment as 4.3 0.1 cm.

cm 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cm

In the bottom ruler, you can see that the edge of the strip lies between 4.2 cm and 4.3 cm. Because there are no finer calibra- tions between 4.2 cm and 4.3 cm, you estimate the length beyond the last calibration. In this , you might estimate it as 0.07 cm. You would record this measure- ment as 4.27 cm. You and others should interpret the measurement as 4.27 0.01 cm.

Because the bottom ruler in Figure 4 is calibrated to smaller divisions than the top ruler, the lower ruler has more precision than the upper. Any measurement you make with it will be more precise than one made on the top ruler because it will contain a smaller estimated value. The second point to consider in making or interpreting a measurement is how well the measurement represents the quantity you’re interested in. Looking at Figure 4, you can see how well the edge of the paper strip aligns with the value 4.27 cm. From sight, you know that 4.27 cm is a bet- ter representation of the strip’s length than 4.3 cm. Because 4.27 cm better represents the length of the strip (the quantity you’re interested in) than does 4.3 cm, it is a more accurate measurement of the strip’s length.

792 Appendix A / Chemistry Skill Handbook In Figure 5, you will see that a more precise measurement might not be a more accurate measurement of a quantity.

Figure 5 Precise and Accurate Measurements Describing the width of the index card 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 as 10.16 cm indicates that the ruler has 0.1-cm calibrations and the 0.06 cm is an estimation. Similarly, the uniform align- ment of the edge of the index card with the ruler indicates that the measurement 10.16 cm is also an accurate measure- ment of width. ᮣ

Describing the width of a brick as 10.16 cm indicates 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 that this measurement is as precise as the measurement of the index card. However, 10.16 cm isn’t a good rep- resentation of the width of the ragged- and jagged- edged brick. ᮣ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A better representation of the width of the brick is made using a ruler with less precision. As you can see, 10.2 cm is a better representation, and therefore a more accurate measurement, of the brick’s width than 10.16 cm. ᮣ

Expressing the Accuracy of Measurements In measuring the length of the strip as 4.3 cm and 4.27 cm in Figure 4, you were aware of the difference in the calibration of the two rulers. This difference appeared in the way each measurement was recorded. In one measurement, the digits 4 and 3 were meaningful. In the second, the digits 4, 2, and 7 were meaningful. In any measurement, meaningful digits are called significant digits. The significant digits in a measured quantity include all the digits you know for sure, plus the final estimated digit.

Appendix A / Chemistry Skill Handbook 793 Significant Digits Several rules can help you express or interpret which digits of a measurement are significant. Notice how those rules apply to readings from a digital balance (left) and a graduated cylinder (right).

1. All nonzero digits of a measurement are significant. Digital balance 2 100.00 g Graduated cylinder 3 10.0 mL readout 8 10.00 g 40 2 1.0 mL 3 1.00 g 2 (1) 0.1 mL 283.47 9 4 0.10 g 32.2 mL 7 (1) 0.01 g 3 significant digits 283.47 g 30 5 significant digits

2. Zeros occurring between significant digits are significant.

5 10.00 g 20 1 10.0 mL 6 1.00 g 0 1.0 mL 56.06 9 0 0.10 g 7 (1) 0.1 ml 6 (1) 0.01 g 10.7 mL 56.06 g 10 3 significant digits 4 significant digits

3. All final zeros past the decimal point are significant.

7 10.00 g 20 2 10.0 mL 3 1.00 g 0 1.0 mL 73.00 9 0 0.10 g 0 ( 1) 0.1 mL 0 (1) 0.01 g 20.0 mL 73.00 g 10 3 significant digits 4 significant digits

4. Zeros used as placeholders are not significant.

0 1.00 g 10 0 1.0 mL 0 0.10 g 7 (1) 0.1 mL 0.09 9 9 (1) 0.01 g 0.7 mL 0.09 g 1 significant digit 1 significant digit

The fourth rule sometimes causes difficulty in expressing such measure- ments as 20 L. Because the zero is a placeholder in the measurement, it is not significant and 20 L has one significant digit. You should interpret the measurement 20 L as 20 L plus or minus the value of the least significant digit, which is 10 L. Thus, a volume measurement of 20 L indicates 20 L 10 L, a range of 10-30 L. However, suppose you made the measurement with a device that is accurate to the nearest 1 L. You would want to indicate that both the 2 and the 0 are significant. How would you do this? You can’t just add a decimal point after the 20 because it could be mistaken for a

794 Appendix A / Chemistry Skill Handbook period. Adding a decimal point followed by a zero would indicate that the final zero past the decimal is significant (Rule 3), and the measurement would then be 20.0 0.1 L. To solve the dilemma, you have to express 20 L as 2.0 101 L. Now the zero is a significant digit because it is a final zero past the decimal (Rule 3). The measurement has two significant digits and signifies (2.0 0.1) 101 L.

Expressing Quantities with Scientific Notation The most common use of scientific notation is in expressing measure- ments of very large and very small dimensions. Using scientific notation is sometimes referred to as using powers of ten because it expresses quanti- ties by using a small number between one and ten, which is then multi- plied by ten to a power to give the quantity its proper magnitude. Suppose you went on a trip of 9000 km. You know that 103 1000, so you could express the distance of your trip as 9 103 km. In this example, it may seem that scientific notation wouldn’t be terribly useful. However, consider that an often-used quantity in chemistry is 602 000 000 000 000 000 000 000, the number of atoms or molecules in a mole of a substance. Recall that the mole is the SI unit of amount of a substance. Rather than writing out this huge number every time it is used, it’s much easier to express it in scientific notation. Determining Powers of 10 To determine the exponent of ten, count as you move the decimal point left until it falls just after the first nonzero digit—in this case, 6. If you try this on the number above, you’ll find that you’ve moved the decimal point 23 places. Therefore, the number expressed in scientific notation is 6.02 1023. Expressing small measurements in scientific notation is done in a simi- lar way. The diameter of a carbon atom is 0.000 000 000 000 154 m. In this case, you move the decimal point right until it is just past the first nonzero digit—in this case, 1. The number of places you move the deci- mal point right is expressed as a negative exponent of ten. The diameter of a carbon atom is 1.54 1013 m. You always move the decimal point until the coefficient of ten is between one and less than ten. Thus, scientif- ic notation always has the form, M 10n where 1 M 10. Notice how the following examples are converted to scientific notation. Quantities greater than 1 17.16 g 17 16 ˇ 1.716 101 g Decimal point moved 1 place left. ˇ 152.6 L 152 6 ˇ 1.526 102 L Decimal point moved 2 places left. ˇ 73 621 kg 73 621 ˇ 7.3621 104 kg Decimal point moved 4 ˇ places left. Quantities between 0 and 1 0.29 mL 0 29 ˇ 2.9 10–1 mL Decimal point moved 1 place right. ˇ 0.0672 m 0 0672 ˇ 6.72 10–2 m Decimal point moved 2 places right. ˇ 0.0008 g 0 0008 ˇ 8 10–4 g Decimal point moved 4 places right. ˇ

Appendix A / Chemistry Skill Handbook 795 Calculations with Measurements You often must use measurements to calculate other quantities. Remember that the accuracy of measurement depends on the instrument used and that accuracy is expressed as a cer- tain number of significant digits. Therefore, you must indicate which dig- its in the result of any mathematical operation with measurements are significant. The rule of thumb is that no result can be more accurate than the least accurate quantity used to calculate that result. Therefore, the quantity with the least number of significant digits determines the num- ber of significant digits in the result. The method used to indicate significant digits depends on the mathe- matical operation.

Addition and Subtraction The answer has only as many decimal places as the measurement having the least number of decimal places.

190.2 g Because the masses were 190.2 9 65.291 g measured on balances differing 12.38 g in accuracy, the least accurate 267.871 g measurement limits the number 65.291 9 The answer is rounded to of digits past the decimal point. the nearest tenth, which is the accuracy of the least 12.38 9 accurate measurement. 267.9 g

Multiplication and Division The answer has only as many significant digits as the measurement with the least number of significant digits.

mass Multiplying or dividing density = 20 volume measured quantities results in a derived quantity. For m D == example, the mass of a V substance divided by its 13.78 g volume is its density. = 1.219469 g/mL But mass and volume are 11.3 mL 11.3 mL 10 measured with different tools, which may have The answer is rounded to different accuracies. three significant digits, Therefore, the derived 1.22 g/mL, because quantity can have no more the least accurate significant digits than the 13.78 9 measurement, 11.3 mL, least accurate measurement has three significant digits. used to compute it.

796 Appendix A / Chemistry Skill Handbook Practice Problems 3. Determine the number of significant digits in each of the following measurements. a) 64 mL e) 47 080 km b) 0.650 g f) 0.072 040 g c) 30 cg g) 1.03 mm d) 724.56 mm h) 0.001 mm 4. Write each of the following measurements in scientific notation. a) 76.0°C e) 0.076 12 m b) 212 mm f) 763.01 g c) 56.021 g g) 10 301 980 nm d) 0.78 L h) 0.001 mm 5. Write each of the following measurements in scientific notation. a) 73 000 1 mL c) 100 10 cm b) 4000 1000 kg d) 100 000 1000 km 6. Solve the following problems and express the answer in the correct number of significant digits. a) 45.761 g c) 0.340 cg 42.65 g 1.20 cg 1.018 cg b) 1.6 km d) 6 000 m 0.62 km 202 m 7. Solve the following problems and express the answer in the correct number of significant digits. a) 5.761 cm 6.20 cm 23.5 kg b) 4.615 m3 0.2 km c) 5.4 s d) 11.00 m 12.10 m 3.53 m 4.500 kg e) 1.500 m2 18.21 g f) 4.4 cm3

Adding and Subtracting Measurements in Scientific Notation Adding and subtracting measurements in scientific notation requires that for any problem, the measurements must be expressed as the same power of ten. For example, in the following problem, the three length measurements must be expressed in the same power of ten.

1.1012 104 mm 2.31 103 mm 4.573 102 mm

Appendix A / Chemistry Skill Handbook 797 In adding and subtracting measurements in scientific notation, all mea- surements are expressed in the same order of magnitude as the measure- ment with the greatest power of ten. When converting a quantity, the dec- imal point is moved one place to the left for each increase in power of ten.

2.31 1033 2 31 10 ˇ 0.231 104 ˇ 4.573 102 4 573 1023ˇ 0 4573 10 ˇ 0.04573 104 ˇ ˇ

1.1012 104 mm 0.231 104 mm 0.04573 104 mm 1.37793 104 mm 1.378 104 mm (rounded)

Multiplying and Dividing Measurements in Scientific Notation Mul- tiplying and dividing measurements in scientific notation requires that similar operations are done to the numerical values, the powers of ten, and the units of the measurements.

a) The numerical coefficients are multiplied or divided and the resulting value is expressed in the same number of significant digits as the mea- surement with the least number of significant digits. b) The exponents of ten are algebraically added in multiplication and subtracted in division. c) The units are multiplied or divided.

The following problems illustrate these procedures.

Sample Problem 1 (3.6 103 m)(9.4 103 m)(5.35 101 m) (3.6 9.4 5.35) (103 103 101) (m m m) (3.6 9.4 5.35) 10(33(1)) (m m m) (181.044) 105 m3 1.8 102 105 m3 1.8 107 m3

Sample Problem 2 2 3 6.762 10 m (1.231 101 m)(2.80 102 m) 2 3 6.762 10 m 1.231 2.80 101 102 m m 1.961819659 10(2(12)) m(3(2)) 1.96 10(2(1)) m(1) 1.96 103 m

798 Appendix A / Chemistry Skill Handbook Practice Problems 8. Solve the following addition and subtraction problems. a) 1.013 103 g 8.62 102 g 1.1 101 g b) 2.82 106 m 4.9 104 m 9. Solve the following multiplication and division problems. a) 1.18 103 m 4.00 102 m 6.22 102 m b) 3.2 102 g 1.04 102 cm2 6.22 101 cm

Computations with the Calculator Working problems in chemistry will require you to have a good under- standing of some of the advanced functions of your calculator. When using a calculator to solve a problem involving measured quantities, you should remember that the calculator does not take significant digits into account. It is up to you to round off the answer to the correct number of significant digits at the end of a calculation. In a multistep calculation, you should not round off after each step. Instead, you should complete the calculation and then round off. Figure 6 shows how to use a calculator to solve a subtraction problem involving quantities in scientific notation.

Figure 6 Subtracting Numbers in Scientific Notation with a Calculator A quantity in scientific notation is entered by keying in the coefficient and then striking the [EXP] or [EE] key followed by the value of the exponent of ten. At the end of the calculation, the calculator readout must be corrected to the appropriate number of decimal places. The answer would be rounded to the second decimal place and expressed as 2.56 104 kg. To solve the problem 2.61 104 5.2 102

Calculator display 2 6 1 EXP 4 2.61 04

522 EXP 5.2 02

2.558 04

4 2.61 10 kg 4 – 0.052 10 kg Keystrokes 4 2.56 10 kg

Appendix A / Chemistry Skill Handbook 799 Look at Figure 7 to see how to solve multiplication and division prob- lems involving scientific notation. The problems are the same as the two previous sample problems.

Figure 7 Multiplying and Dividing Measurements Expressed in Scientific Notation A negative power of ten is usually entered by striking the [EXP] or [EE], entering the positive value of the exponent, and then striking the [±] key. ᮢ

Keystrokes Calculator display

3 6 EXP 3 3.6 03

94 EXP 3 9.4 03 535 5.35 –01 EXP 1

1.8104 07

Rounded off to 2 significant digits: 1.8 107 The numerical value of the answer can have no more signifi- cant digits than the measure- ment that has the least number of significant digits. ᮢ

Keystrokes Calculator display 6 7 6 2 6.762 02 EXP 2 1 23 1.231 01 1 EXP 1 280 2.80 –02 EXP 2

1.9618 03

Rounded off to 3 significant digits: 1.96 103

800 Appendix A / Chemistry Skill Handbook Practice Problems 10. Solve the following problems and express the answers in scientific notation with the proper number of significant digits. a) 2.01 102 mL 3.1 101 mL 2.712 103 mL b) 7.40 102 mm 4.0 101 mm c) 2.10 101 g 1.6 101 g d) 5.131 102 J 2.341 101 J 3.781 103 J 11. Solve the following problems and express the answers in scientific notation with the proper number of significant digits. a) (2.00 101 cm)(2.05 101 cm) 5.6 103 kg b) 1.20 104 m3 c) (2.51 101 m)(3.52 101 m)(1.2 101 m) 1.692 104 dm3 d) (2.7 102 dm)(4.201 101 dm)

Using the Factor Label Method The factor label method is used to express a physical quantity such as the length of a pen in any other unit that measures that quantity. For exam- ple, you can measure the pen with a metric ruler calibrated in centimeters and then express the length in meters. If the length of a pen is measured as 14.90 cm, you can express that length in meters by using the numerical relationship between a centimeter and a meter. This relationship is given by the following equation.

100 cm 1 m

If both sides of the equation are divided by 100 cm, the following rela- tionship is obtained. 1m 1 100 cm To express 14.90 cm as a measurement in meters, you multiply the quan- tity by the relationship, which eliminates the cm unit.

1 m 14.90 cm 1 m 14.90 14.90 cm m 0.1490 m 100 cm 1 100 cm 100

Appendix A / Chemistry Skill Handbook 801 Copper weathervane

The factor label method doesn’t change the value of the physical quantity because you are multiplying that value by a factor that equals 1. You choose the factor so that when the unit you want to eliminate is multi- plied by the factor, that unit and the similar unit in the factor cancel. If the unit you want to eliminate is in the numerator, choose the factor which has that unit in the denominator. Conversely, if the unit you want to eliminate is in the denominator, choose the factor which has that unit in the numerator. For example, in a chemistry lab activity, a student mea- sured the mass and volume of a chunk of copper and calculated its densi- ty as 8.80 g/cm3. Knowing that 1000 g 1 kg and 100 cm 1 m, the stu- dent could then use the following factor label method to express this value in the SI unit of density, kg/m3. g 3 8.80 1 kg 100 cm cm 3 1000 g [ 1 m [

g 1 kg 100 cm 100 cm 100 cm 8.80 cm cm cm 1000 g 1 m 1 m 1 m

222 (2+2+2) 8.80 (10 10 10 ) kg 8.80 10 kg 1000 m3 103 m3

8.80 10(6–3) kg/m3 8.80 1033 kg/m The factor label method can be extended to other types of calculations in chemistry. To use this method, you first examine the data that you have. Next, you determine the quantity you want to find and look at the units you will need. Finally, you apply a series of factors to the data in order to convert it to the units you need.

802 Appendix A / Chemistry Skill Handbook Sample Problem 1

The density of silver sulfide (Ag2S) is 7.234 g/mL. What is the volume of a lump of silver sulfide that has a mass of 6.84 kg?

First, you must apply a factor that will convert kg of Ag2S to g Ag2S. 6.84 kg Ag S 1000 g Ag S 2 2 ... 1 kg Ag2S

Next, you use the density of Ag2S to convert mass to volume.

6.84 kg Ag2S 1000 g Ag2S 1 mL Ag2S 946 mL Ag2S 1 kg Ag2S 7.234 g Ag2S

Notice that the new factor must have grams in the denominator so that grams will cancel out, leaving mL.

Sample Problem 2

What mass of lead can be obtained from 47.2 g of Pb(NO3)2? Because mass is involved, you will need to know the molar mass of Pb(NO3)2.

Pb 207.2 g 2N 28.014 g 6O 95.994 g

Molar mass of Pb(NO3)2 331.208 g. Rounding off according to the rules for significant digits, the molar mass of Pb(NO3)2 331.2 g. You can see that the mass of lead in Pb(NO3)2 is 207.2 331.2 of the total mass of Pb(NO3)2. Now you can set up a relationship to determine the mass of lead in the 47.2-g sample.

47.2 g Pb(NO ) 207.2 g Pb 3 2 29.52850242 g Pb 331.2 g Pb(NO3)2 29.5 g Pb rounded to 3 significant digits.

Notice that the equation is arranged so that the unit g Pb(NO3)2 cancels out, leaving only g Pb, the quantity asked for in the problem.

Practice Problems in the Factor Label Method 12. Express each quantity in the unit listed to its right. a) 3.01 g cg e) 0.2 L dm3 b) 6200 m km f) 0.13 cal/g J/kg c) 6.24 107 g g g) 5 ft, 1 in. m d) 3.21 L mL h) 1.2 qt L

Appendix A / Chemistry Skill Handbook 803 Organizing Information It is often necessary to compare and sequence observations and measure- ments. Two of the most useful ways are to organize the observations and measurements as tables and graphs. If you browse through your textbook, you’ll see many tables and graphs. They arrange information in a way that makes it easier to understand.

Making and Using Tables Most tables have a title telling you what information is being presented. The table itself is divided into columns and rows. The column titles list items to be compared. The row headings list the specific characteristics being compared among those items. Within the grid of the table, the information is recorded. Any table you prepare to organize data taken in a laboratory activity should have these characteristics. Consider, for exam- ple, that in a laboratory experiment, you are going to perform a flame test on various solutions. In the test, you place drops of the solution contain- ing a metal ion in a flame, and the color of the flame is observed, as shown in Figure 8. Before doing the experiment, you might set up a data table like the one below.

Flame Test Results

Solution Metal ion Color of Flame

Figure 8 ᮤ Flame Test A drop of solution containing the potassium ion, K, causes the flame to burn with violet color.

While performing the experiment, you would record the name of the solution and then the observation of the flame color. If you weren’t sure of the metal ion as you were doing the experiment, you could enter it into the table by checking oxidation numbers afterward. Not only does the table organize your observations, it could also be used as a reference to deter- mine whether a solution of some unknown composition contains one of the metal ions listed in the table.

804 Appendix A / Chemistry Skill Handbook Making and Using Graphs After organizing data in tables, scientists usually want to display the data in a more visual way. Using graphs is a common way to accomplish that. There are three common types of graphs—bar graphs, pie graphs, and line graphs. Bar Graphs Bar graphs are useful when you want to compare or display data that do not continuously change. Suppose you measure the rate of electrolysis of water by determining the volume of hydrogen gas formed. In addition, you decide to test how the number of batteries affects the rate of electrolysis. You could graph the results using a bar graph as shown in Figure 9. Note that you could construct a line graph, but the bar graph is better because there is no way you could use 0.4 or 2.6 batteries.

Rate of Electrolysis of Water vs. Number of Batteries Connected in Series 40 Figure 9 35 A Sample Bar Graph 30 25 20 15 2 10 5 Rate of H Formation (mL/min) 1 2 3 4 Number of Batteries

Pie Graphs Pie graphs are especially useful in comparing the parts of a whole. You could use a pie graph to display the percent composition of a compound such as sodium dihydrogen phosphate, NaH2PO4, as shown in Figure 10. In constructing a pie graph, recall that a circle has 360°. Therefore, each fraction of the whole is that fraction of 360°. Sup- Na pose you did a census of your school 19.2% and determined that 252 students out H 1.7% of a total of 845 were 17 years old. O You would compute the angle of 53.3% that section of the graph by multi- plying (252845) 360° 107°. P 25.8%

Figure 10 A Sample Pie Graph

Composition of NaH 2 PO4

Appendix A / Chemistry Skill Handbook 805 Line Graphs Line graphs have the ability to show a trend in one vari- able as another one changes. In addition, they can suggest possible mathe- matical relationships between variables. Table A.5 shows the data collected during an experiment to determine whether temperature affects the mass of potassium bromide that dissolves in 100 g of water. If you read the data as you slowly run your fingers down both columns of the table, you will see that solubility increases as the temperature increases. This is the first clue that the two quantities may be related. To see that the two quantities are related, you should construct a line graph as shown in Figure 11.

Table A.5 Effect of Temperature Figure 11 Constructing a Line Graph on Solubility of KBr 1. Plot the independent variable on the x-axis (hor- izontal axis) and the dependent variable on the Solubility (g of y-axis (vertical). The independent variable is the Temperature (°C) KBr/100 g H2O) quantity changed or controlled by the experi- menter. The temperature data in Table A.5 10.0 60.2 were controlled by the experimenter, who chose 20.0 64.3 to measure the solubility at 10°C intervals. 30.0 67.7 40.0 71.6 2. Scale each axis so 50.0 75.3 that the smallest and 60.0 80.1 largest data values of 70.0 82.6 each quantity can be 3. Label each axis with 80.0 86.8 plotted. Use divisions the appropriate 90.0 90.2 such as ones, fives, or quantity and unit. tens or decimal values such as hundredths or thousandths.

100

4. Plot each pair of data

2 95ˇ from the table as follows. 3 • Place a straightedge 90

vertically at the value 85 80 ˇ of the independent 5

variable on the x-axis. 75 ˇ 4 • Place a straightedge 70 horizontally at the 65 2 value of the dependent 60 variable on the y-axis. 55 • Mark the point at 50 which the straight- Solubility (g of KBr/100 g H O) 45 2 3 edges intersect. 40

ˇ 0 10 20 30 40 50 ˇ 60 70 80 90 100 1 ˇ Temperature (°C)

5. Fit the best straight line or curved line through the data points.

806 Appendix A / Chemistry Skill Handbook One use of a line graph is to predict values of the independent or dependent variables. For example, from Figure 11 you can predict the sol- ubility of KBr at a temperature of 65°C by the following method: • Place a straightedge vertically at the approximate value of 65°C on the x-axis. • Mark the point at which the straightedge intersects the line of the graph. • Place a straightedge horizontally at this point and approximate the value of the dependent variable on the y-axis as 82 g/100 g H2O. To predict the temperature for a given solubility, you would reverse the above procedure.

Practice Problems Use Figure 11 to answer these questions. 13. Predict the solubility of KBr at each of the following temperatures. a) 25.0°C c) 6.0°C b) 52.0°C d) 96.0°C 14. Predict the temperature at which KBr has each of the following solu- bilities. a) 70.0 g/100 g H2O b) 88.0 g/100 g H2O

Graphs of Direct and Inverse Relationships Graphs can be used to determine quantitative relationships between the independent and depen- dent variables. Two of the most useful relationships are relationships in which the two quantities are directly proportional or inversely propor- tional. When two quantities are directly proportional, an increase in one quantity produces a proportionate increase in the other. A graph of two quantities that are directly proportional is a straight line, as shown in Figure 12. 140 Figure 12 130 Graph of Quantities That 120 Are Directly Proportional 110 As you can see, doubling 100 the mass of the carbon 90 burned from 2.00 g to 80 4.00 g doubles the amount 70 of energy released from 60 66 kJ to 132 kJ. Such a rela- 50 Energy Released (kJ) tionship indicates that mass 40 of carbon burned and the 30 amount of energy released 20 are directly proportional. 1.00 2.00 3.00 4.00 Mass of Carbon Burned (g)

Appendix A / Chemistry Skill Handbook 807 When two quantities are inversely proportional, an increase in one quantity produces a proportionate decrease in the other. A graph of two quantities that are inversely proportional is shown in Figure 13. 160 Figure 13 140 Graph of Quantities That Are Inversely Proportional 120 As you can see, doubling the pressure of the gas 100 reduces the volume of the

gas by one-half. Such a Volume (mL) 80 relationship indicates that the volume and pressure 60 of a gas are inversely pro- portional. 40 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 Pressure (atm) Practice Problems 15. Plot the data in the following table and determine whether the two quantities are directly proportional.

Effect of Temperature on Gas Pressure

Temperature (K) Pressure (kPa) 300.0 195 320.0 208 340.0 221 360.0 234 380.0 247 400.0 261

16. Plot the data in the following table and determine whether the two quantities are inversely proportional.

Effect of Number of Mini-Lightbulbs on Electrical Current in a Circuit

Number of mini-lightbulbs Current (mA) 23.94 41.98 61.31 90.88

808 Appendix A / Chemistry Skill Handbook APPENDIX B Supplemental Practice Problems

This appendix includes supplemental practice problems designed to reinforce your knowledge and application skills. See your teacher for the complete set of solutions.

CHAPTER 1 6. Which of these substances has the highest melt- ing point: ethanol, helium, or baking soda? Section 1.1 1. What is matter? Tell whether or not each of the following is matter. a. microwaves b. helium gas inside a balloon Table 1.3 Some Common Compounds c. heat from the sun d. velocity Compound Name Formula

e. a speck of dust Acetaminophen C8H9NO2 f. the color blue Acetic acid C2H4O2 Ammonia NH 2. Identify each of the following as an element, 3 Ascorbic acid C6H8O6 compound, homogeneous mixture, or heteroge- Aspartame C H N O neous mixture. 14 18 2 5 Aspirin C9H8O4 a. air e. ammonia Baking soda NaHCO3 Butane C H b. blood f. mustard 4 10 Caffeine C H N O c. antimony g. water 8 10 4 2 Calcium carbonate CaCO3 d. brass h. tin Carbon dioxide CO2 3. What is an alloy? Identify each of the following Ethanol C2H6O as either a pure metal or an alloy. Ethylene glycol C2H6O2 Hydrochloric acid HCl a. zinc d. copper hydroxide Mg(OH)2 b. steel e. bronze Methane CH4 c. sterling silver Phosphoric acid H3PO4 Potassium tartrate K C H O 4. Which compounds, listed in Table 1.3, contain 2 4 4 6 Propane C H the element ? Which compounds con- 3 8 Salt NaCl tain oxygen but do not contain carbon? Sodium carbonate Na2CO3 Sodium hydroxide NaOH Sucrose C H O Section 1.2 12 22 11 Sulfuric acid H2SO4 5. The element rubidium melts at 39.5°C and boils Water H2O at 697°C. What is the physical state of rubidium at room temperature?

Appendix B / Supplemental Practice Problems 809 7. Your friend says that a certain substance has a 4. What is the atomic number of vanadium? What freezing point of 22°C and a melting point of does that number tell you about an atom of 10°C. What do you think of your friend’s vanadium? statement? 5. A radioactive isotope of iodine is used to diag- 8. Suppose you have a cube of an unknown metal nose and treat disorders of the thyroid gland. with a mass of 102 g. You place the cube in a grad- This isotope has 53 protons and 78 neutrons. uated cylinder filled with water to the 40-mL What are the atomic number and mass number mark. The cube sinks to the bottom of the cylin- of this isotope? How many electrons does it have? der and the water level rises to the 54-mL mark. 6. One atom has 45 neutrons and a mass number of What is the density of the cube? 80. Another atom has 36 protons and 44 neu- 9. Identify each of the following as either a chemical trons. What is the identity of each of these or a physical property of the substance. atoms? Which atom has a greater mass number? a. Krypton is an inert gas. 7. The element boron has two naturally occurring b. Ethanol is a clear, colorless liquid. isotopes. One has atomic mass 10.01, whereas the other has atomic mass 11.01. The average atomic c. Hydrochloric acid reacts with many metals mass of boron is 10.811. Which of the two iso- to form hydrogen gas. topes is more abundant? d. Barium sulfate is practically insoluble in water. e. The element tungsten has a very high density. Section 2.2 10. Identify each of the following as either a chemical 8. A satellite can orbit Earth at almost any altitude, or a physical change. depending on the amount of energy that is used a. An iron bar expands slightly when it is to launch it. How is this different from the way heated. that an electron orbits the atomic nucleus? b. A banana turns brown when it is left on the 9. Electromagnetic wave A has a wavelength of 104 m, counter. whereas electromagnetic wave B has a wavelength c. Hydrogen burns in air to form water vapor. of 102 m. Compare the frequencies and energies d. The surface of a pond freezes in winter. of the two waves. e. A balloon pops when it is pricked by a pin. 10. For each of the following elements, tell how many electrons are in each energy level and CHAPTER 2 draw the Lewis dot diagram for each atom. a. phosphorus, which has 15 electrons Section 2.1 b. beryllium, which has four electrons 1. Describe the observations of the chemist Joseph c. carbon, which has six electrons Proust. What scientific law resulted from his d. helium, which has two electrons studies? 2. Distinguish among a hypothesis, a theory, and a scientific law. 3. How did the discovery of isotopes help to lead to a revised model of atomic structure?

810 Appendix B / Supplemental Practice Problems CHAPTER 3 7. Draw the electron dot structure for each of the following elements. What is the group number of each element? Is the element a metal, non- Section 3.1 metal, or metalloid? 1. Use the periodic table to separate these ten ele- ments into five pairs of elements having similar a. As e. Br properties. b. Ca f. Al S, Ne, Li, O, Mg, Ag, Na, Sr, Kr, Cu c. S g. Si d. H h. Xe

8. The chemical formula for sodium oxide is Na2O. Section 3.2 Use the periodic table to predict the formulas of the following similar compounds. 2. For each of the following elements, write its group number and period number, its physical a. potassium oxide c. potassium sulfide state at room temperature, and whether it is a b. sodium sulfide d. lithium oxide metal, nonmetal, or metalloid. 9. How can the electrical conductivity of a semi- a. argon d. fluorine conductor such as silicon be increased? b. nickel e. barium 10. Why are transistors, diodes, and other semicon- c. antimony ductor devices useful? 3. Write the symbol and name of the element that fits each description. CHAPTER 4 a. the second-lightest of the halogens Section 4.1 b. the metalloid with the lowest period number c. the only Group 16 element that is a gas at 1. Use carbon dioxide as an example to contrast room temperature the properties of a compound with those of the elements of which it is composed. d. the heaviest of the noble gases e. the Group 15 nonmetal that is a solid at room temperature Section 4.2 4. Element Q is in the third period. Its outer energy level has six electrons. How does the number of 2. How is a calcium ion different from a calcium outer-level electrons of element Q compare with atom? From a potassium ion?

that of element Z, which is in the second period, 3. Would you expect to find MgO2 as a stable com- Group 14? Write the name and symbol of each pound? Explain. element. 4. Describe the submicroscopic structure of a grain 5. Why is the chemistry of the transition elements of salt. What is this structure called? and the inner transition elements less pre- 5. Aluminum metal reacts with fluorine to form an dictable than the chemistry of the main group ionic compound. Use the periodic table to deter- metals? mine the number of valence electrons for each 6. Write the symbol of the element that has valence element. Draw Lewis dot structures to show how electrons that fit each description. they would combine to form ions. What is the a. three electrons in the fourth energy level formula for the resulting compound? b. one electron in the second energy level c. eight electrons in the third energy level d. two electrons in the first energy level e. five electrons in the sixth energy level

Appendix B / Supplemental Practice Problems 811 6. Ethane is a compound with the formula C2H6. 2. Label the following as common names or formal What kind of compound is ethane? Describe the names. formation of ethane from carbon and hydrogen a. saltpeter atoms, and draw the electron dot structure of ethane. b. sodium hydrogen sulfate c. slaked lime 7. Classify each of the following compounds as ionic or covalent. Use the periodic table to deter- d. soda ash mine whether each component element of the e. potassium nitrite compound is a metal or nonmetal. Make a gener- 3. What is indicated by subscripts in chemical al statement about the type of elements that formulas? make up covalent and ionic compounds. 4. Of the formulas MgCl2 and Mg2Cl4, which is the a. hydrogen iodide d. calcium sulfide correct formula for magnesium chloride? b. strontium oxide e. sulfur dioxide Explain your choice. c. rubidium chloride 5. What is oxidation number? What determines an 8. You are given two clear, colorless solutions, and element’s oxidation number? Write the most you are told that one solution consists of an ionic common oxidation numbers for each of the compound dissolved in water and the other con- following elements. sists of a covalent compound dissolved in water. a. I e. Se How could you determine which is an ionic solu- b. P f. Al tion and which is a covalent solution? c. Cs g. Cu 9. You are given a white crystalline substance to d. Ba h. Pb identify. You find that it melts at about 90°C and is insoluble in water. Is this substance more likely 6. Write the formula for each of the following to be ionic or covalent? Explain. binary ionic compounds. a. strontium chloride Sections 4.1 and 4.2 b. rubidium oxide 10. Sucrose, or table sugar, has the formula c. sodium fluoride

C12H22O11. How are the properties of this com- d. magnesium sulfide pound different from those of its elements? Do 7. Write the formula for the compound formed you think sucrose is more likely to be an ionic or from each of the following pairs of elements. a covalent compound? Explain. a. magnesium and bromine CHAPTER 5 b. potassium and sulfur c. strontium and oxygen Section 5.1 d. aluminum and phosphorus 1. Write the symbols for two ions and one atom that have the same electron configuration as each of the following ions. a. Br b. Ba2+ c. Na+ d. P3

812 Appendix B / Supplemental Practice Problems 8. Examine the list of common polyatomic ions in 12. Write the formula for each of the following Table 5.2. Which element appears most often in compounds containing polyatomic ions. these ions? Write the symbols of the ions that do a. ammonium sulfate not contain this element. b. barium hydroxide 9. How many atoms of each element are present in c. sodium hydrogen sulfate four formula units of ammonium oxalate? d. calcium acetate 10. The metals in the following compounds can have various oxidation numbers. Predict the 13. Write the names of the following compounds charge on each metal ion, and write the name of containing chromium. each compound. a. CrBr2 c. CrO3 b. Cr (SO ) d. CrPO a. Au2S c. Pb(C2H3O2)4 2 4 3 4

b. FeC2O4 d. Hg2SO4 14. Write the formula for the compound made from 11. Write the formula for the compound made from each of the following pairs of ions. each of the following pairs of ions. a. lead(II) and sulfite a. potassium and dichromate ions b. manganese(III) and fluoride b. sodium and nitrite ions c. nickel(II) and cyanide c. ammonium and hydroxide ions d. chromium(III) and acetate d. calcium and phosphate ions

Table 5.2 Common Polyatomic Ions

Name of Ion Formula Charge ammonium NH4 1 hydronium H3O 1 hydrogen carbonate HCO3 1 hydrogen sulfate HSO4 1 acetate C2H3O2 1 nitrite NO2 1 nitrate NO3 1 cyanide CN 1 hydroxide OH 1 dihydrogen phosphate H2PO4 1 permanganate MnO4 1 2 carbonate CO3 2 2 sulfate SO4 2 2 sulfite SO3 2 2 oxalate C2O4 2 2 monohydrogen phosphate HPO4 2 2 dichromate Cr2O7 2 3 phosphate PO4 3

Appendix B / Supplemental Practice Problems 813 Table 5.4 Names of Common Ions of Selected Transition Elements

Element Ion Chemical Name Chromium Cr2 chromium(II) Cr3 chromium(III) Cr 6 chromium(VI) Cobalt Co2 cobalt(II) CrO Co3 cobalt(III) Copper Cu copper(I) Cu2 copper(II) Gold Au gold(I) Au3 gold(III) Cr O Iron Fe2 iron(II) 2 3 Fe3 iron(III) Manganese Mn2 manganese(II) Mn3 manganese(III) Mn7 manganese(VII) Mercury Hg mercury(I) Hg2 mercury(II) Nickel Ni2 nickel(II) 3 Ni nickel(III) CrO3 Ni4 nickel(IV)

15. Write the names of the following compounds 19. Write the formula for each of the following that contain transition elements not listed in hydrates. Table 5.4. a. nickel(II) cyanide tetrahydrate

a. RhCl3 b. WF6 c. Nb2O5 d. OsF8 b. lead(II) acetate trihydrate 16. Write the formulas for the following com- c. strontium oxalate monohydrate pounds. What do the formulas have in com- d. palladium(II) chloride dihydrate mon? 20. What is a desiccant? Describe the properties of a a. hydrogen iodide compound that would make a good desiccant. b. calcium selenide c. cobalt(II) oxide d. gallium phosphide Section 5.2 e. barium selenide 21. How do the macroscopic properties of molecu- 17. Compare the properties of hygroscopic sub- lar substances reflect their submicroscopic stances and deliquescent substances. structure? 18. Write the names of the following hydrates. 22. What is a molecular element? Name the seven nonmetals that exist naturally as diatomic mole- a. MgSO3 6H2O cular elements. b. Hg(NO3)2 H2O c. NaMnO4 3H2O d. Ni3(PO4)2 7H2O

814 Appendix B / Supplemental Practice Problems 23. How are electrons shared differently in H2,O2, a. An apple that has been peeled begins to oxidize. and N2 molecules? b. A flashlight is turned on. 24. What is ozone? How is ozone harmful? How is it c. An egg is fried. helpful? d. Acidic and basic substances in an antacid tablet react when the tablet is placed in water. 25. Name the following molecular compounds. 3. Use the equation below to answer the following a. SF b. CSe c. IF d. P O 4 2 5 2 5 questions. 26. Write the formulas for the following molecular 3Zn(s) 2FeCl (aq) → 2Fe(s) 3ZnCl (aq) compounds. 3 2 a. What is the physical state of iron(III) a. nitrogen trichloride chloride? Of iron metal? b. diiodine pentoxide b. What is the coefficient of zinc? c. diphosphorus triselenide c. What is the subscript of chlorine in zinc d. dichlorine heptoxide chloride? 27. Name the following molecular compounds, all 4. Balance the following equations. of which contain carbon. a. Al(s) HCl(aq) → AlCl (aq) H (g) a. C H b. SiC c. CF d. C H 3 2 5 12 4 9 20 → b. H2O2(aq) H2O(l) O2(g) → c. HC2H3O2(aq) CaCO3(s) Ca(C2H3O2)2(aq) CO2(g) H2O(l) Sections 5.1 and 5.2 → d. C2H6O(l) O2(g) CO2(g) H2O(g) 28. Write formulas for a nitrogen atom, ion, and 5. Write balanced chemical equations for the reac- molecule. tions described. 29. Which of the following compounds are ionic a. sulfuric acid sodium hydroxide → and which are molecular? sodium sulfate solution water a. dihydrogen sulfide b. pentane liquid oxygen → b. strontium oxide carbon dioxide water vapor energy c. lithium carbonate c. iron metal copper(II) sulfate solution → d. decane copper metal iron(II) sulfate solution e. rubidium hydroxide 6. Magnesium metal will burn in air to form mag- nesium oxide. In the reaction, two magnesium 30. How is KC H O a substance with two different 2 3 2 atoms react with one oxygen molecule to form types of bonding? two formula units of magnesium oxide. If you react 80 billion atoms of magnesium with CHAPTER 6 30 billion molecules of oxygen, will all the reac- tants be used up? What do you think the results Section 6.1 will be? 1. If bread is stored at room temperature for a long period of time, it undergoes chemical changes that make it inedible. How can you tell that these chemical changes have occurred? Section 6.2 2. List one piece of evidence you expect to see that 7. Which of the five general types of reactions has indicates that a chemical reaction is taking place only one product? Which of the five types always in each of the following situations. has oxygen as a reactant?

Appendix B / Supplemental Practice Problems 815 8. Classify each of the following reactions as one of 13. The unbalanced equation for the reaction the five general types. between aqueous solutions of NaOH and

→ MgSO4 is as follows. a. Zn(s) 2AgNO3(aq) → Zn(NO3)2(aq) 2Ag(s) NaOH(aq) MgSO4(aq) b. Fe(s) S(s) → FeS(s) Na2SO4(aq) Mg(OH)2(s) → c. 2KClO3(s) 2KCl(s) 3O2(g) a. Balance the chemical equation. → d. CH4(g) 2O2(g) b. Write a word equation for the reaction. CO2(g) 2H2O(g) energy c. Classify this reaction as one of the five major → e. Na2CO3(aq) MgSO4(aq) types. MgCO3(s) Na2SO4(aq) d. If you observed this reaction, how would you 9. Use word equations to describe the chemical know that a chemical reaction had occurred? equations given, and classify each reaction as one of the five major types. → Section 6.3 a. C9H20(l) 14O2(g) 9CO2(g) 10H2O(g) → b. H2SO4(aq) 2KOH(aq) 14. What is a reversible reaction? How can a chemi- K2SO4(aq) 2H2O(l) cal equation show that a reaction is reversible? → c. 2KNO3(s) energy 2KNO2(s) O2(g) 15. Distinguish between the terms equilibrium and 10. Write a balanced equation for the combustion of dynamic equilibrium.

ethene gas, C2H4. How many oxygen molecules 16. Describe Le Chatelier’s principle. Why is this will react with 15 trillion ethene molecules? principle important to chemical engineers? 17. Will an endothermic reaction that is at equilibrium shift to the left or to the right to readjust after Sections 6.1 and 6.2 each of the following procedures is followed? 11. Nitrogen oxyfluoride gas, NOF, is formed by a a. More heat is added. reaction between nitrogen monoxide and fluo- b. Heat is removed. rine gases. Write a balanced chemical equation for this reaction, and classify the reaction as one c. More products are added. of the five major types. d. More reactants are added.

12. When an aqueous solution of copper(II) sulfate 18. In a closed , the reversible reaction rep- →→ is combined with an aqueous solution of sodium resented by the equation N2O4(aq) 2NO2(g) hydroxide, a blue precipitate of copper(II) has come to equilibrium. The volume of the hydroxide forms. container is then decreased, causing the pressure in the container to increase. Will the reaction be a. Write word and balanced chemical equations shifted to the left or the right? Explain. for this reaction. b. Classify this reaction as one of the five major 19. A certain exothermic reaction has a very high types. activation energy. Do you expect this reaction to take place spontaneously under normal condi- tions? Explain.

816 Appendix B / Supplemental Practice Problems 20. Why are many valuable historic documents 28. The graph shown represents the concentrations stored in sealed cases with most of the air of three compounds, A, B, and C, as they take removed? part in a reaction that reaches equilibrium. 21. Road salt on a car speeds the process of rusting. If a car is coated with road salt, would it be more beneficial to wash the car before a period of cold weather or before a period of warm weather? Explain. 22. Hydrogen gas can be produced by reacting alu- minum and sulfuric acid, as shown by the equa- tion for the reaction. → 2Al(s) 3H2SO4(aq) Al2(SO4)3(aq) 3H2(g) In a particular reaction, 12 billion molecules of H SO were mixed with 6 billion atoms of Al. a. Which compound(s) represent the reactant(s) 2 4 in this reaction? The product(s)? a. Which reactant is limiting? b. How long did it take for the reaction to reach b. How many molecules of H2 are formed when equilibrium? the reaction is complete? c. Explain how the graph will change if more 23. Fritz Haber carried out his process for the syn- compound C is added one minute after the thesis of ammonia at a temperature of about reaction reaches equilibrium. 600°C. High temperature increases the rate of reaction. Why didn’t Haber use a higher temper- ature for his process? Sections 6.1 and 6.3 24. If a catalyst is added to a reversible endothermic reaction that is at equilibrium, will the reaction 29. Sulfur dioxide gas and oxygen gas combine in a shift to the left or to the right? reversible reaction to form sulfur trioxide gas. 25. Why are catalysts often used in the form of a a. Write a word equation for this reaction. powder? b. Write a balanced chemical equation for this reaction. 26. What are enzymes? Provide some examples of how your body uses enzymes, and list two com- c. If more sulfur trioxide gas is added after the mon products that contain enzymes. reaction reaches equilibrium, will the reaction be shifted to the left or to the right? 27. Examine the ingredients of some food products in your home, and list the inhibitors—usually 30. In one of a series of reactions used to produce called preservatives—that you find in these nitric acid, ammonia gas and oxygen gas react to products. form nitrogen monoxide gas and water vapor. Write a balanced equation for this reaction. If 30 trillion ammonia molecules and 35 trillion oxygen molecules are available to react, which is the limiting reactant?

Appendix B / Supplemental Practice Problems 817 CHAPTER 7 10. Why do most of the transition elements have multiple oxidation numbers? What other cate- gory of elements exhibits multiple oxidation Section 7.1 numbers? 1. Given the colors yellow, red, and violet, which color has the lowest frequency? The shortest wavelength? The least energy? CHAPTER 8

2. How many f orbitals can there be in an energy Section 8.1 level? What is the maximum number of f elec- trons in an energy level? What is the lowest ener- 1. From each of the following pairs of atoms, select gy level that can have f orbitals? the one with the larger atomic radius. 3. What is the Heisenberg uncertainty principle? a. Li, Be c. P, As e. In, Ba This principle led to the development of what b. Ca, Ga d. Br, O model to describe electrons in atoms? 2. From each of the following pairs of ions, choose 4. What is the shape of an s orbital? How do s the one with the larger ionic radius and explain orbitals at different energy levels differ from one your choice. another? a. Se2,S2 d. B3+,N3 b. Te 2,Cs+ e. O2,P3 Section 7.2 c. Mg2+,Al3+ 5. Identify the elements that have the following 3. What is the electron configuration of the potas- electron configurations. sium ion? What noble gas has that configura- a. [Ar]3d104s24p6 d. 1s22s1 tion? Name two other ions with the same configuration. b. [Ne]3s23p1 e. [Xe]6s24f 7 c. [Ar]4s13d5 4. Your friend says that the most active metal has a large atomic radius and a large number of 6. Use the periodic table to help you write electron valence electrons. Assess the accuracy of your configurations for the following atoms. Use the friend’s statement. appropriate noble gas, inner-core abbreviations. 5. Compare and contrast the properties of the a. Br c. Te e. Ba alkali metals and the alkaline earth metals. b. N d. Ni 6. Both potassium and strontium react with water. 7. What are the valence electrons in the electron Predict the products of the reactions of potas- configuration of germanium, [Ar]3d104s24p2? sium and strontium with water. Write balanced 8. What is the highest occupied sublevel in the equations for both reactions. structure of each of the following elements? 7. Explain how and why the crystal structures of a. Ca b. B c. In d. He e. Bi the ionic compounds CsCl and NaCl differ. 9. Refer to the periodic table and compare the sim- 8. Boron is classified as a metalloid. What does this ilarities and differences in the electron configu- mean in terms of the way that boron reacts with rations of the following pairs of elements: Ar other elements? and Kr, K and Ar, K and Sc. 9. Describe some uses of the Group 15 elements.

818 Appendix B / Supplemental Practice Problems Sections 8.1 and 8.2 Section 9.2 10. Give one reason why each of the following met- 10. Draw the electron dot diagrams for each of the als is essential to human life. following molecules.

a. potassium c. calcium a. CS2 b. HI c. CH3Cl d. AsH3 b. magnesium d. iron 11. Describe the shape of each molecule in Question 10. CHAPTER 9 12. Dibromomethane, CH2Br2, is a molecule similar in structure to methane. Is dibromomethane a Section 9.1 polar or nonpolar molecule? Explain. 1. In general, how do electronegativity values 13. Ethanol, carbon dioxide, and vitamin C are all change as you move down a column of the peri- covalent compounds. How do these compounds odic table? Across a row of the table? Explain demonstrate the variety of types of covalent these trends. compounds? 2. Using only a periodic table, rank these atoms 14. Carbon tetrafluoride (CF4), also called Freon-14, from the least to the most electronegative. is used as a low temperature refrigerant and as a As, Ba, N, Mg, Cs, O gaseous insulator. Are the bonds in CF4 polar or 3. Classify the following bonds as ionic, covalent, nonpolar? Is CF4 a polar molecule? Explain. or polar covalent. 15. Compare the molecules phosphorus trichloride

a. C—O c. Ca—O e. Mn—O (PCl3) and dichloromonoxide (Cl2O). How b. Cu—Cl d. Si—H many pairs of electrons surround the central atom? How many of these pairs are bonding? 4. Using only a periodic table, rank these bonds Nonbonding? What are the shapes of the from the most ionic to the least ionic. molecules? a. Li—F b. Li—Br c. K—F d. Li—Cl 16. Tetrachloroethylene, C2Cl4, is a derivative of 5. Do you expect KBr or KF to have a higher melt- ethene in which the hydrogen atoms have been ing point? Explain. replaced by chlorine atoms. Draw the electron dot structure of C Cl . Is the molecule polar? 6. Rank these bonds from the least to the most 2 4 Explain. polar. 17. Formaldehyde, CH O, is a colorless gas that, a. S—O b. C—Cl c. Si—Cl d. H—Br 2 when dissolved in water, is used in embalming 7. What factors determine whether a molecule is fluids. Draw its electron dot structure and polar or nonpolar? describe its geometry.

8. In metallic bonding, why are the valence elec- 18. Diethyl ether, CH3CH2OCH2CH3, can be viewed trons of the metal sometimes described as a “sea as a derivative of water, in which the hydrogens

of electrons”? in water are replaced by CH3CH2 (ethyl) groups. Is diethyl ether a polar molecule? Explain. 9. Nitric oxide, NO, is a colorless gas used in the manufacture of nitric acid. Is nitric oxide a polar 19. In paper chromatography, what is the stationary or nonpolar molecule? Explain. phase? What is the mobile phase? Compare the distance migrated for a component with a strong attraction to the paper to the distance migrated for a component with a weak attrac- tion to the paper.

Appendix B / Supplemental Practice Problems 819 20. Predict the relative boiling points of ammo- 8. The boiling points of five gases are provided in

nia(NH3), phosphine (PH3), and arsine (AsH3). either Celsius or Kelvin temperatures. List the Explain your prediction. gases in order from the one with the lowest boil- ing point to the one with the highest boiling point. CHAPTER 10

Chlorine(Cl2) 239 K Section 10.1 Krypton (Kr) 153°C 1. Why does a pollen grain suspended in a water Dimethyl ether (C2H6O) 24°C droplet trace a random and erratic path? Dihydrogen sulfide (H2S) 213 K Sulfur dioxide (SO ) 10°C 2. Contrast the behavior of an air hockey puck 2 when it collides with the wall of the game board 9. Suppose that the outside temperature increases to the behavior of an ideal gas particle when it by 1.00 Celsius degree. What is the temperature collides with the wall of its container. increase in Fahrenheit degrees? In kelvins? 3. What is the numerical value of atmospheric 10. The particles of which of the following gases pressure at sea level? Do humans notice the have the highest average speed? The lowest aver- pressure of the atmosphere? Explain. age speed? 4. Compare solids and liquids in terms of particle a. argon at 20°C c. nitrogen at 20°C spacing and particle motion. b. nitrogen at 100°C d. helium at 100°C 11. Which gas particles in Question 10 have the Section 10.2 highest average kinetic energy? Which have the lowest average kinetic energy? 5. Write the Fahrenheit, Celsius, and Kelvin tem- peratures that correspond to 12. Dihydrogen sulfide (H2S) and sulfur dioxide (SO2) are both colorless gases with unpleasant a. the freezing point of water. odors. Which of these gases has a higher rate of b. the boiling point of water. diffusion in air at the same temperature? Explain c. absolute zero. your answer. 6. Rank the following temperature readings in 13. Explain why liquids become cooler as they increasing order. evaporate. 110°C, 212 K, 212°F, 273°C, 273 K 14. Compare and contrast sublimation and evaporation. 7. Complete the following table. 15. Can a liquid in an open container reach equilib- Temperature Celsius, °C Kelvin, K rium with its vapor? Explain. Boiling point of helium, He 268.94 16. Describe how boiling point is affected by increasing pressure. Hot summer day 305 Melting point of 17. Predict whether the boiling point of water is zinc 419 greater or less than 100°C at your school. Boiling point of 18. Explain the relationship among the terms freez- ing point, heat of fusion, and crystal lattice. butane, C4H10 272.7 19. What is the ratio of the amount of energy needed to boil 1 kg of water at 100°C to the amount of energy needed to melt 1 kg of ice at 0°C?

820 Appendix B / Supplemental Practice Problems 20. The compound cyclohexane, C6H12, boils at Section 11.2 80.7°C and melts at 6.5°C. A few grams of cyclo- 7. What factors affect gas volume? hexane are cooled from +120°C to 20°C. Graph the cooling curve for cyclohexane. Show 8. A cylinder containing 48 g of nitrogen gas at time on the horizontal axis and temperature on room temperature is placed on a scale. The valve the vertical axis. is opened and 12 g of gas are allowed to escape. Assuming that the temperature of the cylinder remains constant, how does the pressure change? CHAPTER 11 9. A cylinder contains 22 g of air. If 77 g of air are Section 11.1 pumped into the cylinder at constant tempera- 1. Using Table 11.1 and the equation 1.00 in ture, how does the pressure in the cylinder 25.4 mm to convert the following pressure change? measurements. 10. A cylinder contains 36.5 g of argon gas at a pres- a. 147 mm Hg to psi sure of 8.20 atm. The valve is opened and gas is allowed to escape until the pressure is reduced to b. 232 psi to kPa 4.75 atm at constant temperature. How many c. 67.2 kPa to mm Hg grams of argon escaped? d. 214 in. Hg to atm 11. If the gas pressure in an aerosol can is 182 kPa at 20.0°C, what is the pressure inside the can if it is Table 11.1 Equivalent Pressures heated to 251°C? 12. A 5.3-L sample of argon is at standard atmos- 1.00 atm 760 mm Hg 14.7 psi 101.3 kPa pheric pressure and 294°C. The sample is cooled in dry ice to 79°C at constant volume. What is its new pressure in mm Hg?

2. Convert the pressure measurement 3.50 atm to 13. A tank for compressed gas can safely withstand a the following units. maximum pressure of 955 kPa. The pressure in the tank is 689 kPa at a temperature of 22°C. a. mm Hg c. kPa What is the highest temperature the tank can b. psi d. in. Hg safely withstand? 3. What is the difference between gauge pressure 14. You use a pressure gauge to measure the air and absolute pressure? pressure in your bicycle tires on a cold morning 4. A tire gauge at a gas station indicates a pressure when the temperature is 5°C. The gauge reads of 29.0 psi in your tires. What is the absolute 53 psi. The next afternoon, the temperature has pressure in your tires in inches of mercury? warmed up to 11°C. If you measure the pressure in your tires again, what would you expect the 5. Suppose that a certain planet’s atmosphere con- reading on the pressure gauge to be? Assume the sists primarily of CO2 gas. Compare the atmos- volume of air in the tires is constant. pheric pressure on the planet’s surface to the pressure that would be exerted if the atmosphere 15. A cylinder contains 98 g of air at 295 K. The were the same thickness, but consisted primarily pressure in the cylinder is 174 psi. If 32 g of air of methane gas. are allowed to escape and the cylinder is heated to 335 K, what is the new pressure? 6. Propose a reason why Torricelli used mercury in his barometer rather than some other liquid 16. A cylinder of compressed gas has a volume of such as water. 14.5 L and a pressure of 769 kPa. What volume would the gas occupy if it were allowed to escape into a balloon at a pressure of 117 kPa? Assume constant temperature.

Appendix B / Supplemental Practice Problems 821 17. At a sewage-treatment plant, bacterial cultures 28. Use Charles’s law to predict the change in produce 2400 L of methane gas per day at density of a sample of air if its temperature is 1.0 atm pressure. If one day’s production of increased at constant pressure. methane is stored in a 310-L tank, what is the 29. Suppose you have a 1-L sample of neon gas and pressure in the tank? a 1-L sample of nitrogen gas; both samples are 18. A 0.400-L balloon is filled with air at 1.10 atm. If at STP. Compare the numbers of gas particles the balloon is squeezed into a 250-mL beaker in each sample. Compare the masses of the sam- and doesn’t burst, what is the pressure of the air? ples. 19. A sample of argon gas is compressed, causing its 30. An 825-mL sample of oxygen is collected at pressure to increase by 25 percent at constant 101 kPa and 315 K. If the pressure increases to temperature. What is the percentage change in 135 kPa and the temperature drops to 275 K, the volume of the sample? what volume will the oxygen occupy? 20. Compare qualitatively the volume of a sample of 31. At 37.4 kPa and 35°C, the volume of a sample air at STP to the volume of the same sample of of krypton gas is 346 mL. What is the volume at air under normal conditions of temperature and STP? pressure in your classroom. 32. A 44-g sample of CO2 has a volume of 22.4 L at 21. A balloon filled with 2.5 L of air at 23°C and STP. The sample is heated to 71°C and com- 1 atm. It is then placed outdoors on a cold win- pressed to a volume of 18.0 L. What is the ter day when the temperature is 12°C. If the resulting pressure? pressure is constant, what is the new volume of 33. A gas has a volume of 2940 mL at 58°C and the balloon? 95.9 kPa. What pressure will cause the gas to 22. The volume of a sample of nitrogen is 75 mL at have a volume of 3210 mL at 25°C? 25°C and 1 atm. What is its volume at STP? 34. A balloon is filled with 4.50 L of helium at 15°C 23. At atmospheric pressure, a balloon contains and 763 mm Hg. The balloon is released and it 1.50 L of helium gas. How would the volume rises through the atmosphere. When it reaches change if the Kelvin temperature were only an altitude of 2500 m, the temperature is 0°C 60 percent of its original value? and the pressure has dropped to 542 mm Hg. What is the volume of the balloon? 24. The volume of a sample of helium is 2.45 L at 225°C and 1 atm. Predict the volume of the 35. Compare the number of particles in 1.0 L of sample at +225°C and 1 atm. nitrogen gas at room temperature and 1.0 atm pressure to the number of particles in 2.0 L of 25. A cylinder contains 5.70 L of a gas at a tempera- oxygen gas at room temperature and 3.0 atm ture of 24°C. The cylinder is heated, and a piston pressure. moves in the cylinder so that constant pressure is maintained. If the final volume of the gas 36. How many liters oxygen will be needed to react in the cylinder is 6.55 L, what is the final completely with 15 L of carbon monoxide at the temperature? same temperature and pressure to form carbon dioxide? 26. A 3.50-L sample of nitrogen at 10°C is heated at constant pressure until it occupies a volume of 37. How many liters of nitrogen gas and hydrogen 5.10 L. What is the new temperature of the gas must combine to produce 28.6 L of ammo- sample? nia if all gases are at the same temperature and pressure? 27. A sample of argon gas has a volume of 425 mL at 463 K. The sample is cooled at constant pres- 38. A cylinder contains 14.2 g of nitrogen at 23°C sure to a volume of 315 mL. What is the new and 5030 mm Hg. The cylinder is heated to temperature? 45°C, and nitrogen gas is released until the pres- sure is lowered to 2250 mm Hg. How many grams of nitrogen are left in the cylinder?

822 Appendix B / Supplemental Practice Problems 39. A 75.0-mL sample of air is at standard pressure 7. Which has the largest mass? and 25°C. The air is compressed to a volume a. ten atoms of carbon of 45.0 mL, and the temperature is adjusted until the pressure of the air doubles to 2.00 atm. b. three molecules of chlorine gas

What is the final temperature? c. one molecule of fructose, C6H12O6 40. A gas has a volume of 146 mL at STP. What Cel- 8. Which has the largest mass? sius temperature will cause the gas to have a vol- a. 10.00 mol of carbon ume of 217 mL at a pressure of 615 mm Hg? b. 3.00 mol of chlorine gas c. 1.000 mol of fructose, C H O CHAPTER 12 6 12 6 9. Determine the number of molecules in

Section 12.1 0.127 mol of formic acid, CH2O2. What is the mass of this quantity of formic acid? 1. Your grandmother gives you a of pennies she has saved. If the pennies have a mass of 10. Determine the number of molecules or formula 4.24 kg, and 50 pennies have a mass of 144 g, units in each sample below. Identify each as a how many pennies did you receive? formula unit or a molecule.

2. What are the molar masses of the following a. 85.3 g water, H2O substances? b. 100.0 g chlorine, Cl2 a. palladium c. calcium hydroxide c. 0.453 g potassium chloride, KCl

b. hydrogen d. diphosphorus pentoxide d. 14.6 g acetaminophen, C8H9NO2 3. Determine the number of atoms in each sample 11. The average atomic mass of oxygen is 4.0 times below. greater than the average atomic mass of helium. Would you expect the molar mass of oxygen gas a. 12.7 g silver, Ag to be 4.0 times greater than the molar mass of b. 56.1 g aluminum, Al helium gas? Explain. c. 162 g calcium, Ca 12. Vitamin B2, also called riboflavin, has the chemi- 4. Without calculating, decide whether 10.0 g of cal formula C17H20N4O6. What is the molecular zinc or 10.0 g of silicon represents the greater mass of vitamin B2? What is its molar mass? number of atoms. Verify your answer by 13. The molecular formula of cholesterol is calculating. C27H46O. What is the molar mass of cholesterol? 5. Determine the number of moles in each sample What is the mass in grams of a single molecule below. of cholesterol? a. 7.62 g cesium chloride, CsCl 14. What mass of aluminum contains the same number of atoms as 125 g of silver? b. 42.5 g propanol, C3H8O

c. 694 g ammonium dichromate, (NH4)2Cr2O7 6. Determine the mass of the following molar quantities. Section 12.2 15. The combustion of methanol produces carbon a. 0.172 mol ozone, O 3 dioxide gas and water vapor. b. 2.50 mol heptane, C7H16 → 2CH3OH(l) 3O2(g) 2CO2(g) 4H2O(g) c. 0.661 mol iron(II) phosphate, Fe3(PO4)2 What mass of water vapor forms when 52.4 g of methanol burn?

Appendix B / Supplemental Practice Problems 823 16. Disulfur dichloride is prepared by passing 28. If 60.0 g of dodecane burn as in Question 27, chlorine gas into molten sulfur. how many grams of water vapor are produced? → Cl2(g) 2S(l) S2Cl2(l) How many grams of carbon dioxide? How many grams of chlorine will react to 29. Green plants produce oxygen by the reaction produce 20.0 g of S Cl ? 2 2 below. If a rosebush produces 50.5 L of oxygen 17. Using the reaction in Question 16, how many at 27.0°C and 101.3 kPa, how many grams of

grams of sulfur will react to produce 20.0 g of glucose, C6H12O6, did the plant also produce? sunlight S2Cl2? → 6CO2(g) 6H2O(l) C6H12O6(aq) 6O2(g) 18. Calculate the mass of precipitate that forms 30. Calculate the mass of each product formed when 250 mL of an aqueous solution containing when 10.5 g of sodium hydrogen carbonate, 35.0 g of lead (II) nitrate reacts with excess sodi- NaHCO3, react with excess hydrochloric acid. um iodide solution by the following reaction. 31. When a solution of 25.0 g of silver nitrate in Pb(NO ) (aq) 2NaI(aq) → 3 2 100 g of water is mixed with a solution of 10.0 g 2NaNO (aq) PbI (s) 3 2 of magnesium chloride in 100 g of water, a 19. What mass of carbon must burn to produce double displacement reaction occurs. The bal-

4.56 L of CO2 gas at STP? The reaction is anced chemical equation is shown below. Which → C(s) O2(g) CO2(g) is the limiting reactant? → 20. What volume of hydrogen gas can be produced 2AgNO3(aq) MgCl2(aq) by reacting 5.40 g of zinc in excess hydrochloric Mg(NO3)2(aq) 2AgCl(s) acid at 25.0°C and 105 kPa? The reaction is 32. What is the empirical formula of each of the fol- → Zn(s) 2HCl(aq) ZnCl2(aq) H2(g). lowing compounds?

21. Explain how the ideal gas law confirms the laws a. K2C2O4 d. Pb3(PO4)2 of Boyle and Charles. b. Na2S2O3 e. C15H21N3O15

22. How many moles of argon are contained in a c. C20H20O4 f. C6H12O7 2.50-L canister at 125 kPa and 15.0°C? 33. What is the molecular formula of each of the 23. What is the volume of 0.300 mol of oxygen at following compounds? 46.5 kPa and 215°C? a. empirical formula: C4H4O; 24. What is the pressure of a 2.00-mol sample of molar mass: 136 g/mol nitrogen gas that occupies 10.5 L at 25°C? b. empirical formula: CH2; molar mass: 154 g/mol 25. Determine the value of the ideal gas constant R in units of atmL/molK. c. empirical formula: As2S5; molar mass: 310 g/mol 26. Using the value of the ideal gas constant deter- mined in Question 25, calculate the number of 34. Without calculating, which of the following moles in a 7.56-L sample of neon gas at 45°C compounds has the greater percentage of nitro- and 4.12 atm. How many grams of neon does gen: Ca(NO3)2 or Ca(NO2)2? How do you know? the sample contain? 35. An oxide of chromium is 68.4 percent chromi- um by mass. The molar mass of the oxide is 27. Dodecane, C12H26, is one of the components of kerosene. Write the balanced chemical equation 152 g/mol. What is the formula of the for the combustion of dodecane to form carbon compound? dioxide gas and water vapor. If 3.00 moles of 36. Determine the percent oxygen in each of the fol- dodecane burn, how many moles of oxygen are lowing oxides of nitrogen. consumed? How many moles of carbon dioxide a. nitrogen monoxide, NO and water vapor are produced? b. dinitrogen monoxide, N2O

c. dinitrogen pentoxide, N2O5

824 Appendix B / Supplemental Practice Problems 37. A mixture of sodium chloride and potassium 3. The surface tension of water is about three times chloride is analyzed and is found to contain greater than that of ethanol. How would a drop 22 percent potassium. What percent of the mix- of water placed on a flat tabletop behave differ- ture is sodium chloride? ently from a drop of ethanol placed on the same surface? 38. Vanillin is a compound that is used as a flavor- ing agent in many food products. Vanillin is 4. Suppose you have a liquid in which both the 63.2 percent C, 5.3 percent H, and 31.5 percent interparticle attractive forces and the attractive O. The molar mass is approximately forces between the liquid particles and silicon 152 g/mol. What is the molecular formula of dioxide are moderately weak. You pour some of vanillin? the liquid into a 25-mL graduated cylinder. How do you expect the liquid surface to appear? 39. What is the formula for a hydrate that consists

of 80.15 percent ZnSO3 and 19.85 percent H2O? 5. Suppose you have 150 mL of water at 20°C in a 250-mL beaker, and 150 g of ethanol at 20°C in 40. A 15.0-g sample of sodium carbonate reacts an identical beaker. You heat both liquids to with excess sulfuric acid to form sodium sulfate 70°C. Which liquid absorbs more heat? by the reaction below. When the reaction is complete, 16.9 g of sodium sulfate are recovered. 6. Suppose the specific heat of water were What is the percent yield? 2.0 J/g°C. How would the climate on Earth → Na2CO3(s) H2SO4(aq) be different? Na2SO4(aq) CO2(g) H2O(l)

CHAPTER 13 Section 13.2 7. Write equations for the dissociation of the fol- Section 13.1 lowing ionic compounds when they dissolve in 1. Give four examples of molecular compounds, water. other than water, that will form hydrogen bonds. a. ZnCl2 c. Mg(NO3)2 2. Use Figure 13.6 to answer the following b. Rb CO d. (NH ) SO questions. 2 3 4 2 4 8. When predicting solubility, scientists often use a. What is the density of water at 10.0°C? the phrase like dissolves like. Explain how water, b. At what temperature is the density of water a covalent compound, can be “like” an ionic 0.9998 g/mL? compound. c. The density of water at 1.0°C is 0.9999 g/mL. At what other temperature does water have the same density?

1.0000

ˇ Liquid water 0.9999 Maximum density Figure 13.6 0.9998 Density of Water at Various Temperatures Water achieves its minimum volume, and

Density (g/mL) 0.9997 therefore its maximum density, at 3.98°C.

0 1 2 3 4 5 6 7 8 9 10 Temperature (C)

Appendix B / Supplemental Practice Problems 825 9. Do you expect that the liquid compound hexane Figure 13.20

(C6H14) will mix with water to form a solution? Solubility Versus Explain. Temperature 10. Compare and contrast the structures of deter- The amount of solute required to achieve a saturat- gent molecules and soap molecules. Which of ed solution in water depends the two is more effective in hard water? Explain. upon the temperature, as this 11. Why don’t chemists use the words strong and graph shows. Most solutes weak to describe solution concentrations? What increase in solubility as tem- terms do they use? perature increases.

12. You dissolve 5.0 g of KClO3 in 50.0 mL of water 100 at 40°C, then you slowly cool the solution to 90 20°C. There is no visible change in the solution. NaNO3 80 O)

Use Figure 13.20 to determine whether the solu- 2 tion at 20°C is saturated, unsaturated, or super- 70 KNO3 saturated. 60 KCl 13. Use Figure 13.20 to compare the solubilities in 50 water of potassium chlorate and cerium(III) 40 NaCl sulfate over the temperature range from 10°C 30 KClO to 30°C. 3

Solubility (g/100 g H 20 14. Is the process of dissolving in water exothermic 10 Ce (SO ) or endothermic 2 4 3 0 a. for most solid solutes? 10 20 30 40 50 60 70 80 90 100 b. for a solute that is used in a hot pack? Temperature (C) 15. How would you prepare 3.00 L of a 0.500M 22. For pure water, there is a 100°C difference solution of calcium nitrate, Ca(NO ) ? 3 2 between the boiling point and the freezing 16. How would you prepare 1.50 L of a 1.75M solu- point. Is the corresponding temperature differ-

tion of zinc chloride, ZnCl2? ence for a 1.5M sucrose solution greater or less than 100°C? Explain. 17. What mass of ammonium sulfate, (NH4)2SO4, must be dissolved to make 720.0 mL of a 23. Rank these solutions from the one with the low- 0.200M solution? est to the one with the highest freezing point, 18. What mass of acetone, C H O, must be dissolved and explain your answer. 3 6 a. 1.2 mol of ZnSO in 0.900 L of solution to make 2.50 L of a 1.15M solution? 4 b. 0.40 mol of KCl in 550 mL of solution 19. What is the molarity of a solution that contains c. 3.4 mol of NaNO3 in 1.80 L of solution 2.50 g of potassium carbonate, K2CO3, in 1.42 L of solution? 24. You have two aqueous solutions; one contains 151.6 g of KNO dissolved in 1.00 L of solution, 20. Calculate the molarity of a solution that con- 3 and the other contains 1026 g of sucrose dis- tains 185 g of methanol, CH3OH, in 1150 mL of solution. solved in 2.00 L of solution. Calculate the molar- ity of each solution, and determine which solu- 21. If you add 170.0 g of NaNO3 to 1.00 L of water, tion has a higher boiling point. have you created a 2.00M NaNO3 solution? Explain.

826 Appendix B / Supplemental Practice Problems 25. Ethylenediamine is a molecule with the formula 5. Identify the first compound in the following

C2H4(NH2)2. Each molecule has two NH2 reactions as an acid or a base. groups. Ethylamine, C H NH , has one NH 2 5 2 2 a. HBrO H O → H O+ BrO group. How would you expect the boiling points 2 3 b. N H H O → N H + OH of ethylamine and ethylenediamine to compare? 2 4 2 2 5 c. C H N H O → C H N H+ OH 26. A selectively permeable membrane separates two 10 14 2 2 10 14 2 d. C H OH H O → H O+ C H O aqueous solutions of sodium chloride. On the 6 5 2 3 6 5 left side of the membrane is a solution com- 6. Classify each of the following as an acid, a base, posed of 74 g of NaCl dissolved in 420 g of or neither when mixed with water. water. On the right side of the membrane is a a. HC H O c. HI e. Fe(OH) solution composed of 27 g of NaCl dissolved in 3 5 2 3 b. Li O d. C H 125 g of water. In which direction is the net sol- 2 2 6 vent flow? 7. Write the balanced equation for the reaction of 27. Describe two factors that affect the solubility of calcium hydroxide with formic acid. a gas in water. 8. You want to prepare barium nitrate by an acid- 28. Explain the cause of the dangerous condition base reaction. Write a reaction that will do this. known as the bends, which is sometimes experi- 9. Consider the oxides SrO and SO2.For each enced by divers. oxide, tell whether it is an acidic anhydride or a 29. What is a liquid aerosol? A foam? Give two basic anhydride. Write an equation for each to examples of each. demonstrate its acid-base chemistry. 30. Compare and contrast colloids and true solutions. Section 14.2 CHAPTER 14 10. Give the formula for each of the following hydroxides, and identify each as a strong base or Section 14.1 a weak base. 1. Write the names and formulas of the acids and a. potassium hydroxide bases that were among the top ten industrial b. aluminum hydroxide chemicals produced in the United States in 1994. c. strontium hydroxide 2. Write a chemical equation to show how aqueous d. iron(III) hydroxide perchloric acid fits the definition of an acid. e. rubidium hydroxide 3. Write the balanced equation for the reaction of 11. Hydrogen cyanide, HCN, is an extremely poiso- sulfuric acid with aluminum. nous liquid that reacts very slightly with water to form relatively few hydronium ions and cyanide, 4. Write the formula for each of the following acids CN–, ions. Classify HCN as a strong acid, a weak and identify each as a monoprotic, a diprotic, or acid, a strong base, or a weak base. triprotic acid. 12. You test several solutions and find that they have a. nitric acid pHs of 12.2, 3.5, 8.0, 5.7, 1.2, and 10.0. Which b. hydrobromic acid solution has the highest concentration of hydro- c. citric acid nium ions? Of hydroxide ions? Which solution is d. carbonic acid the closest to being neutral? e. benzoic acid

Appendix B / Supplemental Practice Problems 827 13. Find the pH values of the solutions with the fol- CHAPTER 15 lowing hydronium ion concentrations. a. 109M b. 1M c. 103M Section 15.1 14. Find the pH values of the solutions with the fol- Write overall, ionic, and net ionic equations for each lowing hydroxide ion concentrations. reaction in Questions 1 through 6.

6 7 14 a. 10 M b. 10 M c. 10 M 1. nitric acid, HNO3, and magnesium hydroxide, Mg(OH) 15. A solution of sodium carbonate is tested and 2 found to have a pH of 11. Compare the hydroni- 2. formic acid, HCHO2, and lithium hydroxide, um ion and hydroxide ion concentrations to LiOH those of a neutral solution. 3. sulfuric acid, H2SO4, and sodium hydroxide, 16. In an aqueous solution of formic acid, compare NaOH the concentrations of hydroxide ions, hydroni- 4. hydrobromic acid, HBr, and ammonia, NH 3 um ions, formate ions (CHO2 ), and formic acid molecules. 5. lactic acid, HC3H5O3, and strontium hydroxide, Sr(OH) + 2 17. Estimate the molarity of NH3,NH4 , and OH in 0.25M NH . 6. hydrochloric acid, HCl, and iron(III) hydroxide, 3 Fe(OH) + 3 18. What are the molarities of HNO3,H3O ,NO3 , 7. For each of the reactions in Questions 1 through and OH in a 0.010M solution of HNO3? What is the pH of the solution? 6, predict whether the pH of the product solu- tion is acidic, basic, or neutral, and explain your + 19. What are the molarities of NaOH, Na ,OH , prediction. + and H3O in a 1.0M solution of NaOH? What is the pH of the solution? 8. Identify the spectator ions in each reaction in Questions 1 through 6. 9. A reaction occurs in which perchloric acid neu- tralizes an unknown strong base. Write the net Sections 14.1 and 14.2 ionic equation for the reaction. 20. Which of the following solutions is the best con- 10. Benzoic acid, HC7H5O2, is found in small ductor of electricity? Which is the weakest amounts in many types of berries. Write the conductor? overall, ionic, and net ionic equations for the reaction of benzoic acid with lithium hydroxide. a. 1.0M HC2H3O2 b. 0.1M HC H O Will the pH of the product solution be greater 2 3 2 than 7, exactly 7, or less than 7? Explain. c. 0.5M H2SO4 11. When each of the following salts is dissolved in water, will its solution be acidic, basic, or neu- tral? Explain.

a. NaBr b. NaC2H3O2 c. NH4NO3 12. In terms of hydrogen ion transfer, how are acids and bases defined?

828 Appendix B / Supplemental Practice Problems 13. Identify the acid and the base in each of the fol- 21. If a person’s blood pH becomes too high, what lowing reactions. can he or she do to cause the pH of the blood to → drop to its normal level? a. HC2H3O2(aq) NH3(aq) + NH4 (aq) C2H3O2 (aq) 22. Consider an antacid that contains milk of mag- → nesia. Write the overall equation that shows how b. HNO2(aq) H2O(l) + this antacid reduces the acidity of stomach acid. H3O (aq) NO2 (aq) → c. H2BO3 (aq) H2O(l) 23. What is meant by the endpoint of a titration? At H3BO3(aq) OH (aq) the endpoint, what happens to the pH of the solution that is being titrated? 14. An amphoteric substance is one that may act as either an acid or a base. The hydrogen sulfite ion 24. How does the endpoint pH of a weak acid- is amphoteric. Write reactions that demonstrate strong base titration compare with that of a this property of HSO3 . weak base-strong acid titration? 15. Provide an example of an acid-base reaction that 25. A 0.200M NaOH solution was used to titrate an does not require the presence of water. Explain HCl solution of unknown concentration. At the how you know which reactant is the acid and endpoint, 27.8 mL of NaOH solution had neu- which is the base. tralized 10.0 mL of HCl. What is the molarity of of the HCl solution? 16. Which type of acid-base reaction does not always go to completion? Explain why. 26. A student finds that 42.7 mL of 0.500M sodium hydroxide are required to neutralize 30.0 mL of 17. Complete and balance the overall equations for a sulfuric acid solution. What is the molarity of the following acid-base reactions. the sulfuric acid? a. HNO (aq) LiOH(aq) → 2 27. A student neutralizes 20.0 L of a potassium b. H SO (aq) → Al(OH) (s) → 2 4 3 hydroxide solution with 11.6 mL of 0.500M → c. H3C6H5O7(aq) Mg(OH)2(aq) HCl. What is the molarity of the potassium → hydroxide? d. HC7H5O2(aq) NH3(aq) 18. For each reaction in Question 17, identify the 28. An NaOH solution of unknown concentration type of acid-base reaction represented by the was used to titrate 30.0 mL of a 0.100M solution

equation. of citric acid, H3C6H5O7. If 16.4 mL of NaOH are used to reach the endpoint, what is the con- 19. Write an overall equation for the acid-base reac- centration of the NaOH solution? tion that would be required to produce each of the following salts. 29. A 35.0-mL sample of a solution of formic acid,

HCHO2, is titrated to the endpoint with a. Mg(NO3)2 c. K2SO4 68.3 mL of 0.100M Ca(OH)2. What is the molar- b. NH4I d. Sr(C2H3O2)2 ity of the formic acid? 30. A student finds that 31.5 mL of a 0.175M solu- tion of LiOH was required to titrate 15.0 mL of Section 15.2 a phosphoric acid solution to the endpoint. What is the molarity of the H PO ? 20. If the OH concentration in blood increases, 3 4

what then happens to the concentrations of 31. How many milliliters of a 0.120M Ca(OH)2 are needed to neutralize 40.0 mL of 0.185M HClO ? H2CO3, HCO3 , and OH ? 4

32. What volume of 0.100M HNO3 is needed to neutralize 56.0 mL of 6.00M KOH?

Appendix B / Supplemental Practice Problems 829 33. A 14.5-mL sample of an unknown triprotic acid 34. The following are the endpoint pHs for three is titrated to the endpoint with 35.2 mL of titrations. From each endpoint pH, indicate

0.0800M Sr(OH)2. What is the molarity of the whether the titration involves a weak acid-strong acid solution? base, a weak base-strong acid, or a strong acid- strong base reaction. Use Figure 15.17 to select the best indicator for each reaction. a. pH 9.38 b. pH 7.00 c. pH 5.32

35. A 25.0-mL sample of an H2SO3 solution of unknown molarity is titrated to the endpoint Figure 15.17 with 76.2 mL of 0.150M KOH. What is the

Indicators and Titration molarity of the H2SO3? Use Figure 15.17 to The graphs show some of the select the best indicator for the reaction. more popular acid-base indi- cators used in the chemistry laboratory and the pH at which they change color.

The reaction between a strong acid and a strong 14 base results in a completely neutral solution. Bro- mothymol blue is an effective indicator for such 12 reactions because it changes color at a pH of 7. ᮣ 10 Phenolphthalein 8 Bromothymol blue

pH pH = 7.00 14 6 at endpoint 12 4 Methyl red 10 Phenolphthalein 2 pH = 8.80 at endpoint 8 0

pH Bromothymol blue 6 10 20 30 40 50 60 70 Volume of strong base added (mL) 4 Methyl red 2 0 10 20 30 40 50 60 70 Volume of strong base added (mL) 14 ᮡ Because the reaction between a weak acid and a 12 strong base results in a slightly basic solution, the endpoint pH for a weak acid-strong base titration 10 Phenolphthalein is greater than 7. For such a titration, phenolph- 8 Bromothymol blue

thalein changes color at the endpoint. pH 6 pH = 5.27 4 at endpoint Methyl red The titration of a weak base with a 2 strong acid has an endpoint pH that is less than 7. For this titration, methyl red 0 is a good indicator because its pH range 10 20 30 40 50 60 70 matches closely the endpoint pH. ᮣ Volume of strong acid added (mL)

830 Appendix B / Supplemental Practice Problems 36. An antacid tablet containing KHCO3 is titrated 2. Which of the following changes are oxidations with 0.100M HCl. If 0.300 g of the tablet and which are reductions? requires 26.5 mL of HCl to reach the endpoint, a. Mg2+ becomes Mg c. Fe2+ becomes Fe3+ what is the mass percent of KHCO in the 3 b. K becomes K+ d. Cl becomes 2Cl tablet? 2 37. Vitamin C is also known as ascorbic acid, 3. Identify the reducing agent in each of the fol- lowing reactions. HC6H7O6. A solution made by dissolving a tablet containing 0.500 g of vitamin C in a. Zn(s) 2Ag+(aq) → Zn2+(aq) 2Ag(s) 100 mL of distilled water is titrated to the b. Cl (g) 2Na(s) → 2NaCl(s) endpoint with 0.125M NaOH. Assuming that 2 c. 2SO (g) O (g) → 2SO (g) vitamin C is the only acid present in the tablet, 2 2 3 how many milliliters of the NaOH solution are 4. Write the equation for the redox reaction that needed to neutralize the vitamin C? occurs when magnesium metal reacts with nitric acid. Name the oxidizing agent and the reducing 38. A student mixes 112 mL of a 0.150M HCl solu- agent. tion and 112 mL of an NaOH solution of unknown molarity. The final solution is found 5. The following equation represents the neutral- to be acidic. The student then titrates this solu- ization reaction between hydrochloric acid and tion to the endpoint with 16.7 mL of 0.100M calcium hydroxide. Determine the oxidation NaOH. What was the molarity of the original number for each element. Is this a redox reac- NaOH solution? tion? Explain. → 2HCl(aq) Ca(OH)2(aq) CaCl (aq) 2H O(l) Sections 15.1 and 15.2 2 2 6. For each of the following reaction, determine 39. Propanoic acid, HC3H5O2, is a weak acid. When propanoic acid completely reacts with sodium whether or not it is a redox reaction. If it is, hydroxide, the final solution has a pH slightly identify which reactant is reduced and which is greater than 7. Why are the products of this oxidized. “neutralization” reaction not neutral? Use the a. Fe2+(aq) Mg(s) → Fe(s) Mg2+(aq) net ionic equation to help in your explanation. → b. 2NaI(aq) Pb(NO3)2(aq) 40. How does a solution that contains dissolved PbI2(s) 2NaNO3(aq) acetic acid and sodium acetate act as a buffer? → c. 4Al(s) 3O2(g) 2Al2O3(s) Use net ionic equations to show how this buffer responds to added H+ and OH. 7. When a mixture of iron filings and sulfur crys- tals is heated, the elements combine to form iron(II) sulfide. CHAPTER 16 Fe(s) S(s) → FeS(s) Section 16.1 Is this a redox reaction? If so, which element is 1. What is the difference between an oxidation- oxidized and which is reduced? reduction reaction and a reaction that is not 8. Mercury(II) oxide is a red crystalline powder oxidation-reduction? that decomposes into mercury and oxygen on exposure to light. Write a balanced equation for this reaction. Is it a redox reaction? If so, which element is oxidized and which is reduced?

Appendix B / Supplemental Practice Problems 831 Section 16.2 2. Describe the movement of electrons during 9. Name the compounds that form the green electrolysis. protective , or patina, on the Statue of 3. Name four uses of electrolysis. Liberty. What is the oxidation number of copper 4. What is produced by the Hall-Héroult process? in these compounds? What useful purpose does Why was the development of this process so the patina serve? important? What are some drawbacks of the 10. What is chemiluminescence? Name two practical process, and what can people do to circumvent uses of chemiluminescence. these drawbacks?

CHAPTER 17 Section 17.2 Section 17.1 5. A piece of aluminum metal is placed in a 0.50M 1. Answer the following questions pertaining to an solution of lead(II) nitrate, Pb(NO ) . electrolytic cell. 3 2 a. Use Table 17.1 to predict which metal will be a. What are positive ions called? What are reduced and which will be oxidized. negative ions called? b. Write an equation for the net redox reaction b. Which electrode attracts positive ions? Which that occurs. attracts negative ions? c. Is this system a galvanic cell? Explain. c. Where does oxidation occur? Where does reduction occur?

Table 17.1 Ease of Oxidation of Common Metals

Easily oxidized Li Li ˇ Li+ + e– KK ˇ K+ + e– Ca Ca ˇ Ca2+ + 2e– Na Na ˇ Na+ + e– Mg Mg ˇ Mg2+ +2e– Al Al ˇ Al3+ + 3e– Mn Mn ˇ Mn2+ + 2e– Zn Zn ˇ Zn2+ + 2e– Cr Cr ˇ Cr3+ + 3e– Fe Fe ˇ Fe2+ + 2e– ˇ 2+ – Ni Ni Ni + 2e Gold Sn Sn ˇ Sn2+ + 2e– Pb Pb ˇ Pb2+ + 2e– Cu Cu ˇ Cu2+ + 2e– Ag Ag ˇ Ag+ + e– Hg Hg ˇ Hg2+ + 2e– Pt Pt ˇ Pt2+ + 2e– Not easily oxidized Au Au ˇ Au3+ + 3e–

832 Appendix B / Supplemental Practice Problems 6. Can a solution of magnesium chloride be stored 2. Name the branched alkanes shown. in a container plate with chromium metal? a. CH3CH2CHCH2CHCH CH Explain. 2 3 CH3 CH2 7. Which of the following galvanic cells would you CH expect to have the highest voltage? The lowest 3

voltage? Explain your answers. b. CH3CHCH2CHCH2CH2CHCH3

a. a zinc-copper cell CH3 CH2 CH3

b. an iron-copper cell CH3 c. a magnesium-copper cell c. CH3CHCH2CH3 8. What change would occur if you placed CH2

a. a strip of zinc into a solution of silver nitrate? CH3 b. a strip of zinc into a solution of sodium 3. Why is there no compound named sulfate? 3,6-dimethylheptane? What is the correct name 9. Draw a diagram of a galvanic cell in which the for this compound? reaction is 4. Compare the reactivities of alkanes and alkenes. Zn(s) Sn2+(aq) → Zn2+(aq) Sn(s). Explain the difference. Label the cathode and the anode. Show the ions 5. The molecular formula of the cycloalkanes fol- present in both compartments, and indicate the low the pattern CnH2n,where n is the number of direction of electron flow in the external circuit. carbon atoms. What pattern is followed by the cycloalkenes with one double bond? 10. What are some potential advantages of electric cars? Why are electric cars uncommon in the 6. Draw structures of the following hydrocarbons, United States? and identify each as an alkane, alkene, or alkyne. a. heptane CHAPTER 18 b. cis-2-pentene c. propyne Section 18.1 d. 1,2-dimethylcyclopentane 1. Name the following hydrocarbons. e. 3-ethyl-2-methylhexane

a. CH3CH3 f. 2-methyl-2-butene 7. Write the names and structures of one posi- b. CH CH C CCH 3 2 3 tional isomer, one geometric isomer, and two c. CH3CH CHCH2CH2CH2CH3 structural isomers of cis-2-butene. d. H C H H CC H CC HH HH

Appendix B / Supplemental Practice Problems 833 8. How many H2 molecules would be required to 15. Distinguish between fully hydrogenate one molecule of vitamin D , 2 a. an amide and an amine. the structure shown here? b. an ether and an ester. CH3 H3C CH3 16. Draw the following structures. H C 3 a. an ester, where R is CH2CH3 CH3 and R´ is CH3 b. a ketone, where R is CHCH H 3 H CH CH3 2 and R´ is CH2CH3 HO 17. The structure of tyrosine, an amino acid, is shown. Name the functional groups in the 9. Halogen molecules such as Cl can be added to 2 molecule. double bonds in a reaction similar to hydro- genation. Draw the structure of the product that H

forms when Cl2 is added to 2-butene. HO CH2 C COOH 10. Show the structure of the product of each of the

following reactions. NH2 a. CH CH = CHCH H → ? 3 3 2 Sections 18.1 and 18.2 b. CH ≠ CH 2H → ? 2 18. Name a common example of each of the follow- ≠ → c. CH3C CH H2 ? ing classes of organic compounds. 11. How are the properties of benzene unlike those a. ester c. cycloalkane of most alkenes? How do chemists account for benzene’s behavior? b. ketone d. aromatic hydrocarbon 12. What is petroleum? Where is it found? Name six useful products that are derived from petroleum. Section 18.3 13. What technique is commonly used to separate petroleum into its component liquids? What two 19. Draw the structure of the polymer that will be processes are used to convert large alkanes into formed from each of the monomers shown. smaller hydrocarbons? a. CH2 CH2

b. CH2 CHCH3

Section 18.2 c. CH2 CCH3 14. Classify each of the following molecules as C O belonging to one of the categories of substituted O hydrocarbons described in the chapter. CH3 a.O c. O 20. Provide one example each of a thermoplastic CH3CH2C CH3CHCH2C OH H polymer and a thermosetting polymer. Which CH 3 type of polymer is easier to recycle? Which type

b.CH3 OCHCH3 d. CH3CHCHCH3 is more durable? Explain.

CH3 Cl Cl

834 Appendix B / Supplemental Practice Problems CHAPTER 19 6. What monomers form each of the following types of biomolecule? Section 19.1 a. protein c. polysaccharide 1. What elements make up proteins? Name some b. nucleic acid of the roles that proteins play in living systems. 7. What are nucleic acids? What functions do they 2. Describe briefly what enzymes are and how they perform in cells? Why are nucleic acids not listed work. on food-product ? What are the two kinds of nucleic acids found in cells? 3. Name two common disaccharides found in foods. Are these molecules classified as nutri- 8. Name two diseases that can result from vitamin ents? Explain. deficiencies in the diet. Can too much of a vita- min cause disease? Explain. 4. Describe the functions of lipids and their solu- bility properties. Are animal lipids or plant lipids 9. What is a coenzyme? Give an example in which generally more saturated? a vitamin acts as a coenzyme. 5. Examine the structure of each of the following molecules shown and decide whether each is a carbohydrate, a lipid, or an amino acid. Section 19.2 a. H O 10. What are hormones? Give an example of a hor- H mone and describe its function. N C C OH H CH2 CHAPTER 20

CH2 Section 20.1 S 1. Nitric oxide gas (NO) can be prepared by pass- ing air through an electric arc. The heat of reac- CH3 tion is +90.4 kJ/mol NO. Write a balanced b. O chemical equation that includes the reaction heat. Is the reaction exothermic or endothermic? CH3 (CH2)14 C OH 2. Sketch a graph of the energy changes during the c. O HOH2C OH progress of an endothermic reaction with a high activation energy. On the same axes, sketch a HH graph of energy change versus progress of the H H reaction if a catalyst is used to lower the activa- HO H tion energy. 3. Describe each of the following processes as d. H O involving an increase or decrease in entropy. Explain your answers. H2N C C OH a. Water boils, forming water vapor. CH2 b. Baking soda reacts with vinegar to form C O sodium acetate solution, water, and carbon dioxide gas. OH c. Two moles of nitrogen gas combine with six moles of hydrogen gas to form four moles of ammonia gas.

Appendix B / Supplemental Practice Problems 835 Table 20.2 The Caloric Value of Some Foods

Food Quantity Kilojoules Calories butter 1 tbsp = 14 g 418 100 peanut butter 1 tbsp = 16 g 418 100 spaghetti 0.5 cup = 55 g 836 200 apple 1 283 70 chicken (broiled) 3 oz = 84 g 502 120 beef (broiled) 3 oz = 84 g 1000 241

Section 20.2 Section 20.3 4. How much heat is given off by a reaction that 10. In photosynthesis, which three products of the raises the temperature of 756 g of water in a light reactions take part in the reactions of the calorimeter from 23.2°C to 37.6°C? Calvin cycle? 5. When 5.00 g of a certain liquid organic com- pound are burned in a calorimeter, the tempera- CHAPTER 21 ture of the surrounding 2.00 kg of water increas- es from 24.5°C to 40.5°C. All products of the Section 21.1 reaction are gases. Calculate the heat given off in 1. Write the balanced nuclear equation for each of this reaction. How much heat would 1.00 mol of the following nuclear reactions, and determine the compound give off, assuming a molar mass the type of decay. of 46.1 g/mol? a. Uranium-234 decays to form thorium-230. 6. Explain the relationship among a calorie, a Calo- b. Bismuth-214 decays to form polonium-214. rie, and a kilocalorie. If you eat a candy bar that contains 180 Calories, how many calories have c. Thallium-210 decays to form lead-210. you consumed? How many kilocalories? 2. A compound containing 200 mg of technetium- 7. Using Table 20.2 as a guide, compare the Caloric 99m is injected into a patient to get a bone scan, contents of 1 g of peanut butter and 1 g of but equipment problems make it impossible to broiled chicken. How might you explain the scan the patient before 24 hours have passed. difference? Will the nuclear medical technician be able to get a good scan after that period of time, or 8. A 10.0-g sample of a certain brand of cereal is should more technetium-99m be injected? The burned in a calorimeter. The 4.00 kg of sur- half-life of technetium-99m is 6.0 hours. rounding water increase in temperature from 22.00°C to 30.20°C. What is the food value in 3. A fossilized piece of wood is found to have Calories per gram? 3.12 percent of the amount of carbon-14 that would be found in a new piece of similar wood. How old is the fossilized wood?

Sections 20.1 and 20.2 9. List two factors that would make an exothermic reaction less likely to occur.

836 Appendix B / Supplemental Practice Problems 4. A scientist analyzing a rock sample finds that it 6. Distinguish between deuterium and tritium. contains 75 percent of the potassium-40 that Why is deuterium potentially important as a would be found in a similar rock formed today. source of energy? Use Figure 21.7 and Table 21.1 to estimate the age of the rock.

Sections 21.1 and 21.2 7. How do nuclear reactions differ from chemical Section 21.2 reactions? 5. In the early 1900s, Albert Einstein developed a famous equation relating mass and energy in nuclear reactions. Use this equation to explain why nuclear reactions release very large amounts of energy.

Table 21.1 Half-Life Values for Commonly Used Radioactive Isotopes

Isotope Half-Life 3 1 H 12.26 years 100 14 6 C 5730 years 32 15 P 14.282 days 40 19 K 1.25 billion years 60 27 Co 5.271 years 85 36 Kr 10.76 years 50 93 36 Kr 1.3 seconds 87 37 Rb 48 billion years 99m Nuclei Remaining 25 43 Tc 6.0 hours* 131 Percent of Radioactive 53 I 8.07 days 12.5 131 56 Ba 12 days 153 64 Gd 242 days 201 0 1 2 3 4 81 Tl 73 hours 226 Number of Half-Lives That Have Gone By 88 Ra 1600 years 235 U 710 million years 92 Figure 21.7 238 U 4.51 billion years 92 Graph Illustrating Half-Life 241 95 Am 432.7 years During each half-life period, half of the radioactive *The m in the symbol tells you that this is a metastable element, nuclei in a sample decay. After one half-life, 50 per- which is one form of an unstable isotope. Technetium 99m gives off a gamma ray to become a more stable form of the same isotope, cent of the sample remains. After two half-lives, with no change in either atomic or mass number. 25 percent of the sample remains. After three half-lives, 12.5 percent remains, and so on.

Appendix B / Supplemental Practice Problems 837 Section 21.3 8. What is a radioactive tracer? Name three non- medical uses for radioactive tracers. 9. The quantity of nuclear waste generated in hos- pitals is much greater than the quantity generat- ed in nuclear reactors. Why, then, is nuclear waste from nuclear reactors more dangerous than nuclear waste from hospitals? 10. Using information on pages 776 and 778 of your text, compare the radiation exposure from a chest X ray to the exposure from smoking two packs of cigarettes a day for a year.

838 Appendix B / Supplemental Practice Problems APPENDIX C Safety Handbook

Safety Guidelines in the Chemistry Laboratory The chemistry laboratory is a safe place to work if you are aware of important safety rules and if you are careful. You must be responsible for your own safety and for the safety of others. The safety rules given here will protect you and others from harm in the lab. While carrying out procedures in any of the ChemLabs, Launch Labs, or Try at Home Labs, notice the safety symbols and caution statements. The safety symbols are explained in the chart on the next page. 1. Always obtain your teacher’s permission to 8. Keep all materials away from open flames. begin a lab. Tie back long hair. 2. Study the procedure. If you have questions, 9. If a fire should break out in the classroom, ask your teacher. Be sure you understand all or if your clothing should catch fire, smoth- safety symbols shown. er it with the fire blanket or a coat, or get 3. Use the safety equipment provided for under a safety shower. NEVER RUN. you. Goggles and a safety apron should 10. Report any accident or injury, no matter be worn when any lab calls for using how small, to your teacher. chemicals. 4. When you are heating a test , always Follow these procedures as you clean up your slant it so the mouth points away from you work area. and others. 1. Turn off the water and gas. Disconnect elec- 5. Never eat or drink in the lab. Never inhale trical devices. chemicals. Do not taste any substance or 2. Return materials to their places. draw any material into your mouth. 3. Dispose of chemicals and other materials as 6. If you spill any chemical, wash it off imme- directed by your teacher. Place broken glass diately with water. Report the spill immedi- and solid substances in the proper contain- ately to your teacher. ers. Never discard materials in the sink. 7. Know the location and proper use of the 4. Clean your work area. fire extinguisher, safety shower, fire blanket, 5. Wash your hands thoroughly after working first aid kit, and fire alarm. in the laboratory. First Aid in the Laboratory Injury Safe Response Burns Apply cold water. Call your teacher immediately. Cuts and bruises Stop any bleeding by applying direct pressure. Cover cuts with a clean dressing. Apply cold compresses to bruises. Call your teacher immediately. Fainting Leave the person lying down. Loosen any tight clothing and keep crowds away. Call your teacher immediately. Foreign matter in eye Flush with plenty of water. Use eyewash or fountain. Poisoning Note the suspected poisoning agent and call your teacher immediately. Any spills on skin Flush with large amounts of water or use safety shower. Call your teacher immediately.

Appendix C / Safety Handbook 839 Safety Symbols

SAFETY SYMBOLS HAZARD EXAMPLES PRECAUTION REMEDY

Special disposal proce- certain chemicals, Do not dispose of Dispose of wastes as DISPOSAL dures need to be fol- living organisms these materials in the directed by your lowed. sink or trash can. teacher. Organisms or other bacteria, fungi, blood, Avoid skin contact with Notify your teacher if BIOLOGICAL biological materials unpreserved tissues, these materials. Wear you suspect contact that might be harmful plant materials mask or gloves. with material. Wash to humans hands thoroughly. EXTREME Objects that can burn boiling liquids, hot Use proper protection Go to your teacher for skin by being too cold plates, dry ice, liquid when handling. first aid. TEMPERATURE or too hot nitrogen SHARP Use of tools or glass- razor blades, pins, Practice common- Go to your teacher for ware that can easily scalpels, pointed tools, sense behavior and first aid. OBJECT puncture or slice skin dissecting probes, bro- follow guidelines for ken glass use of the tool. Possible danger to res- ammonia, acetone, Make sure there is Leave foul area and FUME piratory tract from nail polish remover, good ventilation. Never notify your teacher fumes heated sulfur, moth smell fumes directly. immediately. balls Wear a mask. Possible danger from improper grounding, Double-check setup Do not attempt to fix ELECTRICAL electrical shock or liquid spills, short with teacher. Check electrical problems. burn circuits, exposed wires condition of wires and Notify your teacher apparatus. immediately. Substances that can pollen, moth balls, Wear dust mask and Go to your teacher for IRRITANT irritate the skin or steel wool, fiberglass, gloves. Practice extra first aid. mucous membranes of potassium perman- care when handling the respiratory tract ganate these materials. Chemicals can react bleaches such as Wear goggles, gloves, Immediately flush the CHEMICAL with and destroy tissue hydrogen peroxide; and an apron. affected area with and other materials acids such as sulfuric water and notify your acid, hydrochloric acid; teacher. bases such as ammo- nia, sodium hydroxide Substance may be poi- mercury, many metal Follow your teacher’s Always wash hands TOXIC sonous if touched, compounds, iodine, instructions. thoroughly after use. inhaled, or swallowed. poinsettia plant parts Go to your teacher for first aid. Flammable chemicals alcohol, kerosene, Avoid open flames and Notify your teacher FLAMMABLE may be ignited by potassium perman- heat when using immediately. Use fire open flame, spark, or ganate flammable chemicals. safety equipment if exposed heat. applicable. Open flame in use, hair, clothing, paper, Tie back hair and loose Notify your teacher OPEN FLAME may cause fire. synthetic materials clothing. Follow immediately. Use fire teacher’s instruction on safety equipment if lighting and extinguish- applicable. ing flames.

Eye Safety Clothing Animal Safety Handwashing Proper eye protection Protection This symbol appears After the lab, wash should be worn at all This symbol appears when safety of ani- hands with soap and times by anyone per- when substances mals and students water before removing forming or observing could stain or burn must be ensured. goggles. science activities. clothing.

840 Appendix C / Safety Handbook APPENDIX D Chemistry Data Handbook

Table D.1 Symbols and Abbreviations

particles from radioactive materials, helium nuclei P pressure, power particles from radioactive materials, electrons Pa pascal (pressure) rays from radioactive materials, high-energy quanta p momentum change in q heat wavelength R gas constant frequency S entropy osmotic pressure s second (time) A ampere (electric current)Sv sievert (absorbed radiation) Bq becquerel (nuclear disintegration) T temperature °C Celsius degree (temperature) U internal energy C coulomb (quantity of electricity)u atomic mass unit c speed of light V volume cd candela (luminous intensity)V volt (electromotive force) Cp specific heat v velocity D density W watt (power) E energy, electromotive force w work F force, Faraday x mole fraction G free energy g gram (mass) Gy gray (radiation) H enthalpy Hz hertz (frequency) h Planck’s constant h hour (time) J joule (energy) K kelvin (temperature) Ka ionization constant (acid) Kb ionization constant (base) Keq equilibrium constant Ksp solubility product constant kg kilogram M molarity m mass, molality m meter (length) mol mole (amount) min minute (time) N newton (force) NA Avogadro’s number n number of moles

Appendix D / Chemistry Data Handbook 841 EM pp841-852 AppD-861798 5/4/04 1:20 PM Page 842

Table D.2 The Modern Periodic Table

PERIODIC TABLE OF THE ELEMENTS

1A Gas 1 Element Hydrogen Liquid Atomic number 1 State of Hydrogen matter Solid 1 2A Symbol H 1 2 H Synthetic 1.008 Atomic mass 1.008

Lithium Beryllium 3 4 2 Li Be 6.941 9.012

Sodium Magnesium 11 12 3B 4B 5B 6B 7B 8B 3 Na Mg 3 4 5 6 7 8 9 22.990 24.305

Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt 19 20 21 22 23 24 25 26 27 4 K Ca Sc Ti V Cr Mn Fe Co 39.098 40.078 44.956 47.867 50.942 51.996 54.938 55.845 58.933

Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium 5 37 38 39 40 41 42 43 44 45 Rb Sr Y Zr Nb Mo Tc Ru Rh 85.468 87.62 88.906 91.224 92.906 95.94 (98) 101.07 102.906

Cesium Barium Lanthanum Hafnium Tantalum Tungsten Rhenium Osmium Iridium 6 55 56 57 72 73 74 75 76 77 Cs Ba La Hf Ta W Re Os Ir 132.905 137.327 138.906 178.49 180.948 183.84 186.207 190.23 192.217

Francium Radium Actinium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium 7 87 88 89 104 105 106 107 108 109 Fr Ra Ac Rf Db Sg Bh Hs Mt (223) (226) (227) (261) (262) (266) (264) (277) (268) The number in parentheses is the mass number of the longest lived isotope for that element.

Cerium Praseodymium Neodymium Promethium Samarium Europium 58 59 60 61 62 63 Lanthanide series Ce Pr Nd Pm Sm Eu 140.116 140.908 144.24 (145) 150.36 151.964

Thorium Protactinium Uranium Neptunium Plutonium Americium Actinide series 90 91 92 93 94 95 Th Pa U Np Pu Am 232.038 231.036 238.029 (237) (244) (243)

842 Appendix D / Chemistry Data Handbook Metal 8A 18 Metalloid

Nonmetal Helium 3A 4A 5A 6A 7A 2 Recently 13 14 15 16 17 He discovered 4.003

Boron Carbon Nitrogen Oxygen Fluorine Neon 5 6 7 8 9 10 B C N O F Ne 10.811 12.011 14.007 15.999 18.998 20.180

Aluminum Silicon Phosphorus Sulfur Chlorine Argon 1B 2B 13 14 15 16 17 18 10 11 12 Al Si P S Cl Ar 26.982 28.086 30.974 32.065 35.453 39.948

Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 28 29 30 31 32 33 34 35 36 Ni Cu Zn Ga Ge As Se Br Kr 58.693 63.546 65.39 69.723 72.64 74.922 78.96 79.904 83.80

Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon 46 47 48 49 50 51 52 53 54 Pd Ag Cd In Sn Sb Te I Xe 106.42 107.868 112.411 114.818 118.710 121.760 127.60 126.904 131.293

Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon 78 79 80 81 82 83 84 85 86 Pt Au Hg Tl Pb Bi Po At Rn 195.078 196.967 200.59 204.383 207.2 208.980 (209) (210) (222)

Darmstadtium Unununium Ununbium Ununquadium 110 111 112 114 Ds **Uuu Uub * Uuq (281) (272) (285) (289) * Names not officially assigned. Discovery of element 114 recently reported. Further information not yet available.

Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium 64 65 66 67 68 69 70 71 Gd Tb Dy Ho Er Tm Yb Lu 157.25 158.925 162.50 164.930 167.259 168.934 173.04 174.967

Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 96 97 98 99 100 101 102 103 Cm Bk Cf Es Fm Md No Lr (247) (247) (251) (252) (257) (258) (259) (262)

Appendix D / Chemistry Data Handbook 843 Table D.3 Alphabetical Table of the Elements

Atomic Atomic Atomic Atomic Element Symbol number mass Element Symbol number mass Actinium Ac 89 227.027 8* Mendelevium Md 101 258.098 6* Aluminum Al 13 26.981 539 Mercury Hg 80 200.59 Americium Am 95 243.061 4* Molybdenum Mo 42 95.94 Antimony Sb 51 121.757 Neodymium Nd 60 144.24 Argon Ar 18 39.948 Neon Ne 10 20.179 7 Arsenic As 33 74.921 59 Neptunium Np 93 237.048 2 Astatine At 85 209.987 1* Nickel Ni 28 58.6934 Barium Ba 56 137.327 Niobium Nb 41 92 .906 38 Berkelium Bk 97 247.070 3* Nitrogen N 7 14. 006 74 Beryllium Be 4 9.012 182 Nobelium No 102 259.100 9* Bismuth Bi 83 208.980 37 Osmium Os 76 190.2 Bohrium Bh 107 262* Oxygen O 8 15.999 4 Boron B 5 10.811 Palladium Pd 46 106.42 Bromine Br 35 79.904 Phosphorus P 15 30.973 762 Cadmium Cd 48 112.411 Platinum Pt 78 195.08 Calcium Ca 20 40.078 Plutonium Pu 94 244.064 2* Californium Cf 98 251.079 6* Polonium Po 84 208.982 4* Carbon C 6 12.011 Potassium K 19 39.098 3 Cerium Ce 58 140.115 Praseodymium Pr 59 140.907 65 Cesium Cs 55 132.905 43 Promethium Pm 61 144.912 8* Chlorine Cl 17 35.452 7 Protactinium Pa 91 231.035 88 Chromium Cr 24 51.996 1 Radium Ra 88 226.025 4 Cobalt Co 27 58.933 20 Radon Rn 86 222.017 6* Copper Cu 29 63.546 Rhenium Re 75 186.207 Curium Cm 96 247.070 3* Rhodium Rh 45 102.905 50 Darmstadtium Ds 110 271* Rubidium Rb 37 85.467 8 Dubnium Db 105 262* Ruthenium Ru 44 101.07 Dysprosium Dy 66 162.50 Rutherfordium Rf 104 261* Einsteinium Es 99 252.082 8* Samarium Sm 62 150.36 Erbium Er 68 167.26 Scandium Sc 21 44.955 910 Europium Eu 63 151.965 Seaborgium Sg 106 263* Fermium Fm 100 257.095 1* Selenium Se 34 78.96 Fluorine F 9 18.998 403 2 Silicon Si 14 28.085 5 Francium Fr 87 223.019 7* Silver Ag 47 107.868 2 Gadolinium Gd 64 157.25 Sodium Na 11 22.989 768 Gallium Ga 31 69.723 Strontium Sr 38 87.62 Germanium Ge 32 72.61 Sulfur S 16 32.066 Gold Au 79 196.966 54 Tantalum Ta 73 180.947 9 Hafnium Hf 72 178.49 Technetium Tc 43 97.907 2* Hassium Hs 108 265* Tellurium Te 52 127.60 Helium He 2 4.002 602 Terbium Tb 65 158.925 34 Holmium Ho 67 164.930 32 Thallium Tl 81 204.383 3 Hydrogen H 1 1.007 94 Thorium Th 90 232.038 1 Indium In 49 114.82 Thulium Tm 69 168.934 21 Iodine I 53 126.904 47 Tin Sn 50 118.710 Iridium Ir 77 192.22 Titanium Ti 22 47.88 Iron Fe 26 55.847 Tungsten W 74 183.85 Krypton Kr 36 83.80 Ununbium Uub 112 285* Lanthanum La 57 138.905 5 Ununquadium Uuq 114 289* Lawrencium Lr 103 260.105 4* Unununium Uuu 111 272* Lead Pb 82 207.2 Uranium U 92 238.028 9 Lithium Li 3 6.941 Vanadium V 23 50.941 5 Lutetium Lu 71 174.967 Xenon Xe 54 131.29 Magnesium Mg 12 24.305 0 Ytterbium Yb 70 173.04 Manganese Mn 25 54.938 05 Yttrium Y 39 88.905 85 Meitnerium Mt 109 266* Zinc Zn 30 65.39 * The mass of the isotope with the longest known half-life. Zirconium Zr 40 91.224

844 Appendix D / Chemistry Data Handbook

s

e t

a t

S

n

io ,5 ,5

t

a

id

x

O

r

jo ,4 ,6 ,4 ,3 ,3 a M ,2 ,4 ,4 ,3 ,4 ,3 ,2 ,4 ,1 ,3 ,5 ,3 ,3 ,5 ,5 ,5 ,1 ,3 ,3 ,4

3 3 2 3 3 1 2 1 2 3 2 3 2

)

’s

%

h

( t

t r

s a

u

E r

C

in 4 4 5 4 4 3 4 4 e

c

n

a 5 6 4 7 4 4

d

n u 10 10 10 10 10 10 10 10 b A 10 10 10 10 10 10

n

l) io

t o

a

m

iz /

r J

o k

p (

Va

f

o

y

lp

a

h

t n E

(sublimes)

)

°

C

t

g a

/

e

J (

H

ic

if

c

e

p

S

l)

o

m

/

J

k

(

n

io

s

u

F

f

o

y

lp

a

h

t

n E

)

d

e

t

a

n

ic

io

d t

s

t

a

n

in

id

e

e

x

t

m

a

o

t

le

o

s

t

e

r

r

n

o

o

f

io

t m

(

) c

o

r u V

f

d

l ( l

e

ia

R

t

d

n

r

e

a

t

d

o

n l)

P 2.923 2.087 0.2421 672.29 10.4 2.6 0.1733 250 6 0.34 13.38 0.38452 304 0.00582.29 1 15.5 0.2355 311.7 6.3 2.06 — — — — 3 0.15 19.5 0.2072 193 2 2.34 5.2 0.1923 313 0.007 3 1.97 7.895 1.824 297.6 2 1.67 10.71 0.9025 290.8 8.1 3 2.07 10 — 238.5 — 2 0.277 16.192 0.4210 3822.87 0.0028 2 0.51 0.8238 6.54 0.0544 1 2————3 2.32 17.2 0.1681 293 3.5 0.132 104.6 0.7099 711 0.018 4 0.124 31.8 0.3215 334.3 1.5 0.74 20.5 0.4491 339 0.01 2 1.065 10.571 0.47362 29.561.3583 2.5 6.41 0.47820 20.41 0.013 1 2.01 — — — — 3 2.13 14.30.24 0.120 27.7 293 0.3289 trace — 3 1.9 2.92 8.012 0.2044 140 0.039 2 0.2 23.80.3170.89 10.9 — 50.22.84 0.1221 90.3 179 1.026 8.54 trace 504.5 0.6315 8 1 9 155 4.662————3 2 1.991.96 10.5 —0.529 0.1820 5.59 — 176 0.3709 2.1 — 256 — 0.0018 1 2 0.4025 6.19 0.2311 100 1.6

a o

t

m S /

J

k ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

(

y

g

r

e

n

E

n

io

t

a

iz

n

Io

t

s

ir F

)

m

p

(

s

iu

d a

R

ic

m

o

t

A

)

P

T

S

t

a

d

e

r

) u

s

a m 3

c e

/

g m

( s

y e

s it

a s

g n (

e D

)

C

t

° (

in

o

P

g

ilin

o B 34 0.003214 91 1255.5 (1 188.2 0.001696 69 1681 (1 185.86 0.001784 98 1521 — 1.18 0.52033 6.52 4

)

C

t

°

(

in

o

P

g

in

lt e M 7.25 59.35 3.1028 119 1139.9 (1 219.7 189.37 101

(2840 kPa) (sublimes)

)

* u

( s

s

a

M

ic

m

o

t A

)

Z

(

r

e

b

m

u

N

ic

m

o

t A

l

o

b

m

y S

t

n e

m

le E Curium Cm 96 [247.0703] 1340 3540 13.51 174 581 (3 Cesium CsDarmstadtium 55Dubnium DsDysprosium 132.90543 110 Db Dy [271] 28.4 105 66 [262] 162.5 674.8 — 1.9 1407 — — 262 2600 — 375.7 — 8.536 (1 — — 178.1 572 — — (3 — — — — — — — — — — — — — Antimony Sb 51 121.757 630.7 1635 6.697 161 834 (3 Americium Am 95 [243.0614] 994 2600 13.67 183 579 (3 Copper Cu 29 63.546FranciumGadolinium 1085 Fr Gd 2570 64 87 [223.0197] 157.25 8.92 24 1312 128 745.5 650 3000 (2 7.886 — 180.4 280 592 375 (3 — 2 — 63.6 trace 1 CarbonCerium C Ce 6 58 140.115 12.011 3620 804 4200 3470 2.266 6.773 181.8 77 541 1086.5 (4 (3 Cobalt Co 27 58.9332 1495 2912 8.9 125 758.8 (2 Berkelium Bk 97 [247.0703] 986 — 14.78 170 601 (3 Beryllium Be 4 9.012182 1287 2468 1.848 112 899.5 (2 Aluminum Al 13 26.981539 660.37 2517.6 2.699 143 577.5 (3 Chromium Cr 24 51.9961 1860 2679 7.2 128 652.8 (3 Californium Cf 98 [251.0796] 900Erbium — Er — 68 167.26 186 608 1497 (3 2900 9.045 176.1 589 (3 Barium Ba 56 137.327 726.9 1845 3.62 222 502.9Fluorine (2 FGermanium Ge 9 32 18.9984032 72.61 945 2850 5.323 123 761.2 (4 Actinium AcArsenic 89 [227.0278] As 1050 33 3300 74.92159 10.07 816 203 615 666 5.778 (3 121 947 (3 Table D.4Table Properties of Elements ArgonAstatine Ar At 18BismuthBohrium 39.948 Boron 85Bromine [209.98037] Bi BhCalcium 83 B 107 Br 300 [262] 208.98037 Ca 35 5Chlorine 350 20 79.904 271.4 10.811 40.078 — Cl 1564 — 2080 17 9.808 841.5 —Einsteinium 35.4527 — 3865 1500.5Europium Es 151 916Fermium — 2.46 1.55 (1 703 99 Eu [252.0828] Fm (3 Gallium — 63 85 100 197 151.965 [257.0951] 860* [ — mass of ] indicates isotope. longest-lived 800.6 589.8 Ga (3 (2 31 826 — — — 69.723 1439 — — — 29.77 5.245 186 — — 2203 208.4 619 547 5.904 — — (3 (3 627 134 (3 — 578.8 (3 Cadmium Cd 48 112.411 320.8 770 8.65 151 867.7 (2

Appendix D/ Chemistry Data Handbook 845 ,5 ,4 ,3

,2 ,6 ,7

s

e

t

a t

S

n ,7

io ,1 ,5 ,6 ,6

t

a id

x

O

r ,5

jo ,1 ,4 ,4 ,5 ,5 ,4 ,5 ,6 ,8 a M ,1 ,1 ,3 ,2 ,5 ,4 ,3 ,3 ,3 ,3 ,4 ,3 ,3 ,3 ,1 ,3 ,3 ,4 ,2 ,5 ,6 ,4 ,4

1 4 3 1 1 3 3 1 4 4 2 2

)

’s

%

h

( t

t r

s a

u

E r

C

in 4 5 4 e

c

n

a 7 4 5 7 5 6 7 7

d 6

n u 10 10 10 b A 10 10 10 l0 10 10 10 10 10

n

l) io

t o

a

m

iz /

r J

o k

p (

Va

f

o

y

lp

a

h

t

n E

)

°

C

t

g a

/

e

J (

H

ic

if

c

e

p

S

l)

o

m

/

J

k

(

n

io

s

u

F

f

o

y

lp

a

h

t

n E

)

d

e

t

a

n

ic

io

d t

s

t

a

n

in

id

e

e

x

t

m

a

o

t

le

o

s

t

e

r

r

n

o

o

f

io

t m

(

) c

o

r u V

f

d

l ( l

e

ia

R

t

d

n

r

e

a

t

d

o

n l)

P 0.687 31.7 0.130 627.6 2 2.5 — — — — 2 0.092 0.72 1.0397 5.58 0.002 3 3.045 3 3.569 148 0.002 1 2.3 11.9 0.1535 414 8 0.65 26.9 0.2648 690 0.002 4 0.8535 2.2953 0.13950 59.1 2 0.1251 4.77 0.1276 178 0.0013 2 0.257 17.15 0.4442 375 0.0075 2 2.06 — — — — 3 2.37 8.5 0.1952 402 0.0035 3 0.91 9.46 — 336 — 2 1.15 19.7 0.1326 510.4 1 1.56 29.2882.33 0.1442 17.1 6610.5355 15.517 0.1646 3 0.21448 251 41.95 1.5 4.6 0.0631.25 0.659 0.76968 2.8 49.8 0.138 0.11 343.5 3 — 3 1.18 12.058 0.4791 219.7 0.1 2 0.4 13.807 0.4494 350 5.82.32 2 7.13 0.1903 283.7 0.004 2 0.926 26.4 0.1306 563.6 1 0.3382 3.26 0.2407 231.8 2 1.52 12.4 0.12905 324.4 3 2.356 8.477 1.024 127.4 2.76 2

a o

t

m S /

J

k ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 0.0000) 0.117 14.298 0.904 — 1 ) 0.114 36 0.2508 590 1.2 ) ) ) 0.915 17.6 0.2441 362 3 ) ) ) ) ) 0.815 0.44 0.91738 6.82 45.5 2 ) )

(

y

g

r

e

n

E

n

io

t

a

iz

n

o

I

t

s

ir F

)

m

p

(

s

iu

d a

R

ic

m

o

t

A

)

P

T

S

t

a

d

e

r

) u

s

a m 3

c e

/

g m

( s

y e

s it

a s

g n (

e D

)

C

t

° (

in

o

P

g

ilin o B 195.8 0.0012409 71 1402 (3 153.35 0.0037493 112 1351 — 1.64246.05 0.2480 0.0008999 71 9.03 2081 — — 0.34 1.0301 1.77 — 268.93 0.00017847252.76 31 0.0000899 2372 78 — 1312 (1 0.02 5.1931 0.084 — 183 0.001429 60 1313.9 (2

)

C

t

°

(

in

o

P

g

in

lt e M 38.9 357 13.534 151 1007 (2 210 157.2 248.61 218.8 269.7 259.19

(2536 kPa)

)

* u

( s

s

a

M

ic

m

o

t A

)

Z

(

r

e

b

m

u

N

ic

m

o

t A

l

o

b

m

y S

t

n e

m

le E Osmium Os 76 190.2 3045 5025 22.57 135 840 (4 Nobelium No 102 [259.1009] — — — — 642 (2 Lutetium Lu 71 174.967 1652 3327 9.84 173.8 524 (3 Nitrogen N 7 14.00674 Lithium Li 3 6.941 180.5 1347 0.534 156 520.2 (1 Niobium Nb 41 92.90638 2477 4858 8.57 146 664.1 (5 Lead Pb 82 207.2 327 1746 11.342 175 715.6 (2 Nickel Ni 28 58.6934 1455 2883 8.908 124 736.7 (2 Lawrencium Lr 103 [260.1054] — — — — — (3 Mercury Hg 80 200.59 Platinum Pt 78 195.08 1769 3824 21.41 138.5 868 (4 MeitneriumMendelevium Mt Md 109 101 [266] [258.0986] — — — — — — — — 635 — — — — — — — — — — — 2 — Lanthanum La 57 138.9055 920 3420Neptunium 6.17 Np 93 187 237.0482 538 640 (3 3900 20.45 155 597 (5 Krypton Kr 36 83.8 Neon Ne 10 20.1797 * [ mass of ] indicates isotope. longest-lived Palladium Pd 46 106.42 1552 2940 11.99 137 805 (2 IndiumIridium In Ir 49 114.82 77 192.22 156.61 2447 2080 4550 7.29 22.65 167 558.2 135.5 (3 880 (4 Table D.4Table Properties of Elements (continued) GoldHafniumHassiumHelium Hf AuHolmium HsHydrogen 72 79 He 108 178.49 Ho 196.96654lodine [265] H 2 67 1064 4.002602 164.9032 2227 1 I — 2808 1.00794 1461 4691 53 19.32 126.90447 — 13.28Magnesium 2600 113.6 Mg 144 8.78 159 — 12 889.9 184.5Molybdenum 654.4 (3 24.305 176.2 (4 Mo — 4.93 581 42 — 650 (3 95.94 138 1008.4 — 1105 (1 2623 1.738Phosphorus — 4679Plutonium P 160 10.28 — Pu 737.8 15 (2 30.973762 94 — 139 [244.0642] 685 44.2 — 640 (6 280.5 — 3230 1.823 19.86 109 1012 162 (3 585 (4 Manganese Mn 25 54.93805 1246 2061 7.43 127 717.5 (2 Iron Fe 26 55.847 1536Neodymium 2860 Nd 60 7.874 144.24 126Oxygen 1024 759.4 (3 O 3111 8 7.003 15.9994 181.4 530 (3

846 Appendix D / Chemistry Data Handbook

s

e t

a t

S

n

io ,5 ,5 ,7 ,6 ,7 ,6 ,6 ,6

t

a

id

x

O

r

jo ,4 ,5 ,6 ,4 ,6 ,4 ,4 ,6 ,5 ,4 ,4 ,6 ,5 a M ,3 ,4 ,4 ,4 ,3 ,4 ,3 ,2 ,4 ,4 ,4 ,3 ,2 ,5 ,2 ,4 ,3 ,4 ,5 ,4 ,3

3 3 3 2 2 1 4 2 3 1 4 2 4 3 2

)

’s

%

h

( t

t r

s a

u

E r

C

in 4 4 4 4 4 4 e

c

n

a 7 7 4 6 6 4 7 4 5 5

d

n u 10 10 10 10 10 10 b A 10 10 10 10 10 10 10 10 10 10

n

l) io

t o

a

m

iz /

r J

o k

p (

Va

f

o

y

lp

a

h

t

n E

)

°

C

t

g a

/

e

J (

H

ic

if

c

e

p

S

l)

o

m

/

J

k

(

n

io

s

u

F

f

o

y

lp

a

h

t

n E

)

d

e

t

a

n

ic

io

d t

s

t

a

n

in

id

e

e

x

t

m

a

o

t

le

o

s

t

e

r

r

n

o

o

f

io

t m

(

) c

o

r u V

f

d

l ( l

e

ia

R

t

d

n r

e

a

t

d 0.67 5.43 0.3212 26.3 5 o

n l)

P 2.3 8.9 0.1965 191 7 0.34 33.4 0.1368 707 1 2.916 8.36 — 136.8 — 2 0.81 36.57 0.1402 737 2 2.22 7.66 0.1545 155 3.4 1.7 20.92 0.2780 590.5 0.0162 4 2.925 2.334 0.7566 76.90.68 1.84 25.5 1 0.2381 567.8 — 2 2.35 11.3 0.1930 332.6 9.1 0.7991 11.65 0.23502 255 8 1.19 14.6 — 481 trace 3 0.7626 7.322 0.3884 115 0.0076 2 0.45 1.7272 0.7060 9.62 0.03 2 0.762.925 21.6 2.19 0.2427 0.36344 4940.143 69.2 50.2 1 0.0078 0.7121 1 3592.31 27.2 10.3 0.1819 2 0.83 293 12.6 1 0.54 0.11618 22.84 423 0.4886 2.3 459.7 0.0136 2 1.14 17.4 0.20160.09 50.6 35.4 2 0.1320 806 1.2 2.29 8.17 — 2932.03 15.77 — 0.5677 3 304.80.83 0.0022 23.00.3363 3 1.83 4.27 — 16.110.86 0.1288 577 0.1177 14.146 162 543.9 0.5226 7 — 8.1 425 2 2.37 0.63 17.15 2 0.2984 393 0.0035 3 2.89 7.4308 0.301 137 0.0384 2 0.73 3.81 0.125 103 — 2 2.714 2.602 1.228 97.42.320.064 2.27 18.4 7.07 1 0.1600 0.2274 213 296 5 2.1

a o

t

m S /

J

k ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

(

y

g

r

e

n

E

n

io

t

a

iz

n

Io

t

s

ir F

)

m

p

(

s

iu

d a

R

ic

m

o

t

A

)

P

T

S

t

a

d

e

r

) u

s

a m 3

c e

/

g m

( s

y e

s it

a s

g n (

e D

)

C

t

° (

in

o

P

g

ilin

o B 62 0.00973 140 1037 — 16.4 — 16.4 — 108.09 0.0058971 131 1170 — 2.29 0.15832 12.64 —

)

C

t

°

(

in

o

P

g

in

lt e M 71 111.8

)

* u

( s

s

a

M

ic

m

o

t A

)

Z

(

r

e

b

m

u

N

ic

m

o

t A

l

o

b

m

y S

t

n e

m

le E Rhenium Re 75 186.207 3180 5650 21.232 137 760 (7 Radon Rn 86 [222.0176] RutherfordiumSamarium Rf 104 Sm [261] 62 150.36 — 1072 — 1800 7.536 — 180.4 — 542 — (3 — — — — — — Tantalum Ta 73 180.9479 2980 5505 16.65 146 760.8 (5 * [ mass of ] indicates isotope. longest-lived Ytterbium Yb 70 173.04 824 1427 6.973 193.3 603 (3 Praseodymium Pr 59 140.90765 935 3343 6.782 182.4 522 (3 Radium Ra 88 226.0254 700 1630 5 228 509.1 (2 Silver Ag 47 107.8682 961 2195 10.49Xenon 144 Xe 730.8 (1 54 131.29 Zirconium Zr 40 91.224 1852 4400 6.51 160 659.7 (4 Potassium K 19 39.0983Ruthenium 63.2 Ru 44 766.4 101.07 0.862 2310 231Tellurium 418.8 4119 (1 12.41 Te 52 134 127.6Tungsten 711 W (4 450 74 183.85 990 6.25 3680 6000 138 19.3 869 (2 139 770.4 (6 Protactinium Pa 91 231.03588 1552SeaborgiumSelenium 4227 Sg Se 15.37 106Strontium [263] 34 Sr 163 78.96 568 38 — (5 87.62 221 — 685 776.9 — 1412 4.79 2.6 — 117 —Zinc 940.7 215 (2 — 549.5 (2 Zn 30 — 65.39 — 419.6 — 907 — 7.14 — 134 906.4 (2 Sulfur S 16 32.066 115.2 444.7 2.08 103 999.6 (2 Promethium Pm 61Rhodium [144.9128]Rubidium Rh 1168 RbScandium 45 37 2460 102.9055 ScSilicon 85.4678 7.2 1960 21 39.5 Si 44.95591 3727 183.4Technetium 14 697 536 1539 12.39Terbium Tc 28.0855 (3 Thallium 1.532Thorium 2831 43 Tb 134 1411 Tl 97.9072Titanium 248 3 Th 65 720 81 3231Uranium 158.92534 403 90 (3 2200Ununbium Ti 204.3833Ununquadium 232.0381 (1 2.336 162 1356Unununium U Uuq 22 Uub 4567Vanadium 303.5 114 112 631 Uuu 1750 47.88 92 118 [289] 2800 [285] 11.5 111 V (3 Yttrium 238.0289 1457 [272] 786.5 4787 8.272 1666 23 (4 11.85 136 1130 Y 11.78 — 50.9415 — 177.3 3358 702 — 39 170 3930 564 1917 179 (6 88.90585 — — 4.5 589.1 (3 19.05 587 — (1 3417 1530 (4 — — 147 156 6.11 — 3264 658.1 584 — — (4 (6 4.5 134 — — — 650.3 — (4 180 — — 616 — (3 — — — — — — — — — — — — — — — Table D.4Table Properties of Elements (continued) Polonium Po 84 [208.9824] 254 962 9.4Sodium 164 Na 813 11 (4 22.989768ThuliumTin 97.83 Tm 897.4 69 Sn 168.93421 0.968 50 1545 118.71 186 495.9 1727 (1 232 9.318 2623 175.9 7.265 596 (3 141 708.4 (4

Appendix D / Chemistry Data Handbook 847 Table D.5 Electron Configurations of the Elements

Sublevels Elements 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f 7s 1Hydrogen 1 2Helium 2

3 Lithium 2 1 4 Beryllium 2 2 5Boron 221 6Carbon 222 7Nitrogen 223 8Oxygen 224 9Fluorine 225 10Neon 226

11Sodium 2261 12 Magnesium 2262 13 Aluminum 22621 14 Silicon 22622 15 Phosphorus 22623 16Sulfur 22624 17Chlorine 22625 18Argon 22626

19 Potassium 22626 1 20 Calcium 22626 2 21 Scandium 22626 12 22 Titanium 22626 22 23Vanadium 22626 32 24Chromium 22626 51 25 Manganese 22626 52 26Iron 22626 62 27Cobalt 22626 72 28Nickel 22626 82 29Copper 22626101 30Zinc 22626102 31Gallium 226261021 32 Germanium 226261022 33Arsenic 226261023 34Selenium 226261024 35 Bromine 226261025 36Krypton 226261026

37Rubidium 226261026 1 38Strontium 226261026 2 39Yttrium 2262610261 2 40Zirconium 2262610262 2 41Niobium 2262610264 1 42Molybdenum 2262610265 1 43Technetium 2262610265 2 44Ruthenium 2262610267 1 45Rhodium 2262610268 1 46Palladium 22626102610 47Silver 22626102610 1 48Cadmium 22626102610 2 49Indium 22626102610 21 50Tin 22626102610 22 51Antimony 22626102610 23 52Tellurium 22626102610 24 53Iodine 22626102610 25 54Xenon 22626102610 26

848 Appendix D / Chemistry Data Handbook Table D.5 Electron Configurations of the Elements (continued)

Sublevels Elements 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 6f 7s 55Cesium 22626102610 26 1 56Barium 22626102610 26 2 57Lanthanum 22626102610 261 2 58Cerium 22626102610226 2 59Praseodymium 22626102610326 2 60Neodymium 22626102610426 2 61Promethium 22626102610526 2 62 Samarium 22626102610626 2 63Europium 22626102610726 2 64 Gadolinium 226261026107261 2 65Terbium 22626102610926 2 66Dysprosium 226261026101026 2 67 Holmium 226261026101126 2 68Erbium 226261026101226 2 69Thulium 226261026101326 2 70Ytterbium 226261026101426 2 71Lutetium 2262610261014261 2 72 Hafnium 2262610261014262 2 73 Tantalum 2262610261014263 2 74Tungsten 2262610261014264 2 75Rhenium 2262610261014265 2 76 Osmium 2262610261014266 2 77Iridium 2262610261014267 2 78 Platinum 2262610261014269 1 79Gold 22626102610142610 1 80Mercury 22626102610142610 2 81Thallium 22626102610142610 21 82Lead 22626102610142610 22 83Bismuth 22626102610142610 23 84Polonium 22626102610142610 24 85 Astatine 22626102610142610 25 86Radon 22626102610142610 26 87Francium 22626102610142610 26 1 88Radium 22626102610142610 26 2 89Actinium 22826102610142610 261 2 90Thorium 22626102610142610 262 2 91Protactinium 226261026101426102261 2 92Uranium 226261026101426103261 2 93Neptunium 226261026101426104261 2 94Plutonium 22626102610142610626 2 95Americium 22626102610142610726 2 96Curium 226261026101426107261 2 97Berkelium 22626102610142610926 2 98 Californium 226261026101426101026 2 99 Einsteinium 226261026101426101126 2 100Fermium 226261026101426101226 2 101Mendelevium 226261026101426101326 2 102Nobelium 226261026101426101426 2 103Lawrencium 2262610261014261014261 2 104Rutherfordium 2262610261014261014262 2? 105Dubnium 2262610261014261014263 2? 106Seaborgium 2262610261014261014264 2? 107Bohrium 2262610261014261014265 2? 108 Hassium 2262610261014261014266 2? 109Meitnerium 2262610261014261014267 2? 110 Darmstadtium 2262610261014261014268 2? 111Unununium 2262610261014261014269 2? 112Unumbium 22626102610142610142610 2? 114Ununquadium 226261026101426101426102?2?

Appendix D / Chemistry Data Handbook 849 Table D.6 Useful Physical Constants

1 ampere is the constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in a vacuum, would produce a force of 2 107 newtons per meter of length between these conductors. 1 candela is the luminous intensity, in the perpendicular direction, of a surface of 1/600 000 m2 of a blackbody at the temperature of freezing platinum at a pressure of 101 325 pascals. 1 cubic decimeter is equal to 1 liter. 1 kelvin is 1/273.16 of the thermodynamic temperature of the triple point of water. 1 kilogram is the mass of the international prototype kilogram. 1 meter is the distance light travels in 1/299 792 458 of a second. 1 mole is the amount of substance containing as many elementary entities as there are atoms in 0.012 kilogram of carbon-12. 1 second is equal to 9 192 631 770 periods of the natural electromagnetic oscillation during that transi- 2 © tion of ground state S1/2 of cesium-133, which is designated (F 4, M 0) (F 3, M 0). Avogadro constant 6.022 136 7 1023 1 electronvolt 1.602 177 33 1019 J Faraday constant 96 485.309 C/mole e Ideal gas constant 8.314 471 J/molK 8.314 471 dm3kPa/molK Molar gas volume at STP 22.414 10 dm3 Planck’s constant 6.626 075 1034 Js Speed of light 2.997 924 58 108 m/s

Table D.7 Names and Charges of Polyatomic Ions

1 2 3 4 2 3 Acetate, CH3COO Carbonate, CO3 Arsenate, AsO4 Hexacyanoferrate(II), 2 3 4 Amide, NH2 Chromate, CrO4 Arsenite, AsO3 Fe(CN)6 2 3 4 Astatate, AtO3 Dichromate, Cr2O7 Borate, BO3 Orthosilicate, SiO4 3 4 Azide, N3 Hexachloroplatinate, Citrate, C6H5O7 Diphosphate, P2O7 2 Benzoate, C6H5COO PtCl6 Hexacyanoferrate(III), 2 3 Bismuthate, BiO3 Hexafluorosilicate, SiF6 Fe(CN)6 2 3 Bromate, BrO3 Molybdate, MoO4 Phosphate, PO4 2 Chlorate, ClO3 Oxalate, C2O4 2 Chlorite, ClO2 Peroxide, O2 1 2 2 2 Cyanide, CN Peroxydisulfate, S2O8 Ammonium, NH4 Mercury(I), Hg2 2 2 Formate, HCOO Phosphite, HPO3 Neptunyl(V), NpO2 Neptunyl(VI), NpO2 2 2 Hydroxide, OH Ruthenate, RuO4 Plutonyl(V), PuO2 Plutonyl(VI), PuO2 2 2 Hypobromite, BrO Selenate, SeO4 Uranyl(V), UO2 Uranyl(VI), UO2 2 2 Hypochlorite, ClO Selenite, SeO3 Vanadyl(V), VO2 Vanadyl(IV), VO 2 Hypophosphite, H2PO2 Silicate, SiO3 2 Iodate, IO3 Sulfate, SO4 2 Nitrate, NO3 Sulfite, SO3 2 Nitrite, NO2 Tartrate, C 4H4O6 2 Perbromate, BrO4 Tellurate, TeO 4 2 Perchlorate, ClO4 Tellurite, TeO3 2 Periodate, IO4 Tetraborate, B 4O7 2 Permanganate, MnO4 Thiosulfate, S2O3 2 Perrhenate, ReO4 Tungstate, WO4 Thiocyanate, SCN Vanadate, VO3

850 Appendix D / Chemistry Data Handbook Table D.8 Solubility Guidelines

You will be working with water solutions, and it is helpful to have a few guidelines concerning what sub- stances are soluble in water. A substance is considered soluble if more than 3 grams of the substance dis- solve in 100 mL of water. The more common rules are listed below. 1. All common salts of the Group 1(IA) elements and ammonium ions are soluble. 2. All common acetates and nitrates are soluble. 3. All binary compounds of Group 17(VIIA) elements (other than F) with metals are soluble except those of silver, mercury(I), and lead. 4. All sulfates are soluble except those of barium, strontium, lead, calcium, silver, and mercury(I). 5. Except for those in Rule 1, carbonates, hydroxides, oxides, sulfides, and phosphates are insoluble.

Table D.9 Solubility Product Constants (at 25°C)

Substance Ksp Substance Ksp Substance Ksp 13 10 2 AgBr 5.01 10 BaSO4 1.10 10 Li2CO3 2.51 10 5 9 8 AgBrO3 5.25 10 CaCO3 2.88 10 MgCO3 3.47 10 12 6 11 Ag2CO3 8.13 10 CaSO4 9.12 10 MnCO3 1.82 10 10 27 9 AgCl 1.78 10 CdS 7.94 10 NiCO3 6.61 10 12 8 5 Ag2CrO4 1.12 10 Cu(IO3)2 7.41 10 PbCl2 1.62 10 7 8 9 Ag2Cr2O7 2.00 10 CuC2O4 2.29 10 PbI2 7.08 10 17 20 13 AgI 8.32 10 Cu(OH)2 2.19 10 Pb(IO3)2 3.24 10 12 36 10 AgSCN 1.00 10 CuS 6.31 10 SrCO3 1.10 10 33 7 7 Al(OH)3 1.26 10 FeC2O4 3.16 10 SrSO4 3.24 10 7 38 6 Al2S3 2.00 10 Fe(OH)3 3.98 10 TlBr 3.39 10 9 18 11 BaCO3 5.13 10 FeS 6.31 10 ZnCO3 1.45 10 10 7 24 BaCrO4 1.17 10 Hg2SO4 7.41 10 ZnS 1.58 10

Appendix D / Chemistry Data Handbook 851 Table D.10 Acid-Base Indicators

Indicator Lower Color Range Upper Color Methyl violet yellow-green 0.0–2.5 violet Malachite green HCl yellow 0.5–2.0 blue Thymol blue red 1.0–2.8 yellow Naphthol yellow S colorless 1.5–2.6 yellow p-Phenylazoaniline orange 2.1–2.8 yellow Methyl orange red 2.5–4.4 yellow Bromophenol blue orange-yellow 3.0–4.7 violet Gallein orange 3.5–6.3 red 2,5-Dinitrophenol colorless 4.0–5.8 yellow Ethyl orange salmon 4.2–4.6 orange Propyl red pink 5.1–6.5 yellow Bromocresol purple green-yellow 5.4–6.8 violet Bromoxylenol blue orange-yellow 6.0–7.6 blue Phenol red yellow 6.4–8.2 red-violet Cresol red yellow 7.1–8.8 violet m-Cresol purple yellow 7.5–9.0 violet Thymol blue yellow 8.1–9.5 blue Phenolphthalein colorless 8.3–10.0 dark pink o-Cresolphthalein colorless 8.6–9.8 pink Thymolphthalein colorless 9.5–10.4 blue Alizarin yellow R yellow 9.9–11.8 dark orange Methyl blue blue 10.6–13.4 pale violet Acid fuchsin red 11.1–12.8 colorless 2,4,6-Trinitrotoluene colorless 11.7–12.8 orange

852 Appendix D / Chemistry Data Handbook APPENDIX E Answers to In-Chapter Practice Problems

CHAPTER 5 5. Write the formula for the compound made from each of the following pairs of ions. 1. Write the formula for each of the following a. copper(I) and sulfite compounds. Cu2SO3 a. lithium oxide b. tin(IV) and fluoride

Li2O SnF4 b. calcium bromide c. gold(III) and cyanide

CaBr2 Au(CN)3 c. sodium oxide d. lead(II) and sulfide

Na2O PbS d. aluminum sulfide 6. Write the names of the following compounds. Al2S3 a. Pb(NO3)2 2. Write the formula for the compound formed from each of lead(II) nitrate the following pairs of elements. b. Mn2O3 a. barium and oxygen manganese(III) oxide BaO c. Ni(C2H3O2)2 b. strontium and iodine nickel(II) acetate SrI 2 d. HgF2 c. lithium and chlorine mercury(II) fluoride LiCl 7. Name the following molecular compounds. d. radium and chlorine a. S Cl RaCl2 2 2 disulfur dichloride 3. Write the formula for the compound made from each of b. CS the following ions. 2 carbon disulfide a. ammonium and sulfite ions c. SO3 (NH4)2SO3 sulfur trioxide b. calcium and monohydrogen d. P4O10 phosphate ions tetraphosphorus decoxide CaHPO4 8. Write the formulas for the following molecular compounds. c. ammonium and dichromate ions

(NH4)2Cr2O7 a. carbon tetrachloride d. barium and nitrate ions CCl4

Ba(NO3)2 b. iodine heptafluoride IF 4. Write the formula for each of the following 7 compounds. c. dinitrogen monoxide N2O a. sodium phosphate d. sulfur dioxide Na3PO4 SO2 b. magnesium hydroxide

Mg(OH)2 c. ammonium phosphate

(NH4)3PO4 d. potassium dichromate

K2Cr2O7

Appendix E / Answers to Practice Problems 853 CHAPTER 6 CHAPTER 10

Write word equations and chemical equations for the follow- Complete the following table. ing reactions. 1. Melting point of iron 1. Magnesium metal and water combine to form solid mag- 1535; TC 1808 273 1535°C nesium hydroxide and hydrogen gas. 2. Household oven magnesium water 448 - 478; TK 175 273 448; 205 273 478 ˇ magnesium hydroxide hydrogen ˇ 3. Food freezer Mg(s) 2H2O(1) Mg(OH)2(s) H2(g) 18; TC 255 273 18°C 2. An aqueous solution of hydrogen peroxide 4. Sublimation point of dry ice, CO2(s) (dihydrogen dioxide) and solid lead(II) sulfide combine 194.5; TK 78.5 273 194.5 K to form solid lead(II) sulfate and liquid water. 5. Boiling point of nitrogen, N hydrogen peroxide lead(II) sulfide 2 195.6; T 77.4 273 195.6 ˇ lead(II) sulfate water C ˇ 4H2O2(aq) PbS(s) PbSO4(s) 4H2O(1) 3. When energy is added to solid manganese(II) sulfate hep- CHAPTER 11 tahydrate crystals, they break down to form liquid water and solid manganese(II) sulfate monohydrate. Use Table 11.1 and the equation 1.00 in. 25.4 mm to con- manganese(II) sulfate heptahydrate energy vert the following measurements. ˇ water manganese(II) sulfate monohydrate MnSO4 •7H2O(s) energy 1. 59.8 in. Hg to psi ˇ 6H2O(1) MnSO4 •H2O(s) 59.8 in. Hg 25.4 mm Hg 14.7 psi 4. Solid potassium reacts with liquid water to produce aque- 1 1.00 in. Hg 760 mm Hg ous potassium hydroxide and hydrogen gas. 59.8 in. Hg 25.4 mm Hg 14.7 psi potassium water 1 1.00 in. Hg 760 mm Hg ˇ potassium hydroxide hydrogen gas ˇ 59.8 25.4 14.7 psi 2K(s) 2H2O(l) 2 KOH(aq) H2(g) 29.4 psi 760 2. 7.35 psi to mm Hg CHAPTER 9 7.35 psi 1 atm 760 mm Hg 1 14.7 psi 1 atm 1. Calculate EN for the pairs of atoms in the following bonds. 7.35 psi 1 atm 760 mm Hg 1 14.7 psi 1 atm a. Ca—S 1.5 7.35 760 mm Hg 3.80 102 mm Hg b. Ba—O 14.7 2.6 3. 1140 mm Hg to kPa c. C—Br 1140 mm Hg 1.00 atm 101.3 kPa 0.3 1 760 mm Hg 1.00 atm — d. Ca F 1140 mm Hg 1.00 atm 101.3 kPa 3.0 1 760 mm Hg 1.00 atm e. H—Br 1140 101.3 kPa 0.7 152 kPa 760 2. Use EN to classify the bonds in problem 1 as covalent, 4. 19.0 psi to kPa polar covalent, or ionic. 19.0 psi 1.00 atm 101.3 kPa a. polar covalent 1 14.7 psi 1.00 atm b. ionic 19.0 psi 1.00 atm 101.3 kPa c. covalent 1 14.7 psi 1.00 atm d. ionic 19.0 101.3 kPa e. polar covalent 131 kPa 14.7

854 Appendix E / Answers to Practice Problems 5. 202 kPa to psi 11. A 1.00-L balloon is filled with helium at 1.20 atm. If the 202 kPa 1.00 atm 14.7 psi balloon is squeezed into a 0.500-L beaker and doesn’t 1 101.3 kPa 1.00 atm burst, what is the pressure of the helium? 1.20 atm 1.00 L 1.20 atm 1.00 L 202 kPa 1.00 atm 14.7 psi 1 0.500 L 1 0.500 L 1 101.3 kPa 1.00 atm 1.20 atm 202 14.7 psi 2.40 atm 29.3 psi 0.500 101.3 Assume that the pressure remains constant in problems Assume that the temperature remains constant in the follow- 12 to 16. ing problems. 12. A balloon is filled with 3.0 L of helium at 310 K and 1 atm. 6. Bacteria produce methane gas in sewage-treatment The balloon is placed in an oven where the temperature plants. This gas is often captured or burned. If a bacterial reaches 340 K. What is the new volume of the balloon? culture produces 60.0 mL of methane gas at 700.0 mm Hg, what volume would be produced at 760.0 mm Hg? 3.0 L 340 K 3.0 L 340 K 1 310 K 1 310 K 60.0 mL 700.0 mm Hg 1 760.0 mm Hg 3.0 L 340 3.3 L 310 60.0 mL 700.0 mm Hg 1 760.0 mm Hg 13. A 4.0-L sample of methane gas is collected at 30.0°C. Pre- 60.0 mL 700.0 dict the volume of the sample at 0°C. 55.3 mL 760.0 4.0 L (0.0 273)K 1 (30.0 273)K 7. At one sewage-treatment plant, bacteria cultures produce 1000 L of methane gas per day at 1.0 atm pressure. What 4.0 L 273 K volume tank would be needed to store one day’s produc- 1 303 K tion at 5.0 atm? 4.0 L 273 3.6 L 1000 L 1 atm 1000 L 1 atm 303 1 5 atm 1 5 atm 14. A 25-L sample of nitrogen is heated from 110°C to 260°C. 1000 L 200 L What volume will the sample occupy at the higher tem- 5 perature? 8. Hospitals buy 400-L cylinders of oxygen gas compressed 25 L (260 273)K at 150 atm. They administer oxygen to patients at 3.0 atm 1 (110 273)K in a hyperbaric oxygen chamber. What volume of oxygen 25 L 533 K can a cylinder supply at this pressure? 1 383 K 400 L 150 atm 400 L 150 atm 25 L 533 1 3 atm 1 3 atm 35 L 383 400 L 150 20 000 L 3 15. The volume of a 16-g sample of oxygen is 11.2 L at 273 K and 1.00 atm. Predict the volume of the sample at 409 K. 9. If the valve in a tire pump with a volume of 0.78 L fails at 11.2 L 409 K 11.2 L 409 K a pressure of 9.0 atm, what would be the volume of air in 1 273 K 1 273 K the cylinder just before the valve fails? 11.2 L 409 0.78 L 1.0 atm 0.78 L 1.0 atm 16.8 L 1 9.0 atm 1 9.0 atm 273 0.78 L 16. The volume of a sample of argon is 8.5 mL at 15°C and 0.087 L 9.0 101 kPa. What will its volume be at 0.00°C and 101 kPa? 8.5 mL 273 K 10. The volume of a scuba tank is 10.0 L. It contains a mix- 1 (15 273)K ture of nitrogen and oxygen at 290.0 atm. What volume of this mixture could the tank supply to a diver at 2.40 atm? 8.5 mL 273 K 1 288 K 10.0 L 290.0 atm 10.0 L 290.0 atm 1 2.40 atm 1 2.40 atm 8.5 mL 273 8.1 mL 10.0 L 290.0 288 1210 L 2.40

Appendix E / Answers to Practice Problems 855 17. A 2.7-L sample of nitrogen is collected at 121 kPa and b. 45.6 g gold, Au 288 K. If the pressure increases to 202 kPa and the tem- 45.6 g Au mol Au 6.02 1023 Au atoms perature rises to 303 K, what volume will the nitrogen 1 196.967 g Au mol Au occupy? 1.39 1023 Au atoms 2.7 L 121 kPa 303 K c. 10.7 g lithium, Li 1 202 kPa 288 K 10.7 g Li mol Li 6.02 1023 Li atoms 2.7 L 121 kPa 303 K 1 6.941 g Li mol Li 1 202 kPa 288 K 9.28 1023 Li atoms 2.7 L 121 303 1.7 L d. 144.6 g tungsten, W 202 288 144.6 g W mol W 6.02 1023 W atoms 18. A chunk of subliming carbon dioxide (dry ice) generates 1 183.85 g W mol W 23 a 0.80-L sample of gaseous CO2 at 22°C and 720 mm Hg. 4.73 10 W atoms What volume will the carbon dioxide gas have at STP? 3. Determine the number of moles in each sample below. 0.80 L 720 mm Hg 273 K a) 6.84 g sucrose, C12H22O11 1 760 mm Hg (22 273)K 12 C atoms 12 12.0 u 144.0 u 22 H atoms 22 1.0 u 22.0 u 0.80 L 720 mm Hg 273 K 1 760 mm Hg 295 K 11 O atoms 11 16.0 u 176 u molecular mass C H O 342 u 0.80 L 720 273 12 22 11 0.70 L 760 295 molar mass C12H22O11 342 g/mol

6.84 g C12H22O11 1 mol C12H22O11 CHAPTER 12 1 342 g C12H22O11 6.84 g C12H22O11 1 mol C12H22O11 1. Without calculating, decide whether 50.0 g of sulfur or 1 342 g C12H22O11 50.0 g of tin represents the greater number of atoms. Veri- 6.84 1 mol C H O fy your answer by calculating. 12 22 11 1 342 Because sulfur has a smaller molar mass, there will be a 2.00 102 mol C H O greater number of atoms in 50.0 g of sulfur than in 50.0 g 12 22 11 of tin. b) 16.0 g sulfur dioxide, SO2 SO 50.0 g S 1 mol S 6.02 1023 S atoms 2 1 S atom 1 32.1 u 32.1 u 1 32.1 g S 1 mol S 2 O atoms 2 16.0 u 32.0 u 50.0 1 6.02 1023 S atoms molecular mass SO 64.1 u 1 32.1 1 2 molar mass SO2 64.1 g/mol 23 50.0 6.02 10 Satoms 32.1 16.0 g SO2 1 mol SO2 1 64.1 g SO 9.38 1023 S atoms 2 16.0 g SO 1 mol SO 50.0 g Sn 1 mol Sn 6.02 1023 Sn atoms 2 2 1 64.1 g SO 1 119 g Sn 1 mol Sn 2 16.0 1 mol SO 50.0 1 6.02 1023 Sn atoms 2 1 64.1 1 119 1 0.250 mol SO2 23 50.0 6.02 10 Sn atoms 119 c) 68.0 g ammonia, NH3 NH 2.53 1023 Sn atoms 3 1 N atom 1 14.0 u 14.0 u 2. Determine the number of atoms in each sample below. 3 H atoms 3 1.0 u 3.0 u

a. 98.3 g mercury, Hg molecular mass NH3 17.0 u 23 98.3 g Hg mol Hg 6.02 10 Hg atoms molar mass NH3 17.0 g/mol 1 200.59 g Hg mol Hg 2.95 1023 Hg atoms

856 Appendix E / Answers to Practice Problems 68.0 g NH3 1 mol NH3 (0.550 mol F2)(38.0 g F2/mol F2)

1 17.0 g NH3 0.550 mol F2 38.0 g F2 1 1 mol F 68.0 g NH3 1 mol NH3 2 1 17.0 g NH3 0.550 38.0 g F2 20.9 g F2 d) 2.35 mol barium iodide, BaI 68.0 1 mol NH3 2 1 17.0 BaI2 1 Ba atom 1 137 u 137 u 4.00 mol NH3 d) 17.5 g copper(II) oxide, CuO 2 I atoms 2 127 u 254 u 1 Cu atom 1 63.5 u 63.5 u formula mass BaI2 391 u 1 O atom 1 16.0 u 16.0 u molar mass BaI2 391 g/mol formula mass CuO 79.5 u 2.35 mol BaI2 391 g BaI2

molar mass CuO 79.5 g/mol 1 1 mol BaI2

17.5 g CuO 1 mol CuO 2.35 mol BaI2 391 g BaI2 1 79.5 g CuO 1 1 mol BaI2 2.35 391 g BaI 919 g BaI 17.5 g CuO 1 mol CuO 2 2 1 79.5 g CuO 5. The combustion of propane, C3H8, a fuel used in back- 17.5 1 mol CuO yard grills and camp stoves, produces carbon dioxide and water vapor. 1 79.5 C H (g) 5O (g) ˇ 3CO (g) 4H O(g) 3 8 2 2 2 0.220 mol CuO What mass of carbon dioxide forms when 95.6 g of 4. Determine the mass of the following molar quantities. propane burns? a) 3.52 mol Si 95.6 g C H 1 mol C H 3 8 3 8 ... 3.52 mol Si 28.1 g Si 1 44.0 g C3H8 1 1 mol Si 3 mol CO2 44.0 g CO2 3.52 mol Si 28.1 g Si 1 mol C3H8 1 mol CO3 1 1 mol Si 95.6 g C3H8 1 mol C3H8 3.52 28.1 g Si ... 1 44.0 g C3H8 98.9 g Si 3 mol CO2 44.0 g CO2 b) 1.25 mol aspirin, C9H8O4 1 mol C3H8 1 mol CO2 C9H8O4 9 C atoms 9 12.0 u 108 u 44.0 g CO2 95.6 3 287 g CO2 8 H atoms 8 1.0 u 8.0 u 44.0 4 O atoms 4 16.0 u 64 u 6. Solid xenon hexafluoride is prepared by allowing xenon

molecular mass C9H8O4 180.0 u gas and fluorine gas to react. ˇ Xe(g) 3F2(g) XeF6(s) molar mass C9H8O4 180.0 g/mol How many grams of fluorine are required to produce

1.25 mol C9H8O4 180.0 g C9H8O4 10.0 g of XeF6? 1 1 mol C9H8O4 10 g XeF 1 mol XeF 6 6 ... 1 245.3 g XeF 1.25 mol C9H8O4 180.0 g C9H8O4 6 1 1 mol C H O 9 8 4 3 mol F2 38.0 g F2 1.25 180 g C H O 9 8 4 1 mol XeF6 1 mol F2 225 g C9H8O4 10.0 g XeF6 1 mol XeF6 c) 0.550 mol F ... 2 1 245.3 g XeF6 F2 3 mol F 38.0 g F 2 F atoms 2 19.0 u 38.0 u 2 2 1 mol XeF6 1 mol F2 molecular mass F2 38.0 u 10.0 3 38.0 g F2 molar mass F2 38.0 g/mol 4.65 g F 245.3 2

Appendix E / Answers to Practice Problems 857 7. Using the reaction in Practice Problem 6, how many 5.00 L 101 kPa mol • K grams of xenon are required to produce 10.0 g of XeF6? 8.31 kPa • L 303 K 10.0 g XeF 1 mol XeF 2 6 ... 5.00 101 1 mol 1 245.3 g XeF 0.201 mol 6 8.31 303 1 mol Xe 131.3 g Xe 11. What is the volume of 0.020 mol Ne at 0.505 kPa and 1 mol XeF6 1 mol Xe 27.0°C? 10.0 g XeF 1 mol XeF 6 6 ... 8.31 kPa • L 1 245.3 g XeF (0.020 mol Ne)΂ ΃(300 K) 6 nRT 1 mol •K V 1 mol Xe 131.3 g Xe P 0.505 kPa

1 mol XeF6 1 mol Xe 99 L 131.3 g Xe 10.0 1 5.35 g Xe 12. How much zinc must react in order to form 15.5 L of 245.3 hydrogen, H2(g), at 32.0°C and 115 kPa? Zn(s) H SO (aq) ˇ ZnSO (aq) H (g) 8. What mass of sulfur must burn to produce 3.42 L of SO 2 4 4 2 2 First, use the ideal gas law to determine moles of H . at 273°C and 101 kPa? The reaction is 2 S(s) O (g) ˇ SO (g). PV 2 2 PV nRT n Note that the volume must be corrected to standard tem- RT perature (0°C) by applying the factor (115 kPa)(15.5 L) n 273 K 273 K 8.31 kPa • L (305 K) (273 273)K 546 K ΂ 1 mol •K ΃ 3.42 L SO 273 K 1 mol SO n 0.703 mol H2 2 2 ... 1 546 K 22.4 L SO2 Now, determine the mass of zinc.

1 mol S 32.1 g S 0.703 mol H2 1 mol Zn 65.39 g Zn

1 mol SO2 1 mol S 1 1 mol H2 1 mol Zn 3.42 L SO 273 K 1 mol SO 46.0 g Zn 2 2 ... 1 546 K 22.4 L SO2 1 mol S 32.1 g S CHAPTER 13 1 mol SO2 1 mol S 32.1 g S 1. How would you prepare 1.00 L of a 0.400M solution of 3.42 273 2.45 g S 546 22.4 copper(II) sulfate, CuSO4? Dissolve 63.8 g of CuSO4 in 1.00 L of solution; 9. What volume of hydrogen gas can be produced by react- Molar mass CuSO4 159.61 g/mol ing 4.20 g sodium in excess water at 50.0°C and 106 kPa? The reaction is 1.00 L soln 0.400 mol CuSO4 159.61 g CuSO4 ˇ 1 1 L soln 1 mol CuSO 2Na 2H2O 2NaOH H2 4 4.20 g Na 1 mol Na 1 mol H 63.8 g CuSO4 2 ... 1 23.0 g Na 2 mol Na 2. How would you prepare 2.50 L of a 0.800M solution of

22.4 L H2 323 K 101 kPa potassium nitrate, KNO3?

1 mol H2 273 K 106 kPa Dissolve 202 g of KNO3 in 2.50 L of solution; 4.20 g Na 1 mol Na 1 mol H Molar mass KNO3 101.10 g/mol 2 ... 1 23.0 g Na 2 mol Na 2.50 L soln 0.800 mol KNO3 101.10 g 1 1 L soln 1 mol 22.4 L H2 323 K 101 kPa 202 g KNO 1 mol H2 273 K 106 kPa 3 4.20 22.4 L H 323 101 3. What mass of sucrose, C H O , must be dissolved to 2 2.31 L H 12 22 11 23.0 2 273 106 2 make 460 mL of a 1.10M solution? 173 g of sucrose; 10. How many moles of helium are contained in a 5.00-L Molar mass C H O 342.30 g/mol canister at 101 kPa and 30.0°C? 12 22 11 VP (5.00 L)(101 kPa) 460 mL soln 1 L 1.10 mol C12H22O11 n 3 ... 8.31 kPa • L 1 10 mL 1 L soln RT ΂΃303 K 1 mol •K 342.30 g 170 g C H O 1 mol 12 22 11

858 Appendix E / Answers to Practice Problems 4. What mass of lithium chloride, LiCl, must be dissolved to CHAPTER 15 make a 0.194M solution that has a volume of 1.00 L? Write overall, ionic, and net ionic equations for each of the 8.23 g of LiCl; following reactions. Molar mass LiCl 42.40 g/mol 1. hydroiodic acid, HI, and calcium hydroxide, Ca(OH)2 1.00 L soln 0.194 mol LiCl 42.40 g 2HI(aq) Ca(OH) (aq) ˇ CaI (aq) 2H O(l) 1 1 L soln 1 mol 2 2 2 2H(aq) 2I(aq) Ca2(aq) 2OH(aq) 8.23 g LiCl ˇ 2 Ca (aq) 2I (aq) 2H2O(l) ˇ 5. What is the molarity of a solution that contains 14 g of H (aq) OH (aq) H2O(l) sodium sulfate, Na2SO4, dissolved in 1.6 L of solution? 2. hydrobromic acid, HBr, and lithium hydroxide, LiOH 0.062M Na2SO4; ˇ HBr(aq) LiOH(aq) LiBr(aq) H2O(1) Molar mass Na2SO4 142.06 g/mol H(aq) Br(aq) Li(aq) OH(aq) 14 g Na2SO4 1 mol ˇ Li(aq) Br(aq) H O(1) 1.6 L soln 142.06 g 2 ˇ H (aq) OH (aq) H2O(1) 0.062 mol Na2SO4/L soln 0.062M Na2SO4 3. sulfuric acid, H2SO4, and strontium hydroxide, Sr(OH)2 ˇ 6. Calculate the molarity of a solution, given that its volume H2SO4(aq) Sr(OH)2(aq) SrSO4(aq) 2H2O(1) 2 2 is 820 mL and that it contains 7.4 g of ammonium chlo- 2H (aq) SO4 (aq) Sr (aq) 2OH (aq) ride, NH4Cl. ˇ 2 2 Sr (aq) SO4 (aq) 2H2O(1) ˇ 0.17M NH4Cl; H (aq) OH (aq) H2O(1) Molar mass NH4Cl 53.50 g/mol 4. perchloric acid, HClO4, and barium hydroxide, Ba(OH)2 3 7.4 g NH4Cl 1 mol 10 mL 2HClO (aq) Ba(OH) (aq) ˇ 2H O(l) Ba(ClO ) (aq) 820 mL 53.50 g 1 L 4 2 2 4 2 2 2H (aq) 2ClO4 (aq) Ba (aq) 2OH (aq) 0.17 mol NH4Cl/L soln ˇ 2 2H2O(l) Ba (aq) 2ClO4 (aq) 0.17M NH4Cl ˇ H (aq) OH (aq) H2O(l)

CHAPTER 14 5. perchloric acid, HClO4, and ammonia, NH3 ˇ HClO4(aq) NH3(aq) NH4ClO4(aq) Find the pH of each of the following solutions. H (aq) ClO4 (aq) NH3(aq) ˇ 1. The hydronium ion concentration equals: NH4 (aq) ClO4 (aq) ˇ a) 105M H (aq) NH3(aq) NH4 (aq) 5 6. hydrochloric acid, HCl, and aluminum hydroxide, b) 1012M Al(OH)3 12 3HCl(aq) Al(OH) (aq) ˇ AlCl (aq) 3H O(1) c) 102M 3 3 2 2 3H (aq) 3Cl (aq) Al(OH)3(aq) ˇ 3 Al (aq) 3Cl (aq) 3H2O(1) 2. The hydroxide ion concentration equals: 3H(aq) Al(OH) (aq) ˇ Al3(aq) 3H O(1) a) 104M 3 2 10 7. sulfuric acid, H2SO4, and iron(III) hydroxide, Fe(OH)3 b) 1011M 3H SO (aq) 2Fe(OH) (aq) 3 2 4 3 ˇ Fe (SO ) (aq) 6H O(1) c) 10 8M 2 4 3 2 2 6 6H (aq) 3SO4 (aq) 2Fe(OH)3(aq) ˇ 3 2 2Fe (aq) 3SO4 (aq) 6H2O(1) ˇ 3 3H (aq) Fe(OH)3(aq) Fe (aq) 3H2O(1)

Appendix E / Answers to Practice Problems 859 8. carbonic acid, H2CO3, and sodium hydroxide, NaOH 15.0 mL H3PO4 1 L 0.125 mol H3PO4 3 ... ˇ 1 10 mL H3PO4 1 L H2CO3(aq) 2NaOH(aq) Na2CO3(aq) 2H2O(1) 3 H2CO3(aq) 2Na (aq) 2OH (aq) 3 mol Ca(OH)2 1 10 mL ˇ 2 2 mol H PO 12.4 mL 1 L 2Na (aq) CO3 (aq) 2H2O(1) 3 4 ˇ 2 0.227M Ca(OH)2 H2CO3(aq) 2OH (aq) CO3 (aq) 2H2O(1)

9. boric acid, H3BO3, and potassium hydroxide, KOH ˇ CHAPTER 18 H3BO3(aq) 3KOH(aq) K3BO3(aq) 3H2O(1) H3BO3(aq) 3K (aq) 3OH (aq) 1. Write the structural formulas for the following branched ˇ 3 3K (aq) BO3 (aq) 3H2O(1) alkanes. ˇ 3 H3BO3(aq) 3OH (aq) BO3 (aq) 3H2O(1) a) 2-methylbutane

10. acetic acid, HC2H3O2, and calcium hydroxide, Ca(OH)2 CH3 2HC2H3O2(aq) Ca(OH)2(aq) CH3 CHCH23 CH ˇ Ca(C2H3O2)2(aq) 2H2O(1) b) 1, 3-dimethylcyclohexane (Hint: Begin numbering at 2 any carbon in the ring, then attach the methyl groups.) 2HC2H3O2(aq) Ca (aq) 2OH (aq) ˇ 2 Ca (aq) 2C2H3O2 (aq) 2H2O(1) H CH3 H H HC H O (aq) OH(aq) ˇ C H O (aq) H O(1) 2 3 2 2 3 2 2 H H

Finding Molarity H CH3 11. A 0.100M LiOH solution was used to titrate an HBr solu- H H tion of unknown concentration. At the endpoint, 21.0 mL HH of LiOH solution had neutralized 10.0 mL of HBr. What c) 4-propyldecane is the molarity of the HBr solution? CH3 CH22 CH CHCH222 CH CH CH22 CH CH3 0.210M; CH2 CH2 CH3 21.0 mL LiOH 1 L 0.100 mol LiOH ... d) 2, 3, 4-trimethylheptane 1 103 mL LiOH 1 L CH3 CH3 CH3 1 mol HBr 1 103 mL HBr 1 mol LiOH 10.0 mL HBr 1 L CH3 CH CH CHCH223 CH CH 0.210M HBr 2. Name each of the following alkanes. a) H 12. A 0.150M KOH solution fills a burette to the 0 mark. The H H HHC H H solution was used to titrate 25.0 mL of an HNO3 solution of unknown concentration. At the endpoint, the burette H C C C C C H reading was 34.6 mL. What was the molarity of the HNO3 H H H H H solution? 3-methylpentane 0.208M; b) H 34.6 mL KOH 1 L ... HHC 1 103 mL KOH H H H 0.150 mol KOH 1 mol HNO 3 ... H C C C C H 1 L 1 mol KOH H H H 1 103 mL HNO 3 HHC 25.0 mL HNO3 1 L H 0.208M HNO3 2, 3-dimethylbutane 13. A Ca(OH)2 solution of unknown concentration was used to titrate 15.0 mL of a 0.125M H3PO4 solution. If 12.4 mL of Ca(OH)2 are used to reach the endpoint, what is the concentration of the Ca(OH)2 solution? 0.227M;

860 Appendix E / Answers to Practice Problems c) H For 1 mol:

HHC 33.7 kJ 65.8 g qw H H H H H H 1 g 1 mol H C C C C C C C H 2220 kJ/mol H H H H H H 4. A group of students decides to measure the energy content HHC of certain foods. They heat 50.0 g of water in an by burning a sample of the food beneath the can. H When they use 1.00 g of popcorn as their test food, the 2, 3-dimethylheptane temperature of the water rises by 24°C. Calculate the heat released by the popcorn, and express your answer in both d) H H H H H H kilojoules and Calories per gram of popcorn. H C C C C C C H qw (m)( T)(Cw) H H H H H (50.0 g)(24°C)(4.184 J/g°C) for 1 g HHC 5000 J/g HHC 5.0 kJ/g H 5.0 kJ 1 Cal 1.2 Cal/g 3-ethylhexane 1 g 4.184 kJ

5. Another student comes along and tells the group in prob- CHAPTER 20 lem 4 that she has read the label on a popcorn bag that states that 30 g of popcorn yields 110 Calories. What is that value in Calories/gram? How can you account for the 1. How much heat is absorbed by a reaction that lowers the difference? temperature of 500.0 g of water in a calorimeter by 1.10°C? 110 Cal 3.7 Cal/g qw (m)( T)(Cw) 30.0 g (500.0 g)(1.10°C)(4.184 J/g°C) 1.2 Cal/g, the experimental value, is much lower than the 2300 J value given on the popcorn bag because of loss of heat to 2.30 kJ the air in the student experiment. Also, the combustion of popcorn in the student experiment may be incomplete. 2. Aluminum reacts with iron(III) oxide to yield aluminum oxide and iron. Calculate the heat given off in the reac- 6. A 3.00-g sample of a new snack food is burned in a tion if the temperature of the 1.00 kg of water in the calorimeter. The 2.00 kg of surrounding water change in calorimeter increases by 3.00°C. temperature from 25.0°C to 32.4°C. What is the food value in Calories per gram? qw (m)( T)(Cw) (1.00 103 g)(3.00°C)(4.184 J/g°C) T 32.4°C 25.0°C 7.4°C 12600 J qw (m)( T)(Cw) 12.6 kJ 3 (2.00 10 g)(7.4°C)(4.184 J/g°C) for 3 g 3.00 g 3. When 1.00 g of a certain fuel gas is burned in a calori- meter, the temperature of the surrounding 1.000 kg of 20.6 kJ/g water increases from 20.00°C to 28.05°C. All products and 20.6 kJ 1 Cal 4.93 Cal/g reactants in the process are gases. Calculate the heat given 1 g 4.184 kJ off in this reaction. How much heat would 1.00 mol of the fuel give off, assuming a molar mass of 65.8 g/mol? T 28.05°C 20.00°C 8.05°C CHAPTER 21 For 1 g: 1. Write the balanced nuclear equation for the radioactive q (m)(T)(C ) w w decay of radium-226 to give radon-222, and determine (1.000 103 g)(8.05°C)(4.184/g°C) the type of decay. 33700 J 226 ˇ 222 4 88 Ra 86 Rn 2 He; alpha decay 33.7 kJ

Appendix E / Answers to Practice Problems 861 2. Write a balanced equation for the nuclear reaction in which neon-23 decays to form sodium-23, and determine the type of decay. 23 ˇ 23 0 10 Ne 11 Na 1 e; beta decay

3. A rock was analyzed using potassium-40. The half-life of potassium-40 is 1.25 billion years. If the rock had only 25 percent of the potassium-40 that would be found in a similar rock formed today, calculate how long ago the rock was formed. Because (0.5)(0.5) 0.25, two half-lives have gone by. 2 half-lives 1.25 billion years/half-life 2.50 billion years

4. Ash from an early fire pit was found to have 12.5 percent as much carbon-14 as would be found in a similar sample of ash today. How long ago was the ash formed? Because (0.5)(0.5)(0.5) 0.125, three half-lives have gone by. 3 half-lives 5730 years/half-life 17 190 years

862 Appendix E / Answers to Practice Problems APPENDIX F Try at Home Labs

Comparing Frozen Liquids

Real-World Question How do different kitchen 3. Fill the other four in the same liquids react when placed in a freezer? manner with the other four liquids. 4. Place the cutting board or cookie sheet in a Possible Materials freezer so that it is level and place the five • five identical, narrow-necked plastic containers on the board or sheet. or photographic film canisters 5. Leave the containers in the freezer • large cutting board or cookie sheet overnight and observe the effect of the • water • freezer’s temperature on each liquid the • orange • cooking oil following day. •vinegar •freezer Conclude and Apply Procedure 1. Describe the effect of the colder tempera- 1. Obtain permission to use the freezer before ture on each liquid. beginning this activity. 2. Infer why the water behaved as it did. 2. Fill one of the containers with water. The 3. Infer why some liquids froze but others water should come to the top brim of the did not. container.

Comparing Atom Sizes Real-World Question How do the sizes of different 3. Securely tape the paper to the top of a atoms and subatomic particles compare? . 4. Measure a distance of 6.2 m from the milk Possible Materials container and place a second milk con- • metric ruler tainer. This distance represents the diame- •meterstick ter of the smallest atom, a helium atom. • white sheet of paper 5. Measure a distance of 59.6 m from the first • fine-tipped black marker milk container and place a third milk con- • masking tape or transparent tape tainer. This distance represents the diame- • three plastic milk containers ter of a larger atom, a cesium atom. Procedure Conclude and Apply 1. Using a black marker, draw a 0.1-mm-wide 1. Considering the comparative sizes of pro- dot on one end of a white sheet of paper. This tons and neutrons with the sizes of atoms, dot represents the diameter of an electron. and infer what makes up most of an atom. 2. Measure a distance of 10 cm from the dot and draw a second dot. The distance between the two dots represents the diameter of a pro- ton or a neutron.

Appendix F / Try at Home Labs 863 APPENDIX F Try at Home Labs

Element Hunt

Real-World Question How many elements can be 4. Search your home for items made primar- found in your home? ily or entirely of metalloids and non- metals. List the items in your data chart. Possible Materials • periodic table of the elements Conclude and Apply • chemistry books or resources 1. List the two most common nonmetals found in your home and identify their Procedure locations. 1. Create a chart to record the elements that are 2. List the most common metals found in metals, metalloids, and nonmetals. your home. 2. Use your chemistry textbook and resources to 3. Infer what group of metals is most com- research common uses for elements. monly found in a home. 3. Search your home for items made entirely or primarily of metal elements. List the items in your chart.

Mixing Ionic and Covalent Liquids

Real-World Question Do common ionic and cova- 4. Repeat steps #2 and #3 using a soft drink lent liquids found in a kitchen mix together? and vegetable oil. 5. Measure 100 mL of vegetable oil and pour Possible Materials it into the container. Measure 100 mL of • clear-glass container • spoon or rubbing alcohol, pour it into the contain- • water stirring rod er, and stir the mixture. Observe and • rubbing alcohol • measuring cup record what happens to the two liquids. • soft drink with SI units 6. Thoroughly wash and rinse out your con- • vegetable oil • dish soap tainer using dish soap. Procedure 7. Repeat steps #5 and #6 using a soft drink 1 Create a data table to record your observations. and rubbing alcohol. 2. Measure 100 mL of water and pour it into the Conclude and Apply container. Measure 100 mL of rubbing alco- 1. Research what type of compound water is. hol, pour it into the container, and stir the mixture. Observe and record what happens 2. Infer why the liquids mixed or did not mix to the two liquids. the way they did. 3. Thoroughly wash and rinse out your container using dish soap.

864 Appendix F / Try at Home Labs APPENDIX F Try at Home Labs

Iron Ink

Real-World Question How can common household 4. Place a coffee filter into a funnel, insert the items be used to make nineteenth century ink? funnel into a glass, and pour the mixture from the mug into the filter. Possible Materials 5. Place the glass of filtered solution in the • ceramic mug • glass refrigerator for 15 min. • bag • water 6. Remove the funnel and use a paintbrush • iron sulfate tablets • funnel to write letters with the ink on a white • coffee filter • oven mitt sheet of paper. Set the paper aside to dry. • measuring cup • white paper Conclude and Apply • paintbrush • microwave oven 1. Identify the molecular formula of the Procedure compound in the iron tablets that creates 1. Pour 30 mL of water into the mug. the dark color of the ink. 2. Lay a tea bag in the water and drop five iron 2. Infer the type of compounds involved in sulfate tablets onto the bag. this chemical reaction. 3. Microwave the mug for 2 min. Remove the 3. Research the precipitate that forms and tea bag from the mug. gives the ink its black color.

Preventing a Chemical Reaction

Real-World Question How can the chemical reac- 3. Place a 100-mg vitamin C tablet between tion that turns apples brown be prevented? two sheets of wax paper and use a rolling pin to grind the tablet into powder. Possible Materials 4. Place the powder into glass #2 and stir the • Seven identical • bottled water mixture vigorously. • SI measuring cup • wax paper 5. Repeat steps 3 and 4 for glasses #3–#7 using • paper towels • 100-mg vitamin C the appropriate mass of vitamin C. tablets • kitchen knife 6. Cut seven equal-sized wedges of apple and • rolling pin • permanent black immediately place one into each glass. • apple marker • masking tape 7. After 5 min, lay the wedges on paper tow- els in front of the glasses in which they Procedure were soaking. Observe the apples every 1. Pour 200 mL of water into each glass. 5 min for 45 min. 2. Label glass #1 no vitamin C, glass #2 100 mg, glass #3 200 mg, glass #4 500 mg, glass #5 Conclude and Apply 1000 mg, glass #6 2000 mg, and glass #7 1. Describe the results of your experiment. 3000 mg. 2. Infer why vitamin C prevents apples from turning brown.

Appendix F / Try at Home Labs 865 APPENDIX F Try at Home Labs

Comparing Orbital Sizes

Real-World Question How do the sizes of different orbital, 156 cm to represent the radius of the electron orbitals compare? second orbital, 186 cm for the third orbital, 227 cm for the fourth orbital, 248 cm to rep- Possible Materials resent the radius of the fifth orbital, and 265 • metric ruler or meterstick cm for the radius of the sixth orbital. Mark • 3-m-long piece of white paper (or tape each length with a new line. several smaller pieces together) 5. On your paper, label the radii with the • markers appropriate orbital number. • masking tape Conclude and Apply Procedure 1. The average radius of an atom’s nucleus is 1. Lay the white paper out on a flat surface. 1 1012. Calculate the scale you used for 2. Use a marker to draw a thin, 3-cm-long line your drawing. at one end of the paper. 2. Infer from your drawing what comprises 3. Measure a 1-cm distance and draw a second most of an atom. line to represent the radius of an atom’s nucleus. 4. From the first line, measure a distance of 37 cm to represent the radius of the first electron

Periodic Properties of the Elements

Real-World Question How does the solubility of 4. Measure 15 mL of mineral oil and pour it iodine differ in different liquids? into the . 5. Shake the jar vigorously again and allow Possible Materials the mixture to sit for 5 min. Observe the • glass jar with (baby food work well) mixture. •dropper Conclude and Apply • mineral oil 1. Describe the mixture in the jar after you • tincture of iodine added the mineral oil and allowed the jar’s • water contents to sit for 5 min. • measuring cup 2. Infer why the iodine behaved the way it • tablespoon did when the mineral oil was added. Procedure 3. Infer other elements or compounds that 1. Pour water into a glass jar until it is half-full. might behave similarly to the iodine. 2. Add 4 drops of iodine to the water. Explain your answer. 3. Tighten the lid and shake the jar vigorously until the solution turns a light brown color.

866 Appendix F / Try at Home Labs APPENDIX F Try at Home Labs

Breaking Covalent Bonds

Real-World Question What liquids will break the 3. Thoroughly wash out the glass and repeat covalent bonds of polystyrene? steps 1 and 2 using cooking oil and nail polish remover. Possible Materials 4. Drop several peanuts into any of the liq- • polystyrene packing peanuts or uids that cause a chemical reaction with polystyrene cups the polystyrene peanuts and observe what • large glass happens to them. • measuring cup • nail polish remover Conclude and Apply 1. Describe the reaction between the poly- • shallow dish styrene peanuts and each of the four • rubbing alcohol liquids. • water • cooking oil 2. Infer why the polystyrene reacted as it did with each of the liquids. Procedure 1. Pour 200 mL of water into a glass. 2. Drop a polystyrene packing peanut into the water and observe how the polystyrene and water react.

Estimating Metric Temperatures

Real-World Question How can Americans estimate 4. After reading the temperature in degrees daily metric temperatures? Fahrenheit each day, estimate the tempera- ture in degrees Celsius and Kelvins. Possible Materials 5. Calculate the actual temperature in • thermometer with only Fahrenheit degrees Celsius. temperature scale units (try not to use a mercury-filled thermometer) 6. Calculate the actual temperature in Kelvins. • calculator Conclude and Apply Procedure 1. Compare how well you were able to esti- 1. Create a data table to record your temperature mate metric temperatures at the start of observations and calculations. the activity with your ability at the end of the lab. 2. Place a Fahrenheit scale thermometer outside your home in a location where you can easily 2. Infer why many Americans cannot esti- view it from a window or door. mate temperatures in degrees Celsius. 3. Observe the air temperature in degrees Fahren- heit each day for two weeks. Observe the tem- perature at different times of the day.

Appendix F / Try at Home Labs 867 APPENDIX F Try at Home Labs

Crushing Cans

Real-World Question How can an aluminum soft- 3. Measure 25 mL of water and pour it into drink can be used to demonstrate the gas laws? an aluminum soft-drink can. 4. Using an oven mitt, hold the can right side Possible Materials up in the boiling water for one minute. • aluminum soft-drink can (355 mL) 5. Quickly invert the aluminum can and • stovetop or hot plate submerge it beneath the cold water in the •pan container. Observe the result. •oven mitt • large tongs Conclude and Apply 1. Describe what happened to the can when • water you submerged it beneath the cold water. • large, • large bowl 2. Explain why the can behaved the way it did using both Charles’s Law and Boyle’s • measuring cup with SI units Law in your explanation. • watch with second hand or stopwatch 3. Compare the amount of kinetic energy in •ice the air molecules while the can was held in Procedure the boiling water to when the can was sub- 1. Fill a pan with water, place the pan on a merged in the cold water. stovetop, and bring the water to a boil. 2. Fill a large, plastic container with cold water and ice.

Measuring Moles of Sugar

Real-World Question How can you measure and 2. Measure approximately 100 mL of sugar calculate the number of moles in a sample of and pour the sugar into the bowl. sugar? 3. Measure the mass of the sugar and bowl and calculate the mass of the sugar sample. Possible Materials •sugar Conclude and Apply • kitchen scale 1. Research the chemical formula of sucrose • measuring cup (table sugar). • small bowl 2. Calculate the molar mass of sucrose. • calculator 3. Calculate the number of moles in your Procedure sugar sample. 1. Measure the mass of a small bowl.

868 Appendix F / Try at Home Labs APPENDIX F Try at Home Labs

Measuring Capillarity

Real-World Question How does the height of a 4. Hold the dropper level and measure the meniscus differ in containers of different widths height of the meniscus formed by the water. and shapes? 5. Repeat steps 3 and 4 using 2-mL and 1-mL droppers. Possible Materials • 30-mL medicine cup • glass 6. Measure the heights of the meniscuses formed by water in a 30-mL medicine cup • 750-mL bottle • bowl and the neck of a 750-mL bottle. • narrow-necked bottle • water • 1-mL, 2-mL, and • metric ruler Conclude and Apply 5-mL droppers 1. Explain the relationship between contain- er width and meniscus height. Procedure 1. Create a data table to record your data. 2. Infer other factors, aside from a contain- er’s width, that will determine the height 2. Measure the diameter of all the containers. of a meniscus. Measure the width of the bottle’s neck. 3. Infer the maximum width of a container 3. Suction up water into a 5-mL dropper until it in which water will still form a measurable is half-full. meniscus.

Testing for Acid Rain

Real-World Question Does your area have acid 4. Collect water samples from streams or rain? rivers in your area and test the pH.

Possible Materials Conclude and Apply • aquarium pH test kit 1. Research the pH value of normal rainwater. • small test tubes (from aquarium kit) 2. Research the pH value of acid rain. • clean plastic containers 3. Test the pH of bottled water and compare Procedure the value to the pH of your water samples. 1. Create a data table to record your data. 4. Infer whether or not your region has an 2. Place a container with a wide mouth opening acid rain problem. outside in a location where it will capture rain. Set the container away from trees or other objects that might drop debris into the container. 3. Use an aquarium pH test kit to test the pH of your rainwater sample.

Appendix F / Try at Home Labs 869 APPENDIX F Try at Home Labs

Testing for Ammonia

Real-World Question What substances elevate 3. Add nothing to the first jar. Place 28 g of ammonia levels in natural waterways? raw chicken into the second jar, 56 g into the third jar, and 84 g into the fourth jar. Possible Materials Label your jars. 4. Create a data table to record your data. • four glass jars with • kitchen scale • measuring cup • kitchen knife 5. Measure the amount of ammonia in each water sample each day for five days. Also • raw chicken (6 ounces) • masking tape observe the clarity of each sample. • water • black marker • ammonia test kit Conclude and Apply Procedure 1. Identify possible procedural errors in 1. Use a kitchen scale to measure 28-g (1 ounce), your experiment. 56-g (2-ounce), and 84-g (3-ounce) pieces of 2. Summarize your experiment results. raw chicken. 3. Infer the common cause for elevated 2. Fill four jars with 500 mL of water. ammonia levels in natural waterways.

Testing the Oxidation Power of Bleach

Real-World Question How well does bleach oxidize 2. Thoroughly wash out the brush and repeat the compounds in different stains? step 1 using mustard and grape jam. Place the stains side by side. Possible Materials 3. Use a dropper to make quarter-sized stains • cotton swabs • grape jam of grape and cranberry next to the • bleach • access to clothes dryer other three stains. Label each stain. • mustard • white cotton cloth 4. Place the cloth in a dryer until the stains dry. •ketchup •rubber gloves •grass •bowl 5. Wearing rubber gloves, carefully pour • grape juice • barbeque brush bleach into a bowl. • cranberry juice • permanent black marker 6. Dip a cotton swab into the bleach and press • dropper or • watch with second hand the swab tip on the ketchup stain for 15 s. straw or stopwatch 7. Repeat step 6 for the other stains. Procedure Conclude and Apply 1. Take a peanut-sized dab of ketchup and place 1. Explain how bleach removes stains. it on one end of a white cloth. Brush the 2. Describe the effectiveness of the bleach at ketchup into the cloth to form a stain that is oxidizing the compounds in the various about the size of a quarter and label the stain stains you tested. with a permanent marker. 3. Infer why the bleach oxidized some stains better than others.

870 Appendix F / Try at Home Labs APPENDIX F Try at Home Labs

Removing Electroplating

Real-World Question How can the electroplating on 3. Slice a lemon into several wedges and drop aluminum pans be removed? the wedges into the pan of boiling water. 4. Observe the chemical reaction that occurs Possible Materials at the bottom of the pan. • aluminum pan turned dark on the bottom • water Conclude and Apply • lemon 1. Describe the results of your experiment. • kitchen knife 2. Infer why the bottom of the pan changed • measuring cup in appearance. • stovetop burner or hotplate Procedure 1. Measure 500 mL of water and pour it into the pan. 2. Place the pan on a stovetop burner and bring the water to a boil.

Comparing Water and Alcohol

Real-World Question How do the properties of 4. Mix 20 mL of water with oil and stir the water and an alcohol compare? mixture. Do the same with the alcohol and oil. Possible Materials Conclude and Apply • water • stirring rod 1. Describe what happened when an ice cube • rubbing alcohol • spoon was dropped into each liquid. • vegetable oil • kitchen scale 2. Infer why the ice cube behaved as it did in • three measuring cups • stopwatch or each liquid. with SI units watch with • three clear glasses second hand 3. Infer what would happen if water and the alcohol were mixed together. • two ice cubes 4. Summarize your comparisons of the two Procedure liquids. 1. Create a data table for comparing the physical properties of water and rubbing alcohol. 2. Compare the color and odor of each liquid. 3. Measure the masses of equal volumes of each liquid and calculate the density of each. Drop an ice cube into each glass and observe any dif- ferences in densities of the liquids.

Appendix F / Try at Home Labs 871 APPENDIX F Try at Home Labs

Counting Nutrients

Real-World Question What percentage of the daily 3. Count up the percentage of the daily allowance of fats, carbohydrates, and proteins do allowance of fats, carbohydrates, and pro- you consume each day? teins that you consume each day. 4. Count the grams of fat, carbohydrates, Possible Materials and proteins you consume each day for a • nutrition facts chart • nutrition guide week and calculate a daily average for each • packages of foods book nutrient. and drinks consumed • kitchen scale 5. Calculate a daily average for the percentage during a week of the daily allowance of fats, carbohy- Procedure drates, and proteins you consume. 1. Create a data table to record the mass and per- Conclude and Apply centage of the daily allowance of fats, carbohy- 1. Compare your fat, carbohydrate, and protein drates, and proteins that you consume each intake with the amounts recommended on day for a week. the bottom table of a nutrition facts chart. 2. After each meal or snack, check the nutrition 2. Infer if this lab can determine whether or facts charts on your or a nutri- not a person has a healthy diet. tion guide to count up the number of grams of fat, carbohydrates, and proteins you consumed. 3. Infer possible dietary changes you may Be certain you consider how many servings of want to consider based upon the results each food or drink you consumed. of this lab.

Observing Entropy

Real-World Question How quickly do common 2. Create a data table to record your observa- household liquids enter into a state of entropy? tions and measurements. 3. Quickly place one drop of food coloring Possible Materials into each container while a partner simul- • seven identical • clear soft drink taneously starts a stopwatch. glass containers 4. Observe how the food coloring behaves in • stopwatch or watch • vinegar each liquid. Time how quickly the color- with second hand ing and each liquid reach total entropy. • water • milk • corn syrup • cooking oil Conclude and Apply • rubbing alcohol • food coloring 1. Infer the relationship between the rate at • measuring cup which a liquid and the dye achieves a state of total entropy and the time measure- Procedure ment from your data table. 1. Fill identical glass containers with equal volumes of the seven different liquids. Label each container. 2. Infer why the entropy rates for the differ- ent liquids varied.

872 Appendix F / Try at Home Labs APPENDIX F Try at Home Labs

Modeling Fusion

Real-World Question How can fusion reactions be 4. Construct two deuterium atoms and a tri- modeled? tium atom. Arrange your models and a sin- gle proton into a second fusion reaction. Possible Materials 5. Construct two deuterium atoms and a heli- • 14 red gumdrops • white paper (9 sheets) um atom. Arrange your three models and a • 12 green gumdrops • black marker single neutron into a third fusion reaction. • toothpicks Conclude and Apply Procedure 1. Describe what all three fusion reactions 1. Draw a large black arrow on 3 separate sheets have in common. of white paper. Draw a large plus sign on 6 2. Research the natural abundance of H-1 separate sheets of paper. atoms and deuterium. 2. While making your models in the steps below, 3. Infer from your models why nuclear fusion use red gumdrops to represent protons and reactions create no radioactive waste. green gumdrops to represent neutrons. 3. Construct a deuterium atom, tritium atom, and helium atom. Arrange your three models and a single neutron into a common fusion reaction.

Appendix F / Try at Home Labs 873 Glossary/Glosario A English A Spanish

absolute zero: the temperature below which a sub- absolute zero / cero absoluto: la temperatura debajo de la stance would have zero kinetic energy. (Chap. 10, cual una sustancia carecería de energía cinética. (Cap. 10, p. 349) pág. 349) acid: a substance that produces hydronium ions when acid / ácido: sustancia que produce iones de hidronio cuan- dissolved in water. (Chap. 14, p. 483) do se disuelve en agua. (Cap. 14, pág. 483) acidic anhydride: a nonmetal oxide that reacts with water acidic anhydride / anhídrido acídico: óxido no metálico que to form an acid. (Chap. 14, p. 492) reacciona con agua para formar un ácido. (Cap. 14, pág. 492) acidic hydrogen: in an acid, any hydrogen that can be acidic hydrogen / hidrógeno acídico: en un ácido, es cualquier transferred to water. (Chap. 14, p. 485) hidrógeno que puede transferirse al agua. (Cap. 14, pág. 485) actinide: any of the second series of inner transition ele- actinide / actínido: cualquiera de la segunda serie de ele- ments with atomic numbers from 90 to 103; all are mentos de transición interna con números atómicos de 90 radioactive. (Chap. 3, p. 104) a 103; todos son radioactivos. (Cap. 3, pág. 104) activation energy: the amount of energy the particles in a activation energy / energía de activación: cantidad de reaction must have when they collide for the reaction to energía que deben tener las partículas cuando chocan en occur. (Chap. 6, p. 218) una reacción para que ésta ocurra. (Cap. 6, pág. 218) active site: on an enzyme, the pocket or groove that can active site / sitio activo: en una enzima, es el abolsamiento o bind a substrate taking part in a reaction. (Chap. 19, la ranura que puede unirse a un sustrato que participa en p. 676) una reacción. (Cap. 19, pág. 676) addition reaction: a reaction where monomers that addition reaction / reacción de adición: reacción donde contain double bonds add onto each other to form monómeros que contienen dobles enlaces se unen unos con long chains; the product contains all the atoms of otros para formar cadenas largas; el producto contiene todos the starting monomers. (Chap. 18, p. 656) los átomos de los monómeros iniciadores. (Cap. 18, pág. 656) aerobic: a metabolic process that takes place only in the aerobic / aeróbico: proceso metabólico que sólo se lleva a presence of oxygen. (Chap. 19, p. 694) cabo en la presencia de oxígeno. (Cap. 19, pág. 694) alkali metal: any element from Group 1: lithium, sodium, alkali metal / metal alcalino: cualquier elemento del Grupo 1: potassium, rubidium, cesium, francium. (Chap. 8, p. 263) litio, sodio, potasio, rubidio, cesio, francio. (Cap. 8, pág. 263) alkaline earth metal: any element from Group 2: berylli- alkaline earth metal / metal alcalinotérreo: cualquier ele- um, magnesium, calcium, strontium, barium. (Chap. 8, mento del Grupo 2: berilio, magnesio, calcio, estroncio, bario. p. 265) (Cap. 8, pág. 265) alkane: a saturated hydrocarbon that consists of only car- alkane / alcano: hidrocarburo saturado formado única- bon and hydrogen atoms with single bonds between all mente por átomos de carbono e hidrógeno con enlaces the atoms. (Chap. 18, p. 623) sencillos entre todos los átomos. (Cap. 18, pág. 623) alkene: a hydrocarbon in which one or more double alkene / alqueno: hidrocarburo en que uno o más enlaces bonds link carbon atoms. (Chap. 18, p. 629) dobles unen átomos de carbono. (Cap. 18, pág. 629) alkyne: an unsaturated hydrocarbon that contains a triple alkyne / alquino: hidrocarburo insaturado que contiene un bond between two carbon atoms. (Chap. 18, p. 633) enlace triple entre dos átomos de carbono. (Cap. 18, pág. 633) allotrope: any of two or more molecules of a single ele- allotrope / alótropo: cualquiera de dos o más moléculas de ment that have different crystalline or molecular struc- un solo elemento que tienen estructuras cristalinas o mol- tures. (Chap. 5, p. 175) eculares diferentes. (Cap. 5, pág. 175) alloy: a solid solution containing different metals, and alloy / aleación: solución sólida que contiene metales diferentes sometimes nonmetallic substances. (Chap. 1, p. 23) y, algunas veces, sustancias no metálicas. (Cap. 1, pág. 23) alpha particle: a helium nucleus consisting of two pro- alpha particle / partícula alfa: núcleo de helio que consiste tons and two neutrons. (Chap. 21, p. 747) en dos protones y dos neutrones. (Cap. 21, pág. 747)

874 Glossary/Glosario Glossary/Glosario amino acid: an organic compound; a monomer that amino acid / aminoácido: compuesto orgánico; monómero forms proteins. (Chap. 19, p. 670) que forma proteínas. (Cap. 19, pág. 670) amorphous material: a substance with a haphazard, amorphous material / material amorfo: sustancia con una disjointed, and incomplete crystal lattice. (Chap. 10, estructura cristalina aleatoria, desorganizada e incompleta. p. 346) (Cap. 10, pág. 346) anaerobic: a metabolic process that takes place in the anaerobic / anaeróbico: proceso metabólico que se lleva a absence of oxygen. (Chap. 19, p. 698) cabo en ausencia de oxígeno. (Cap. 19, pág. 698) anhydrous: a compound in which all water has anhydrous / anhidro: compuesto al que se le ha extraido been removed, usually by heating. (Chap. 5, toda el agua, generalmente por calentamiento. (Cap. 5, p. 168) pág. 168) anion: a negative ion. (Chap. 17, p. 586) anion / anión: ion negativo. (Cap. 17, pág. 586) anode: the electrode that takes electrons away from the anode / ánodo: electrodo que quita electrones de iones o reacting ions or atoms in solution. (Chap. 17, p. 585) átomos reactivos en solución. (Cap. 17, pág. 585) aqueous solution: a solution in which the solvent is aqueous solution / solución acuosa: solución en la cual el water. (Chap. 1, p. 23) disolvente es agua. (Cap. 1, pág. 23) aromatic hydrocarbon: a compound that has a aromatic hydrocarbon / hidrocarburo aromático: com- benzene ring or the type of bonding exhibited by puesto que tiene un anillo de benceno o el tipo de enlace benzene; most have distinct odors. (Chap. 18, exhibido por el benceno; la mayoría posee olores distin- p. 636) tivos. (Cap. 18, pág. 636) atom: the smallest particle of a given type of matter. atom / átomo: la partícula más pequeña de un cierto tipo (Chap. 2, p. 53) de materia. (Cap. 2, pág. 53) atomic number: the number of protons in the nucleus atomic number / número atómico: número de protones of an atom of an element. (Chap. 2, p. 66) en el núcleo del átomo de un elemento. (Cap. 2, pág. 66) atomic theory: the idea that matter is made up atomic theory / teoría atómica: la idea de que la materia of fundamental particles called atoms. (Chap. 2, está compuesta de partículas fundamentales llamadas áto- p. 53) mos. (Cap. 2, pág. 53) ATP: adenosine triphosphate, the energy storage molecule ATP / ATP: trifosfato de adenosina, la molécula de almace- in cells. (Chap. 19, p. 696) namiento de energía en las células. (Cap. 19, pág. 696) Avogadro constant: the number of things in one mole Avogadro constant / constante de Avogadro: el número de of a substance, specifically 6.02 1023. (Chap. 12, cosas en un mol de una cierta sustancia, específicamente p. 405) 6.02 1023. (Cap. 12, pág. 405) Avogadro’s principle: statement that at the same Avogadro’s principle / principio de Avogadro: afirmación temperature and pressure, equal volumes of gases de que a la misma temperatura y presión, volúmenes contain equal numbers of particles. (Chap. 11, iguales de gases contienen números iguales de partículas. p. 398) (Cap. 11, pág. 398)

B B barometer: an instrument that measures the pressure barometer / barómetro: instrumento que mide la presión exerted by the atmosphere. (Chap. 11, p. 376) ejercida por la atmósfera. (Cap. 11, pág. 376) base: a substance that produces hydroxide ions when it base / base: sustancia que produce iones hidróxido cuando dissolves in water. (Chap. 14, p. 488) se disuelve en agua. (Cap. 14, pág. 488)

Glossary/Glosario 875 Glossary/Glosario

basic anhydride: a metal oxide that reacts with water to basic anhydride / anhídrido básico: óxido metálico que reac- form a base. (Chap. 14, p. 492) ciona con agua para formar una base. (Cap. 14, pág. 492) beta particle: a high-energy electron with a 1 charge. beta particle / partícula beta: electrón de alta energía con (Chap. 21, p. 749) una carga de 1. (Cap. 21, pág. 749) binary compound: a compound that contains only two binary compound / compuesto binario: compuesto que elements. (Chap. 5, p. 155) contiene sólo dos elementos. (Cap. 5, pág. 155) biochemistry: the study of the chemistry of living things. biochemistry / bioquímica: el estudio de la química de (Chap. 19, p. 668) los seres vivos. (Cap. 19, pág. 668) boiling point: the temperature of a liquid where its boiling point / punto de ebullición: temperatura de un vapor pressure equals the pressure exerted on its líquido cuando su presión de vapor iguala a la presión surface. (Chap. 10, p. 358) ejercida sobre su superficie. (Cap. 10, pág. 358) Boyle’s law: at a constant temperature, the volume and Boyle’s law / ley de Boyle: a temperatura constante, el vol- pressure of a gas are inversely proportional. (Chap. 11, umen y la presión de un gas son inversamente propor- p. 383) cionales. (Cap. 11, pág. 383) Brownian motion: the constant, random motion Brownian motion / movimiento browniano: movimien- of tiny chunks of matter. (Chap. 10, to aleatorio constante de trozos diminutos de materia. p. 342) (Cap. 10, pág. 342) buffer: a solution that resists changes in pH when moder- buffer / amortiguador: solución que resiste cambios de ate amounts of acids or bases are added to it. (Chap. 15, pH cuando se le añaden cantidades moderadas de ácidos p. 531) o bases. (Cap. 15, pág. 531)

C C

calorie: the heat required to raise the temperature calorie / caloría: el calor requerido para incrementar la of 1 gram of liquid water by 1°C. (Chap. 20, temperatura de 1 gramo de agua líquida en un 1°C. p. 721) (Cap. 20, pág. 721) Calorie: a food Calorie, equal to 1 kilocalorie, used Calorie / Caloría: una Caloría alimenticia (igual a 1 kilo- to measure the energy value of foods. (Chap. 20, caloría) se usa para medir el valor energético de los ali- p. 721) mentos. (Cap. 20, pág. 721) capillarity: the rising of a liquid in a narrow tube, capillarity / capilaridad: elevación de un líquido por un sometimes called capillary action. (Chap. 13, tubo estrecho, llamado en ocasiones acción capilar. (Cap. p. 443) 13, pág. 443) carbohydrate: an organic molecule that contains carbohydrate / carbohidrato: una molécula orgánica que the elements carbon, hydrogen, and oxygen in a contiene los elementos carbono, hidrógeno y oxígeno en ratio of about two hydrogen atoms and one una proporción de aproximadamente dos átomos de oxygen atom for each carbon atom. (Chap. 19, hidrógeno y uno de oxígeno por cada átomo de carbono. p. 677) (Cap. 19, pág. 677) catalyst: a substance that speeds up the rate of a reaction catalyst / catalizador: sustancia que acelera la velocidad without being used up itself or permanently changed. de reacción sin que se la consuma o se cambie perma- (Chap. 6, p. 222) nentemente. (Cap. 6, pág. 222) cathode: the electrode that brings electrons to the react- cathode / cátodo: electrodo que lleva electrones a los ing ions or atoms in solution. (Chap. 17, p. 585) iones o átomos reactivos en solución. (Cap. 17, pág. 585) cation: a positive ion. (Chap. 17, p. 586) cation / catión: ion positivo. (Cap. 17, pág. 586)

876 Glossary/Glosario Glossary/Glosario

Charles’s law: at constant pressure, the volume of a gas is Charles’s law / ley de Charles: a presión constante, el volu- directly proportional to its Kelvin temperature. (Chap. 11, men de un gas es directamente proporcional a su tempe- p. 392) ratura en Kelvin. (Cap. 11, pág. 392) chemical change: the change of one or more substances chemical change / cambio químico: cambio de una o más into other substances. (Chap. 1, p. 40) sustancias en otras sustancias. (Cap. 1, pág. 40) chemical property: a property that can be observed only chemical property / propiedad química: propiedad que when there is a change in the composition of a sub- puede observarse únicamente cuando hay un cambio en la stance. (Chap. 1, p. 40) composición de una sustancia. (Cap. 1, pág. 40) chemical reaction: another term for chemical change. chemical reaction / reacción química: otra forma de nom- (Chap. 1, p. 40) brar un cambio químico. (Cap. 1, pág. 40) chemistry: the science that investigates and explains the chemistry / química: ciencia que investiga y explica la structure and properties of matter. (Chap. 1, p. 4) estructura y las propiedades de la materia. (Cap. 1, pág. 4) coefficient: a number placed in front of the parts coefficient / coeficiente: número que se coloca antes de las of a chemical equation to indicate how many are partes de una ecuación química para indicar cuántas de involved; always a positive whole number. (Chap. 6, ellas están involucradas; siempre es un número entero p. 199) positivo. (Cap. 6, pág. 199) coenzyme: an organic molecule that assists an enzyme in coenzyme / coenzima: molécula orgánica que ayuda a una catalyzing a reaction. (Chap. 19, p. 691) enzima a catalizar una reacción. (Cap. 19, pág. 691) colloid: a mixture that contains particles that are evenly colloid / coloide: mezcla que contiene partículas unifor- distributed through a dispersing medium and do not memente distribuidas a través de un medio dispersante y settle out over time. (Chap. 13, p. 472) que no se estabiliza con el tiempo. (Cap. 13, pág. 472) combined gas law: the combination of Boyle’s law and combined gas law / ley combinada de los gases: combi- Charles’s law. (Chap. 11, p. 395) nación de las leyes de Boyle y Charles. (Cap. 11, pág. 395) combustion: term for a reaction in which a substance combustion / combustión: término para una reacción en la rapidly combines with oxygen to form one or more cual una sustancia se combina rápidamente con oxígeno oxides. (Chap. 6, p. 209) para formar uno o más óxidos. (Cap. 6, pág. 209) compound: a chemical combination of two or more dif- compound compuesto: combinación química de dos o más ferent elements joined together in a fixed proportion. elementos diferentes unidos en una proporción fija. (Cap. (Chap. 1, p. 30) 1, pág. 30) concentration: the amount of a substance present in a concentration / concentración: cantidad de sustancia pre- unit volume. (Chap. 6, p. 219) sente en una unidad de volumen. (Cap. 6, pág. 219) condensation: the process where gaseous particles come condensation / condensación: proceso en que las partículas together, that is, condense, to form a liquid or some- gaseosas se unen o se condensan formando un líquido o en times a solid. (Chap. 10, p. 356) algunas ocasiones un sólido. (Cap. 10, pág. 356) condensation reaction: reaction to form a polymer condensation reaction / reacción de condensación: reac- where a small molecule, usually water, is given ción para formar un polímero donde una molécula off as each new bond is formed. (Chap. 18, pequeña, generalmente agua, es eliminada al formarse un p. 658) nuevo enlace. (Cap. 18, pág. 658) conductivity: a measure of how easily electrons can flow conductivity / conductividad: medida de la facilidad con through a material to produce an electrical current. que pueden fluir los electrones a través de un material (Chap. 9, p. 313) para producir una corriente eléctrica. (Cap. 9, pág. 313) covalent bond: the attraction of two atoms for a shared covalent bond / enlace covalente: atracción de dos átomos pair of electrons. (Chap. 4, p. 140) por un par compartido de electrones. (Cap. 4, pág. 140) covalent compound: a compound whose atoms covalent compound / compueso covalente: compuesto are held together by covalent bonds. (Chap. 4, cuyos átomos se mantienen unidos por enlaces covalentes. p. 140) (Cap. 4, pág. 140)

Glossary/Glosario 877 Glossary/Glosario

cracking: the use of a catalyst or high temperatures in cracking / cracking: uso de un catalizador o de altas tem- the absence of air to break down or rearrange large peraturas en ausencia de aire para romper o rearreglar hydrocarbons. (Chap. 18, p. 638) hidrocarburos grandes. (Cap. 18, pág. 638) cross-linking: the linking together of many polymer cross-linking / entrecruzamiento: unión de varias cade- chains, giving the polymer increased strength. (Chap. 18, nas de polímeros, produciendo un polímero con fuerza p. 658) incrementada. (Cap. 18, pág. 658) crystal: a regular, repeating arrangement of atoms, ions, crystal / cristal: arreglo tridimensional, repetitivo y regu- or molecules in three dimensions. (Chap. 4, p. 134) lar de átomos, iones, o moléculas. (Cap. 4, pág. 134) crystal lattice: the three-dimensional arrangement crystal lattice / red cristalina: arreglo tridimensional repeated throughout a solid. (Chap. 10, p. 345) repetido a través de un sólido. (Cap. 10, pág. 345)

D D

decomposition: the name applied to a reaction where a decomposition / descomposición: nombre que se aplica compound breaks down into two or more simpler sub- a una reacción donde un compuesto se descompone en stances. (Chap. 6, p. 204) dos o más sustancias más simples. (Cap. 6, pág. 204) deliquescent: a substance that takes up enough water deliquescent / delicuescente: sustancia que absorbe sufi- from the air that it dissolves completely to a liquid solu- ciente agua del aire como para disolverse completa- tion. (Chap. 5, p. 166) mente en una solución líquida. (Cap. 5, pág. 166) denaturation: the name given to the process of denaturation / desnaturalización: nombre que se le da unfolding of a protein when the forces holding the al proceso de desdoblamiento de una proteína que polypeptide chain in shape are broken. (Chap. 19, ocurre cuando se rompen las fuerzas que mantienen for- p. 673) mada la cadena del polipéptido. (Cap. 19, pág. 673) density: the amount of matter (mass) in a given unit vol- density / densidad: cantidad de materia (masa) en una ume. (Chap. 1, p. 36) unidad dada de volumen. (Cap. 1, pág. 36) deuterium: the hydrogen isotope with a mass number of deuterium / deuterio: isótopo de hidrógeno con un 2. (Chap. 21, p. 766) número de masa de 2. (Cap. 21, pág. 766) diffusion: the process by which a gas enters a container diffusion / difusión: proceso por el cual un gas entra a and fills it, or when the particles of two gases or liquids un contenedor y lo llena, o cuando se entremezclan las mix together. (Chap. 10, p. 352) partículas de dos gases o líquidos. (Cap. 10, pág. 352) dissociation: the process by which the charged particles dissociation / disociación: proceso por el cual las partículas in an ionic solid separate from one another, primarily cargadas en un sólido iónico se separan una de la otra, prin- when going into solution. (Chap. 13, p. 453) cipalmente cuando entran en solución. (Cap. 13, pág. 453) distillation: the method of separating substances in a distillation / destilación: método de separación de sustan- mixture by evaporation of a liquid and subsequent con- cias en una mezcla por evaporación de un líquido y la densation of its vapor. (Chap. 5, p. 171) subsecuente condensación de su vapor. (Cap. 5, pág. 171) DNA: deoxyribonucleic acid. (Chap. 19, p. 688) DNA / DNA: ácido desoxirribonucleico. (Cap. 19, pág. 688) double bond: a bond formed by the sharing of two pairs double bond / enlace doble: enlace formado al compartir of electrons between two atoms. (Chap. 9, p. 321) dos pares de electrones entre dos átomos. (Cap. 9, pág. 321) double displacement: a type of reaction where the posi- double displacement / desplazamiento doble: tipo de reac- tive and negative portions of two ionic compounds are ción en la cual se intercambian las partes positivas y negati- interchanged; at least one product must be water or a vas de dos compuestos iónicos. Por lo menos, uno de los precipitate. (Chap. 6, p. 208) productos debe ser agua o un precipitado. (Cap. 6, pág. 208)

878 Glossary/Glosario Glossary/Glosario ductile: property of a metal that means it can ductile/dúctil: propiedad de un metal que permite que se pueda easily be drawn into a wire. (Chap. 9, p. 313) estirar fácilmente formando un alambre. (Cap. 9, pág. 313) dynamic equilibrium: term describing a system in which dynamic equilibrium / equilibrio dinámico: término que opposite reactions are taking place at the same rate. describe un sistema en que las reacciones opuestas se llevan (Chap. 6, p. 211) a cabo a la misma velocidad. (Cap. 6, pág. 211)

E E electrical current: the flow of electrons in a particular electrical current / corriente eléctrica: flujo de electrones en direction. (Chap. 17, p. 584) cierta dirección. (Cap. 17, pág. 584) electrolysis: the process in which electrical energy causes a electrolysis / electrólisis: proceso por el cual la energía eléc- non-spontaneous chemical reaction to occur. (Chap. 17, trica hace que ocurra una reacción química no espontánea. p. 584) (Cap. 17, pág. 584) electrolyte: any compound that conducts electricity electrolyte / electrolito: cualquier compuesto que conduce elec- when melted or dissolved in water. (Chap. 4, p. 144) tricidad cuando se funde o disuelve en agua. (Cap. 4, pág. 144) electrolytic cell: the electrochemical cell in which electrolytic cell / celda electrolítica: celda electroquímica en la electrolysis takes place. (Chap. 17, p. 586) cual se lleva a cabo la electrólisis. (Cap. 17, pág. 586) electromagnetic spectrum: the whole range of electromagnetic spectrum / espectro electromagnético: rango electromagnetic radiation. (Chap. 2, p. 71) completo de la radiación electromagnética. (Cap. 2, pág. 71) electron: negatively-charged particle. (Chap. 2, electron / electrón: partícula cargada negativamente. (Cap. 2, p. 61) pág. 61) electron cloud: the space around the nucleus of an electron cloud / nube electrónica: espacio alrededor del atom where the atom’s electrons are found. (Chap. 2, núcleo de un átomo donde se encuentran los electrones del p. 77) átomo. (Cap. 2, pág. 77) electron configuration: the most stable arrangement electron configuration / configuración electrónica: arreglo of electrons in sublevels and orbitals. (Chap. 7, de electrones más estable en subniveles y orbitales. (Cap. 7, p. 242) pág. 242) electron transport chain: the controlled release of electron transport chain / cadena de transporte de elec- energy from glucose by the step-by-step movement trones: liberación controlada de energía a partir de la glu- of electrons to lower energy levels. (Chap. 19, cosa por el movimiento gradual de electrones para dis- p. 698) minuir los niveles energéticos. (Cap. 19, pág. 698) electronegativity: the measure of the ability of an electronegativity / electronegatividad: medida de la capaci- atom in a bond to attract electrons. (Chap. 9, dad de un átomo en un enlace para atraer electrones. (Cap. p. 303) 9, pág. 303) element: a substance that cannot be broken down into element / elemento: sustancia que no puede separarse en sus- simpler substances. (Chap. 1, p. 24) tancias más simples. (Cap. 1, pág. 24) emission spectrum: the spectrum of light released emission spectrum / espectro de emisión: espectro de luz from excited atoms of an element. (Chap. 2, liberada por átomos excitados de un elemento. p. 74) (Cap. 2, pág. 74) empirical formula: the formula of a compound having empirical formula / fórmula empírica: fórmula de un the smallest whole-number ratio of atoms in the com- compuesto que tiene la proporción de átomos en números pound. (Chap. 12, p. 428) enteros menor en el compuesto. (Cap. 12, pág. 428)

Glossary/Glosario 879 Glossary/Glosario

endothermic: chemical reaction that absorbs energy. endothermic / endotérmica: reacción química que (Chap. 1, p. 43) absorbe energía. (Cap. 1, pág. 43) energy: the capacity to do work. (Chap. 1, p. 42) energy / energía: capacidad de hacer trabajo. (Cap. 1, pág. 42) energy level: the regions of space in which electrons energy level / nivel energético: regiones del espacio en las can move about the nucleus of an atom. (Chap. 2, cuales los electrones se pueden mover alrededor del p. 75) núcleo de un átomo. (Cap. 2, pág. 75) entropy: term used to describe and measure the degree of entropy / entropía: término para describir y medir el grado disorder in a process. (Chap. 20, p. 716) de degradación en un proceso. (Cap. 20, pág. 716) enzyme: a biological catalyst. (Chap. 6, p. 222) enzyme / enzima: catalizador biológico. (Cap. 6, pág. 222) equilibrium: term for a system where no net change equilibrium / equilibrio: término que describe un sistema occurs in the amount of reactants or products. donde no ocurre un cambio neto en la cantidad de reac- (Chap. 6, p. 211) tivos ni de productos. (Cap. 6, pág. 211) evaporation: the process by which particles of a liquid evaporation / evaporación: proceso por el cual las partícu- form a gas by escaping from the liquid surface. (Chap. 10, las de un líquido forman un gas al escaparse de la superficie p. 352) del líquido. (Cap. 10, pág. 352) exothermic: chemical reaction that gives off energy. exothermic / exotérmica: reacción química que libera (Chap. 1, p. 42) energía. (Cap. 1, pág. 42)

F F

factor label method: The problem-solving method factor label method / método del factor: método de solu- in chemistry that uses mathematical relationships ción de problemas en química que utiliza relaciones to convert one quantity to another. (Chap. 11, matemáticas para convertir una cantidad a otra. (Cap. 11, p. 380) pág. 380) family: see group.(Chap.3,p.96) family / familia: véase grupo. (Cap. 3, pág. 96) fatty acid: a long-chain carboxylic acid. (Chap. 19, fatty acid / ácido graso: ácido carboxílico de cadena larga. p. 684) (Cap. 19, pág. 684) fermentation: the anaerobic process of generating energy fermentation / fermentación: proceso anaerobio de gene- from glucose. (Chap. 19, p. 698) ración de energía a partir de glucosa. (Cap. 19, pág. 698) formula: a combination of chemical symbols that show formula / fórmula: combinación de símbolos químicos que what elements make up a compound and the number of muestra qué elementos forman un compuesto y el atoms of each element. (Chap. 1, p. 31) número de átomos de cada elemento. (Cap. 1, pág. 31) formula mass: the mass in atomic mass units of one formula mass / fórmula-masa: la masa en unidades de formula unit of an ionic compound. (Chap. 12, masa atómicas de una fórmula unitaria en un compuesto p. 409) iónico. (Cap. 12, pág. 409) formula unit: the simplest ratio of ions in a compound. formula unit / fórmula unitaria: la proporción más sencil- (Chap. 5, p. 156) la de iones en un compuesto. (Cap. 5, pág. 156) fossil fuel: a fuel such as oil or natural gas, comprised of fossil fuel / combustible fósil: combustible como el hydrocarbons that are the remains of plants and other petróleo o el gas natural, compuesto de hidrocarburos que organisms that lived millions of years ago. (Chap. 20, son restos de plantas y otros organismos que vivieron hace p. 713) millones de años. (Cap. 20, pág. 713)

880 Glossary/Glosario Glossary/Glosario fractional distillation: the distillation of a mixture fractional distillation / destilación fraccionaria: desti- by the use of repeated vaporization-condensation lación de una mezcla por el uso de ciclos repetidos de cycles to increase the efficiency of separation. condensación y evaporación para aumentar la eficiencia (Chap. 18, p. 638) de la separación. (Cap. 18, pág. 638) freezing point: the temperature of a liquid when freezing point / punto de congelación: temperatura de un it becomes a crystal lattice. (Chap. 10, líquido cuando se convierte en una red cristalina. p. 364) (Cap. 10, pág. 364) functional group: the part of a molecule that is functional group / grupo funcional: la parte de una largely responsible for the chemical behavior of molécula que es en gran parte responsable por el the molecule. (Chap. 18, comportamiento químico de la molécula. (Cap. 18, p. 640) pág. 640)

G G galvanic cell: an electrochemical cell in which an galvanic cell / celda galvánica: celda electroquímica en oxidation-reduction reaction occurs spontaneously que se produce espontáneamente una reacción de óxido- to produce a potential difference. (Chap. 17, reducción para generar una diferencia de potencial. p. 602) (Cap. 17, pág. 602) gamma ray: a high-energy form of electromagnetic gamma ray / rayo gama: forma de radiación electromag- radiation with no charge and no mass. (Chap. 21, nética de alta energía sin carga ni masa algunas. p. 749) (Cap. 21, pág. 749) gas: a flowing, compressible substance with no definite gas / gas: sustancia comprensible y fluida sin volumen o volume or shape. (Chap. 10, p. 341) forma definidos. (Cap. 10, pág. 341) gray: the unit used to measure a received dose of radia- gray / gray: unidad que se usa para medir una dosis de tion. (Chap. 21, p. 776) radiación recibida. (Cap. 21, pág. 776) group: the elements in a vertical column of the periodic group / grupo: elementos en una columna vertical de la table. (Chap. 3, p. 96) tabla periódica. (Cap. 3, pág. 96)

H H half life: the time it takes for half of a given radioactive half life / media vida: tiempo que tarda la mitad de cierto isotope to decay (into a different isotope or element). isótopo radioactivo en descomponerse (en un isótopo o (Chap. 21, p. 756) elemento diferentes). (Cap. 21, pág. 756) halogen: any element from Group 17: fluorine, chlorine, halogen / halógeno: cualquier elemento del Grupo 17: bromine, iodine, astatine. (Chap. 8, p. 278) flúor, cloro, bromo, yodo, astato. (Cap. 8, pág. 278) heat: the energy transferred from an object at high tem- heat / calor: tenergía transferida de un cuerpo a tempera- perature to an object at lower temperature. (Chap. 20, tura elevada hacia un cuerpo a una temperatura más baja. p. 711) (Cap. 20, pág. 711) heat of fusion: the energy released as one kilogram of a heat of fusion / calor de fusión: energía liberada al solidi- substance solidifies at its freezing point. (Chap. 10, ficarse un kilogramo de sustancia en su punto de con- p. 364) gelación. (Cap. 10, pág. 364)

Glossary/Glosario 881 Glossary/Glosario

heat of solution: the heat taken in or released in the dis- heat of solution / calor de solución: calor consumido o solving process. (Chap. 13, p. 460) liberado en el proceso de disolución. (Cap. 13, pág. 460) heat of vaporization: the energy absorbed when one heat of vaporization / calor de vaporización: energía kilogram of a liquid vaporizes at its normal boiling absorbida cuándo un kilogramo de un líquido se vaporiza point. (Chap. 10, p. 361) en su punto de ebullición normal. (Cap. 10, pág. 361) Heisenberg uncertainty principle: the principle that Heisenberg uncertainty principle / principio de incer- it is impossible to accurately measure both the position tidumbre de Heisenberg: el principio que enuncia que and energy of an electron at the same time. (Chap. 7, resulta imposible medir exactamente la posición y ener- p. 238) gía de un electrón al mismo tiempo. (Cap. 7, pág. 238) hormone: a signal molecule that tells cells whether hormone / hormona: molécula mensajera que les indica to start or stop a reaction. (Chap. 19, a las células cuando empezar o parar una reacción. p. 694) (Cap. 19, pág. 694) hydrate: a compound in which there is a specific ratio hydrate / hidrato: compuesto en que hay una proporción of water to ionic compound. (Chap. 5, p. 165) específica de agua y compuesto iónico. (Cap. 5, pág. 165) hydrocarbon: an organic compound that consists hydrocarbon / hidrocarburo: compuesto orgánico cuyos of only hydrogen and carbon. (Chap. 5, únicos componentes son hidrógeno y carbono. (Cap. 5, p. 183) pág. 183) hydrogen bonding: a connection between the hydrogen hydrogen bonding / puente de hidrógeno: conexión atoms on one molecule and a highly electronegative entre los átomos de hidrógeno en una molécula y un atom on another molecule, but not a full covalent bond. átomo altamente electronegativo en otra molécula, pero (Chap. 13, p. 439) no es un enlace covalente completo. (Cap. 13, pág. 439) hydronium ion: a hydrogen ion attached to a water mole- hydronium ion / ion hidronio: ion de hidrógeno unido a cule. (Chap. 14, p. 483) una molécula de agua. (Cap. 14, pág. 483) hygroscopic: a substance that absorbs water mole- hygroscopic / higroscópico: sustancia que absorbe molé- cules from the air to become a hydrate. (Chap. 5, culas de agua del aire para convertirse en un hidrato. p. 166) (Cap. 5, pág. 166) hypothesis: a prediction that can be tested to explain hypothesis / hipótesis: predicción que puede compro- observations. (Chap. 2, p. 59) barse para explicar observaciones. (Cap. 2, pág. 59)

I I

ideal gas: a gas in which the particles undergo elastic col- ideal gas / gas ideal: gas cuyas partículas experimentan lisions. (Chap. 10, p. 343) choques elásticos. (Cap. 10, pág. 343) ideal gas law: the equation that expresses exactly how ideal gas law / ley del gas ideal: ecuación que expresa la pressure P, volume V, temperature T, and the number of relación exacta entre la presión P, el volumen V, la tempe- particles n of a gas are related. PV nRT. (Chap. 12, ratura T y el número de partículas n de un gas. PV nRT. p. 419) (Cap. 12, pág. 419) inhibitor: a substance that slows down a reaction. (Chap. 6, inhibitor / inhibidor: sustancia que decelera una reacción. p. 223) (Cap. 6, pág. 223) inner transition element: one of the elements in the inner transition element / elemento de transición two rows of elements below the main body of the interna: uno de los elementos en dos filas de elementos periodic table; the lanthanides and the actinides. debajo del cuerpo principal de la tabla periódica; los (Chap. 7, p. 250) lantánidos y los actínidos. (Cap. 7, pág. 250)

882 Glossary/Glosario Glossary/Glosario inorganic compound: a compound that does not contain inorganic compound / compuesto inorgánico: compuesto carbon. (Chap. 5, p. 180) que no contiene carbono. (Cap. 5, pág. 180) insoluble: term describing a compound that does not dis- insoluble / insoluble: término que describe un compuesto solve in a liquid. (Chap. 6, p. 215) que no se disuelve en un líquido. (Cap. 6, pág. 215) interparticle forces: the forces between the particles interparticle forces / fuerzas interparticulares: fuerzas entre that make up a substance. (Chap. 4, p. 144) las partículas que componen una sustancia. (Cap. 4, pág. 144) ion: an atom or group of combined atoms that has a ion / ion: átomo o grupo de átomos combinados que charge because of the loss or gain of electrons. (Chap. 4, tiene(n) una carga debido a la pérdida o la ganancia de p. 134) electrones. (Cap. 4, pág. 134) ionic bond: the strong attractive force between ions of ionic bond / enlace iónico: fuerza de atracción intensa opposite charge. (Chap. 4, p. 134) entre iones de carga opuesta. (Cap. 4, pág. 134) ionic compound: a compound comprised of ions. ionic compound / compuesto iónico: compuesto formado (Chap. 4, p. 134) por iones. (Cap. 4, pág. 134) ionic equation: an equation in which substances that ionic equation / ecuación iónica: ecuación en la cual sus- primarily exist as ions in solution are shown as ions. tancias que existen principalmente como iones en solu- (Chap. 15, p. 517) ción se muestran como iones. (Cap. 15, pág. 517) ionization: the process where ions form from a covalent ionization / ionización: proceso en que los iones forman compound. (Chap. 14, p. 488) un compuesto covalente. (Cap. 14, pág. 488) isomer: a compound with a structure different from anoth- isomer / isómero: compuesto con una estructura diferente de er compound with the same formula. (Chap. 18, p. 628) otro compuesto con la misma fórmula. (Cap. 18, pág. 628) isotope: any of two or more atoms of an element that isotope / isótopo: cualquiera de dos o más átomos de un are chemically alike but have different masses. (Chap. 2, elemento que son químicamente semejantes pero que p. 62) tienen masas diferentes. (Cap. 2, pág. 62)

J J joule: the SI unit of energy; the energy required to lift a joule / julio: unidad de energía del SI; energía requerida para one-newton weight one meter against the force of gravity. levantar un metro el peso de un newton contra la fuerza de (Chap. 10, p. 361) gravedad.(Cap.10,pág.361)

K K kelvin (K): a division on the Kelvin scale; the SI unit of kelvin (K) / kelvin (K): una división en la escala Kelvin; la temperature. (Chap. 10, p. 350) unidad de temperatura del SI. (Cap. 10, pág. 350) Kelvin scale: the temperature scale defined so that tem- Kelvin scale / escala Kelvin: escala de temperatura definida perature of a substance is directly proportional to the de tal forma que la temperatura de una sustancia es direc- average kinetic energy of the particles and so that zero on tamente proporcional a la energía cinética media de las the scale corresponds to zero kinetic energy. (Chap. 10, partículas, de modo que cero en la escala corresponda a la p. 349) energía cinética cero. (Cap. 10, pág. 349) kilocalorie: a unit equal to 1000 calories. (Chap. 20, kilocalorie / kilocaloría: una unidad igual a 1000 calorías. p. 721) (Cap. 20, pág. 721)

Glossary/Glosario 883 Glossary/Glosario

kilopascal (kPa): 1000 pascals. (Chap. 11, kilopascal (kPa) / kilopascal (kPa): 1000 pascales. p. 378) (Cap. 11, pág. 378) kinetic theory: the theory that states that submicroscopic kinetic theory / teoría cinética: teoría que indica que las particles of all matter are in constant, random motion. partículas submicroscópicas de toda la materia están en (Chap. 10, p. 342) movimiento aleatorio constante. (Cap. 10, pág. 342)

L L

lanthanide: one of the first series of inner transition lanthanide / lantánido: una de la primeras series de ele- elements with atomic numbers 58 to 71. (Chap. 3, mentos de transición interna con números atómicos 58 p. 104) al 71. (Cap. 3, pág. 104) law of combining gas volumes: the observation law of combining gas volumes / ley de combinación de that at the same temperature and pressure, volumes volúmenes de gases: la observación de que a la misma of gases combine or decompose in ratios of temperatura y presión, los volúmenes de gases se combinan small whole numbers. (Chap. 11, o se descomponen en proporciones de números enteros p. 396) pequeños. (Cap. 11, pág. 396) law of conservation of energy: statement that energy law of conservation of energy / ley de conservación de is neither created nor destroyed in a chemical change, la energía: afima que la energía ni se crea ni se destruye but is simply changed from one form to another. durante un cambio químico, simplemente cambia de (Chap. 20, p. 711) una forma a otra. (Cap. 20, pág. 711) law of conservation of mass: in a chemical change, law of conservation of mass / ley de conservación de la matter is neither created nor destroyed. (Chap. 1, masa: durante un cambio químico, la materia ni se p. 42) crea ni se destruye. (Cap. 1, pág. 42) law of definite proportions: the principle that the law of definite proportions / ley de proporciones elements that comprise a compound are always in definidas: principio que dice que los elementos que for- a certain proportion by mass. (Chap. 2, man un compuesto están siempre en una proporción de p. 54) masa dada. (Cap. 2, pág. 54) Lewis dot diagram: a diagram where dots or other Lewis dot diagram / diagrama de punto de Lewis: small symbols are placed around the chemical symbol esquema en que se colocan puntos u otros símbolos of an element to illustrate the valence electrons. pequeños alrededor del símbolo químico de un elemento (Chap. 2, p. 79) para ilustrar los electrones de valencia. (Cap. 2, pág. 79) limiting reactant: the reactant of which there is limiting reactant / reactivo limitante: el reactivo del que not enough; when it is used up, the reaction no hay suficiente; cuando se consume completamente, la stops and no new product is formed. (Chap. 6, reacción se detiene y no se forma ningún producto p. 220) nuevo. (Cap. 6, pág. 220) lipid: a biological compound that contains a large pro- lipid / lípido: compuesto biológico que contiene una pro- portion of C—H bonds and less oxygen than in a porción considerable de enlaces C—H y menor canti- carbohydrate; commonly called fats and oils. (Chap. 19, dad de oxígeno que en un carbohidrato; llamados p. 682) comúnmente grasas y aceites. (Cap. 19, pág. 682) liquid: a flowing substance with a definite volume but an liquid / líquido: sustancia fluida con un volumen indefinite shape. (Chap. 10, p. 341) definido pero sin forma definida. (Cap. 10, pág. 341) liquid crystal: a material that loses its rigid organization liquid crystal / cristal líquido: material que cuando se in only one or two dimensions when it melts. (Chap. 10, funde pierde su organización rígida en una o dos p. 345) dimensiones únicamente. (Cap. 10, pág. 345)

884 Glossary/Glosario Glossary/Glosario M M malleable: property of a metal meaning it can malleable / maleable: propiedad de un metal que significa be pounded or rolled into thin sheets. (Chap. 9, que éste puede golpearse o enrollarse en hojas delgadas. p. 313) (Cap. 9, pág. 313) mass: the measure of the amount of matter an object mass / masa: medida de la cantidad de materia que con- contains. (Chap. 1, p. 4) tiene un cuerpo. (Cap. 1, pág. 4) mass number: the sum of the neutrons and protons in mass number / número de masa: suma de los neutrones y the nucleus of an atom. (Chap. 2, p. 66) protones en el núcleo de un átomo. (Cap. 2, pág. 66) matter: anything that takes up space and has mass. matter / materia: todo aquello que ocupa espacio y tiene (Chap. 1, p. 4) masa. (Cap. 1, pág. 4) melting point: the temperature of a solid when its melting point / punto de fusión: temperatura a la cual se crystal lattice disintegrates. (Chap. 10, desintegr la estructura cristalina de un sólidoa. (Cap. 10, p. 364) pág. 364) metabolism: name given to the sum of all the chemical metabolism / metabilismo: nombre dado a la suma de reactions necessary for the life of an organism. todas las reacciones químicas necesarias para la vida de un (Chap. 19, p. 692) organismo. (Cap. 19, pág. 692) metal: an element that has luster, conducts heat and metal / metal: elemento que posee lustre, conduce calor y electricity, and usually bends without breaking. electricidad y que generalmente se dobla sin romperse. (Chap. 3, p. 103) (Cap. 3, pág. 103) metallic bond: the bond that results when metal metallic bond / enlace metálico: enlace que resulta cuando atoms release their valence electrons to a pool of átomos metálicos liberan sus electrones de valencia a un electrons shared by all the metal atoms. (Chap. 9, grupo de electrones compartidos por todos ellos. (Cap. 9, p. 314) pág. 314) metalloid: an element with some physical and chemical metalloid / metaloide: elemento con algunas propiedades properties of metals and other properties of nonmetals. físicas y químicas de metales y otras propiedades de no (Chap. 3, p. 105) metales. (Cap. 3, pág. 105) mixture: a combination of two or more substances in mixture / mezcla: combinación de dos o más sustancias en which the basic identity of each substance is not la cual la identidad básica de cada sustancia no se altera. changed. (Chap. 1, p. 18) (Cap. 1, pág. 18) molar mass: the mass of one mole of a pure substance. molar mass / masa molar: la masa de un mol de una sus- (Chap. 12, p. 407) tancia pura. (Cap. 12, pág. 407) molar volume: the volume that a mole of gas occupies at molar volume / volumen molar: volumen que ocupa un a pressure of one atmosphere and a temperature of mol de gas a una presión de una atmósfera y una temper- 0.00°C. (Chap. 12, p. 416) atura de 0.00°C. (Cap. 12, pág. 416) mole: the unit used to count numbers of atoms, mole / mole: unidad que se usa para contar números de molecules, or formula units of substances. (Chap. 12, átomos, moléculas, o fórmulas unitarias de sustancias. p. 405) (Cap. 12, pág. 405) molecular element: a molecule formed when atoms molecular element / elemento molecular: molécula que se of the same element bond together. (Chap. 5, forma cuando se unen átomos del mismo elemento. (Cap. p. 174) 5, pág. 174) molecular mass: the mass in atomic mass units of molecular mass / masa molecular: masa en unidades de one molecule of a covalent compound. (Chap. 12, masa atómica de una molécula de un compuesto cova- p. 409) lente. (Cap. 12, pág. 409)

Glossary/Glosario 885 Glossary/Glosario

molecular substance: a substance that has atoms molecular substance / sustancia molecular: sustancia held together by covalent rather than ionic bonds. que tiene átomos unidos por enlaces covalentes en lugar (Chap. 5, p. 170) de unirse por enlaces iónicos. (Cap. 5, pág. 170) molecule: an uncharged group of two or more atoms molecule / molécula: grupo sin carga de dos o más áto- held together by covalent bonds. (Chap. 4, p. 140) mos unidos por un enlace covalente. (Cap. 4, pág. 140) monomer: the individual, small units that make up a monomer / monómero: unidades pequeñas e individua- polymer. (Chap. 18, p. 649) les que forman un polímero. (Cap. 18, pág. 649)

N N

net ionic equation: the equation that results when net ionic equation / ecuación iónica neta: ecuación que ions common to both sides of the equation are resulta cuando iones comunes a ambos lados de la removed, usually from an ionic equation. (Chap. 15, ecuación se eliminan, generalmente de una ecuación p. 520) iónica. (Cap. 15, pág. 520) neutralization reaction: the reaction of an acid with a neutralization reaction / reacción de neutralización: base, so called because the properties of both the acid reacción de un ácido con una base, llamada así porque and base are diminished or neutralized. (Chap. 15, las propiedades tanto del ácido como de la base dismi- p. 516) nuyen o se neutralizan. (Cap. 15, pág. 516) neutron: a subatomic particle with a mass equal to a neutron / neutrón: partícula subatómica con una masa proton but with no electrical charge. (Chap. 2, igual a la de un protón pero sin carga eléctrica. (Cap. 2, p. 62) pág. 62) noble gas: an element from Group 18 that has a full com- noble gas / gas noble: elemento del Grupo 18 que tiene pliment of valence electrons and as such is unreactive. completos todos sus electrones de valencia y por lo (Chap. 3, p. 98) tanto no es reactivo. (Cap. 3, pág. 98) noble gas configuration: the state of an atom achieved noble gas configuration / configuración de gas noble: by having the same valence electron configuration as a estado que logra un átomo al tener la misma configu- noble gas atom; the most stable configuration. (Chap. 4, ración de electrones de valencia que un átomo de gas p. 132) noble; la configuración más estable. (Cap. 4, pág. 132) nonmetal: an element that in general does not conduct nonmetal / no metal: elemento que por lo general no electricity, is a poor conductor of heat, and is brittle conduce electricidad, es un mal conductor de calor y es when solid. Many are gases at room temperature. quebradizo en estado sólido. Muchos son gases a tem- (Chap. 3, p. 104) peratura ambiente. (Cap. 3, pág. 104) nuclear fission: the process in which an atomic nucleus nuclear fission / fisión nuclear: proceso en el cual un splits into two or more large fragments. (Chap. 21, núcleo atómico se separa en dos o más fragmentos p. 762) grandes. (Cap. 21, pág. 762) nuclear fusion: the process in which two or more nuclear fusion / fusión nuclear: proceso en el cual dos o nuclei combine to form a larger nucleus. (Chap. 21, más núcleos se combinan para formar un núcleo más p. 766) grande (Cap. 21, pág. 766) nuclear reactor: the device used to extract nuclear reactor / reactor nuclear: dispositivo que se energy from a radioactive fuel. (Chap. 21, emplea para extraer energía de un combustible radiacti- p. 764) vo. (Cap. 21, pág. 764) nucleic acid: a large polymer containing carbon, nucleic acid / ácido nucleico: polímero grande que con- hydrogen, and oxygen, as well as nitrogen and tiene carbono, hidrógeno y oxígeno, así como nitrógeno phosphorus; found in all plant and animal cells. y fósforo; se halla en toda célula vegetal y animal. (Cap. (Chap. 19, p. 688) 19, pág. 688)

886 Glossary/Glosario Glossary/Glosario nucleotide: the building blocks of nucleic acids; each nucleotide / nucleótido: constituyentes de ácidos nucleicos; consists of a simple sugar, a phosphate group, and a cada uno consiste en un azúcar sencillo, un grupo fosfato nitrogen-containing base. (Chap. 19, p. 689) y una base nitrogenada. (Cap. 19, pág. 689) nucleus: the small, dense, positively charged central core nucleus / núcleo: la parte central y que está cargada positi- of an atom. (Chap. 2, p. 65) vamente, densa y pequeña de un átomo. (Cap. 2, pág. 65)

O O octet rule: the model of chemical stability that states octet rule / regla del octeto: modelo de estabilidad química that atoms become stable by having eight electrons que establece que los átomos llegan a ser estables al tener in their outer energy level except for some of the ocho electrones en su nivel de energía externo, a excepción smallest atoms, which have only two electrons. de los átomos más pequeños, los cuales tienen sólo dos (Chap. 4, p. 132) electrones. (Cap. 4, pág. 132) orbital: the space in which there is a high probability of orbital / orbital: espacio en el cual hay una alta probabili- finding an electron. (Chap. 7, p. 239) dad de encontrar un electrón. (Cap. 7, pág. 239) organic compound: a compound that contains organic compound / compuesto orgánico: compuesto que carbon; a few exceptions exist. (Chap. 5, contiene carbono; existen unas cuantas excepciones. (Cap. p. 180) 5, pág. 180) osmosis: the flow of molecules through a selectively per- osmosis / ósmosis: flujo de moléculas a través de una meable membrane driven by concentration difference. membrana permeable selectiva debido a una diferencia de (Chap. 13, p. 467) la concentración. (Cap. 13, pág. 467) oxidation: a reaction in which an element loses electrons. oxidation / oxidación: reacción en la cual un elemento (Chap. 16, p. 556) pierde electrones. (Cap. 16, pág. 556) oxidation number: the charge on an ion or an oxidation number / número de oxidación: carga en un ion element; can be positive or negative. (Chap. 5, o elemento; puede ser positivo o negativo. (Cap. 5, p. 157) pág. 157) oxidation-reduction reaction: a reaction characterized oxidation-reduction reaction / reacción de óxido-reduc- by the transfer of electrons from one atom or ion to ción: reacción caracterizada por la transferencia de elec- another. Also known as a redox reaction. (Chap. 16, trones de un átomo o ion a otro. También conocida como p. 555) reacción redox. (Cap. 16, pág. 555) oxidizing agent: the substance that gains electrons in a oxidizing agent / agente oxidante: sustancia que gana redox reaction. It is the substance that is reduced. electrones en una reacción de redox. Es la sustancia que (Chap. 16, p. 562) se reduce. (Cap. 16, pág. 562)

P P pascal (Pa): the SI unit for measuring pressure. pascal (Pa) / pascal (Pa): unidad del SI para medir presión. (Chap. 11, p. 378) (Cap. 11, pág. 378) period: a horizontal row in the periodic table. (Chap. 3, period / período: una fila horizontal en la tabla periódica. p. 96) (Cap. 3, pág. 96)

Glossary/Glosario 887 Glossary/Glosario

periodic law: the statement that the physical and chemi- periodic law / ley periódica: establece que las propie- cal properties of the elements repeat in a regular pattern dades físicas y químicas de los elementos se repiten en when they are arranged in order of increasing atomic un patrón regular cuando éstos se organizan en orden number.(Chap.3,p.94) creciente de número atómico. (Cap. 3, pág. 94) periodicity: the tendency to recur at regular intervals. periodicity / periodicidad: tendencia de volver a ocurrir (Chap. 3, p. 90) a intervalos regulares. (Cap. 3, pág. 90) pH: a mathematical scale in which the concentration of pH / pH: escala matemática en la cual la concentración de hydronium ions in a solution is expressed as a number iones hidronio en una solución se expresa como un from 0 to 14. (Chap. 14, p. 502) número entre 0 y 14. (Cap. 14, pág. 502) photosynthesis: the process used by certain organisms to photosynthesis / fotosíntesis: proceso que usan ciertos capture energy from the sun. (Chap. 20, p. 734) organismos para capturar energía solar. (Cap. 20, pág. 734) physical change: a change in matter where its identity physical change / cambio físico: cambio en la materia does not change. (Chap. 1, p. 20) donde su identidad no cambia. (Cap. 1, pág. 20) physical property: a characteristic of matter that physical property / propiedad física: característica de la is exhibited without a change of identity. (Chap. 1, materia que se presenta sin un cambio de identidad. p. 20) (Cap. 1, pág. 20) plasma: an ionized gas. (Chap. 10, p. 347) plasma / plasma: gas ionizado. (Cap. 10, pág. 347) polar covalent bond: a bond where the electrons polar covalent bond / enlace covalente polar: enlace en are shared unequally; there is some degree of ionic el cual los electrones no se comparten de igual manera; character to this type of bond. (Chap. 9, hay algún grado de carácter iónico en este tipo de p. 310) enlace. (Cap. 9, pág. 310) polar molecule: a molecule that has a positive pole and a polar molecule / molécula polar: molécula con un polo negative pole because of the arrangement of the polar positivo y uno negativo a causa del arreglo de los enlaces bonds; also called a dipole. (Chap. 9, p. 331) polares; también llamada dipolo. (Cap. 9, pág. 331) polyatomic ion: an ion that consists of two or more dif- polyatomic ion / ion poliatómico: ion que consta de dos ferent elements. (Chap. 5, p. 158) o más elementos diferentes. (Cap. 5, pág. 158) polymer: a large molecule that is made up of many polymer / polímero: molécula grande compuesta de smaller repeating units. (Chap. 18, muchas unidades más pequeñas que se repiten. (Cap. 18, p. 649) pág. 649) potential difference: the difference in electron pressure at potential difference / diferencia de potencial: diferencia the cathode (low) and at the anode (high) in an electro- en la presión electrónica en el cátodo (baja) y en el áno- chemical cell. (Chap. 17, p. 601) do (alta) en una celda electroquímica. (Cap. 17, pág. 601) pressure: the force acting on a unit area of a surface. pressure / presión: fuerza que actúa sobre una unidad de (Chap. 10, p. 344) área de una superficie. (Cap. 10, pág. 344) product: a new substance formed when reactants product / producto: sustancia nueva que se forma cuan- undergo chemical change. (Chap. 6, do los reactantes experimentan un cambio químico. p. 192) (Cap. 6, pág. 192) property: the characteristics of matter; how it behaves. property / propiedad: características de la materia; la (Chap. 1, p. 4) manera como se comporta. (Cap. 1, pág. 4) protein: a polymer formed from small monomer mole- protein / proteína: polímero formado a partir de cules linked together by amide groups. (Chap. 19, pequeñas moléculas monómericas unidas por grupos p. 670) amida. (Cap. 19, pág. 670) proton: a positively charged subatomic particle. (Chap. 2, proton / protón: partícula subatómica cargada positiva- p. 62) mente. (Cap. 2, pág. 62)

888 Glossary/Glosario Glossary/Glosario Q Q qualitative: an observation made without measurement. qualitative / cualitativa: observación hecha sin ninguna (Chap. 1, p. 14) medición. (Cap. 1, pág. 14) quantitative: an observation made with measurement. quantitative / cuantitativa: observación hecha con cierta (Chap. 1, p. 14) medición. (Cap. 1, pág. 14)

R R radioactivity: the spontaneous emission of radiation radioactivity / radiactividad: emisión espontánea de by an unstable atomic nucleus. (Chap. 21, radiación por un núcleo atómico inestable. (Cap. 21, p. 746) pág. 746) reactant: a substance that undergoes a reaction. (Chap. 6, reactant / reactivo: sustancia que experimenta una reac- p. 192) ción. (Cap. 6, pág. 192) reducing agent: the substance that loses electrons in a reducing agent / agente reductor: sustancia que pierde redox reaction. It is the substance that is oxidized. electrones en una reacción redox. Es la sustancia que se (Chap. 16, p. 562) oxida. (Cap. 16, pág. 562) reduction: a reaction in which an element gains one or reduction / reducción: reacción en la cual un elemento more electrons. (Chap. 16, p. 556) gana uno o más electrones. (Cap. 16, pág. 556) reforming: the use of heat, pressure, and catalysts to con- reforming / reformado: uso de calor, presión y cataliza- vert large alkanes into other compounds, often aromatic dores para convertir alcanos largos en otros compuestos, a hydrocarbons. (Chap. 18, p. 639) menudo, hidrocarburos aromáticos. (Cap. 18, pág. 639) respiration: the complex series of enzyme-catalyzed reac- respiration / respiración: serie compleja de reacciones tions that are used to extract chemical energy from glu- catalizadas por enzimas que se usan para extraer energía cose. (Chap. 19, p. 694) química de la glucosa. (Cap. 19, pág. 694) RNA: ribonucleic acid. (Chap. 19, p. 688) RNA / RNA: ácido ribonucleico. (Cap. 19, pág. 688)

S S salt: the general term used in chemistry to describe salt / sal: término general que se usa en química para des- the ionic compound formed from the negative part of an cribir el compuesto iónico formado por la parte negativa de acid and the positive part of a base. (Chap. 15, p. 516) un ácido y la parte positiva de una base. (Cap. 15, pág. 516) saturated hydrocarbon: a hydrocarbon with all the car- saturated hydrocarbon / hidrocarburo saturado: hidro- bon atoms connected to each other by single bonds. carburo con todos los átomos de carbono unidos unos a (Chap. 18, p. 623) los otros por enlaces sencillos. (Cap. 18, pág. 623) saturated solution: a solution that holds the maximum saturated solution / solución saturada: solución que tiene amount of solute under the given conditions. (Chap. 13, la cantidad máxima de soluto bajo las condiciones dadas. p. 458) (Cap. 13, pág. 458) scientific law: a fact of nature that is observed so scientific law / ley científica: un hecho de la naturaleza que often that it is accepted as the truth. (Chap. 2, se observa con tanta frecuencia que se acepta como cierto. p. 59) (Cap. 2, pág. 59) Glossary/Glosario 889 Glossary/Glosario

scientific model: a thinking device, built on scientific model / modelo científico: instrumento de pen- experimentation, that helps us understand samiento, desarrollado sobre la experimentación, que nos and explain macroscopic observations. (Chap. 1, ayuda a entender y explicar observaciones macroscópicas. p. 11) (Cap.1,pág.11) semiconductor: an element that does not conduct semiconductor / semiconductor: elemento que no conduce electricity as well as a metal, but that does conduct la electricidad tan bien como un metal, pero que la conduce slightly better than a nonmetal. (Chap. 3, p. 105) ligeramente mejor que un no metal. (Cap. 3, pág. 105) shielding effect: the tendency for the electrons in shielding effect / efecto protector: tendencia de los elec- the inner energy levels to block the attraction of trones en los niveles energéticos internos de bloquear la the nucleus for the valence electrons. (Chap. 9, atracción del núcleo hacia los electrones de valencia. p. 304) (Cap. 9, pág. 304) sievert: the unit of radiation equal to one gray multiplied sievert / sievert: unidad de radiación igual a un gray mul- by a factor that assesses how much of the radiation tiplicado por un factor que mide la cantidad de radiación striking tissue is actually absorbed by the tissue and so is que recibe un tejido y es absorbida por el mismo; por lo a measure of how much biological damage is caused. tanto es una medida del daño biológico causado. (Cap. (Chap. 21, p. 776) 21, pág. 776) single displacement: a type of reaction where one single displacement / desplazamiento simple: tipo de element takes the place of another in a compound. reacción en el cual un elemento ocupa el lugar de otro en (Chap. 6, p. 205) un compuesto. (Cap. 6, pág. 205) solid: a substance in which the particles occupy fixed solid / sólido: sustancia cuyas partículas ocupan posi- positions in a well-defined, three-dimensional arrange- ciones fijas en un arreglo tridimensional bien definido. ment. (Chap. 10, p. 340) (Cap. 10, pág. 340) soluble: term describing a substance that dissolves in a soluble / soluble: término que describe una sustancia que liquid. (Chap. 6, p. 215) se disuelve en un líquido. (Cap. 6, pág. 215) solute: the substance that is being dissolved when making solute / soluto: la sustancia que se disuelve cuando se hace a solution. (Chap. 1, p. 23) una solución. (Cap. 1, pág. 23) solution: a mixture that is the same throughout, or solution / solución: mezcla uniforme u homogénea. homogeneous. (Chap. 1, p. 22) (Cap. 1, pág. 22) solvent: the substance that dissolves the solute when solvent / disolvente: sustancia que disuelve el soluto cuan- making a solution. (Chap. 1, p. 23) do se hace una solución. (Cap. 1, pág. 23) specific heat: a measure of the amount of heat needed to specific heat / calor específico: medida de la cantidad de raise the temperature of 1 gram of a substance 1°C. calor requerido para aumentar en 1°C la temperatura de (Chap. 13, p. 445) 1 gramo de una sustancia. (Cap. 13, pág. 445) spectator ion: an ion that is present in solution but spectator ion / ion espectador: ion que está presente en la does not participate in the reaction. (Chap. 15, p. 520) solución pero que no participa en ella. (Cap. 15, pág. 520) standard atmosphere (atm): the pressure that supports a standard atmosphere (atm) / atmósfera estándar (atm): column of mercury 760 millimeters in height. (Chap. presión que sostiene una columna de mercurio de 760 11, p. 376) milímetros de altura. (Cap. 11, pág. 376) standard solution: a solution of known molarity used standard solution / solución estándar: solución de molaridad in a titration. (Chap. 15, p. 539) conocida que se usa en una titulación. (Cap. 15, pág. 539) standard temperature and pressure, STP: the set of standard temperature and pressure, STP / temperatura conditions 0.00°C and 1 atmosphere. (Chap. 11, y presión estándares, STP: las condiciones de 0.00°C y 1 p. 395) atmósfera. (Cap. 11, pág. 395) steroid: a lipid with a distinctive four-ring structure. steroid / esteroide: lípido con una estructura distintiva de (Chap. 19, p. 686) cuatro anillos. (Cap. 19, pág. 686) stoichiometry: the study of relationships between measura- stoichiometry / estequiometría: estudio de las relaciones entre ble quantities, such as mass and volume, and the number cantidades mensurables, tal como masa y volumen y el of atoms in chemical reactions. (Chap. 12, p. 404) número de átomos en reacciones químicas. (Cap. 12, pág. 404)

890 Glossary/Glosario Glossary/Glosario strong acid: an acid that is completely ionized in water; strong acid / ácido fuerte: ácido que se ioniza completa- no molecules exist in the water solution. (Chap. 14, mente en agua; no existen moléculas en solución acuosa. p. 498) (Cap. 14, pág. 498) strong base: a base that is completely dissociated strong base / base fuerte: base que se disocia completa- into separate ions when dissolved in water. (Chap. 14, mente en iones separados cuando se disuelve en agua. p. 497) (Cap. 14, pág. 497) sublevel: the small energy divisions in a given energy sublevel / subnivel: pequeñas divisiones energéticas en un level. (Chap. 7, p. 234) nivel dado de energía. (Cap. 7, pág. 234) sublimation: the process by which particles of a solid sublimation / sublimación: proceso por cual las partículas escape from its surface and form a gas. (Chap. 10, de un sólido se escapan de su superficie y forman un gas. p. 356) (Cap. 10, pág. 356) substance: matter with the same fixed composition and substance / sustancia: materia con la misma composición properties. (Chap. 1 p. 15) fija y propiedades. (Cap. 1 p. 15) substituted hydrocarbon: a compound that has the same substituted hydrocarbon / hidrocarburo sustituido: com- structure as a hydrocarbon, except that other atoms are puesto que tiene la misma estructura de un hidrocarburo, substituted for part of the hydrocarbon. (Chap. 18, excepto que otros átomos reemplazan parte del hidrocar- p. 640) buro. (Cap. 18, pág. 640) substrate: the name given to a reactant in an enzyme- substrate / sustrato: nombre dado a un reactante en una catalyzed reaction. (Chap. 19, p. 676) reacción catalizada por enzimas. (Cap. 19, pág. 676) supersaturated solution: a solution containing more supersaturated solution / solución supersaturada: solu- solute than the usual maximum; they are unstable. ción que contiene más soluto que el máximo normal; son (Chap. 13, p. 459) inestables. (Cap. 13, pág. 459) surface tension: the force needed to overcome inter- surface tension / tensión superficial: fuerza necesaria para molecular attractions and break through the surface vencer las atracciones intermoleculares y penetrar la super- of a liquid or spread the liquid out. (Chap. 13, p. 442) ficie de un líquido o para esparcirlo. (Cap. 13, pág. 442) synthesis: the name applied to a reaction in which two or synthesis / síntesis: reacción en que dos o más sustancias se more substances combine to form a single product. combinan para formar un solo producto. (Cap. 6, (Chap. 6, p. 203) pág. 203)

T T temperature: the measure of the average kinetic energy temperature / temperatura: medida de la energía cinética of the particles that make up a material. (Chap. 10, promedio de las partículas que componen un material. p. 348) (Cap. 10, pág. 348) theory: an explanation based on many observations and theory / teoría: explicación basada en muchas observa- supported by the results of many experiments. (Chap. 2, ciones y sostenida por los resultados de muchos experi- p. 59) mentos. (Cap. 2, pág. 59) thermoplastic: a plastic that will soften and thermoplastic / termoplástico: plástico que se ablandará y harden repeatedly when heated and cooled. (Chap. 18, se endurecerá repetidamente cuando se calienta y enfría. p. 660) (Cap. 18, pág. 660) thermosetting: a plastic that hardens permanently when thermosetting / fraguado: plástico que se endurece perma- first formed. (Chap. 18, p. 660) nentemente cuando se le da forma. (Cap. 18, pág. 660) titration: the process of determining the molarity of titration / titulación: proceso para determinar la molari- an acid or base by using an acid-base reaction where dad de un ácido o base usando una reacción ácido-base one reactant is of known molarity. (Chap. 15, donde un reactivo es de molaridad conocida. (Cap. 15, p. 539) pág. 539) Glossary/Glosario 891 Glossary/Glosario

transition element: any of the elements in Groups 3 transition element / elemento de transición: cualquiera through 12 of the periodic table, all of which are metals. de los elementos en los Grupos 3 a 12 de la tabla perió- (Chap. 3, p. 103) dica, todos los cuales son metales. (Cap. 3, pág. 103) triple bond: a bond formed by sharing three pairs triple bond / enlace triple: enlace que se forma cuando of electrons between two atoms. (Chap. 9, dos átomos comparten tres pares de electrones. (Cap. 9, p. 325) pág. 325) tritium: the hydrogen isotope with a mass number of 3. tritium / tritio: isótopo de hidrógeno con un número de (Chap. 21, p. 766) masa de 3. (Cap. 21, pág. 766) Tyndall effect: the scattering effect caused when Tyndall effect / efecto Tyndall: efecto de dispersión que light passes through a colloid. (Chap. 13, ocurre cuando la luz pasa a través de un coloide. (Cap. 13, p. 472) pág. 472) U U

unsaturated hydrocarbon: a hydrocarbon that has one unsaturated hydrocarbon / hidrocarburo insaturado: or more double or triple bonds between carbon atoms. hidrocarburo que tiene uno o más enlaces dobles o (Chap. 18, p. 629) triples entre átomos de carbono. (Cap. 18, pág. 629) unsaturated solution: a solution in which the amount of unsaturated solution / solución insaturada: solución en solute dissolved is less than the maximum that could be que la cantidad de soluto disuelta es menor que el máxi- dissolved. (Chap. 13, p. 458) mo que se puede disolver. (Cap. 13, pág. 458) V V

valence electron: an electron in the outermost energy valence electron / electrón de valencia: electrón en el nivel level of an atom. (Chap. 2, p. 78) energético más externo de un átomo. (Cap. 2, pág. 78) vapor pressure: the pressure of a substance in equilibri- vapor pressure / presión de vapor: presión de una sus- um with its liquid. (Chap. 10, p. 357) tancia en equilibrio con su líquido. (Cap. 10, pág. 357) vitamin: an organic molecule required in small amounts; vitamin / vitamina: molécula orgánica requerida en can- there are fat-soluble and water-soluble types. (Chap. 19, tidades pequeñas; son de tipo liposoluble e hidrosoluble. p. 690) (Cap. 19, pág. 690) volatile: description of a substance that easily changes volatile / volátil: se dice de una sustancia que se convierte to a gas at room temperature. (Chap. 1, fácilmente en un gas a temperatura ambiente. (Cap. 1, p. 35) pág. 35) voltage: an electrical potential difference, expressed in voltage / voltaje: diferencia de potencial eléctrico, expre- units of volts. (Chap. 17, p. 601) sado en unidades de voltios. (Cap. 17, pág. 601) W W

weak acid: an acid in which almost all the molecules weak acid / ácido débil: ácido en que casi todas sus remain as molecules when placed into a water solution. moléculas permanecen como tales cuando se introduce (Chap. 14, p. 499) en una solución acuosa. (Cap. 14, pág. 499) weak base: a base in which most of the molecules weak base / base débil: base en que la mayor parte de las do not react with water to form ions. (Chap. 14, moléculas no reaccionan con agua para formar iones. p. 500) (Cap. 14, pág. 500) 892 Glossary/Glosario Index This index will help you locate important information in the text quickly and easily. Page numbers given in bold type indicate the location of a definition for that entry.

lab, 544, 544 prob., 546 prob.; Adipic acid, polymerization, 658 A how to perform, 540; indicators illus. and, 540; standard solutions and, ADP. See Adenosine diphosphate Absolute zero, 349 539 (ADP) Accelerators, 773 illus. Acid hydrogen, 485 Aerobic, 694; respiration. See Accuracy, 793 Acidic anhydrides, 492–494 Respiration; Word Origin, 694 Acetaminophen, 33 table, 809 table Acid indigestion, 535–536 Aerosols, 470 Acetic acid. See also Vinegar; buffer Acid ionization, 488 AFM. See Atomic force microscope solution with sodium acetate, Acid lakes, 535 (AFM) 531–532, 533 illus.; carboxyl Acid rain, 482, 494, 495, 535 Air, composition of, 354; density of, group on, 642; dissolution of in Acids, 483, 485. See also Acid-base 36 table; exhaled vs. inhaled, 124 water, 485; formula, 33 table, 809 reactions; Bases; acid-base indi- table; fractionation, 354–355; as table; glacial, 528; reaction with cators and, 481, 504–505 lab; homogeneous mixture, 23; space carbonates, 483 illus.; reaction acidic anhydrides, 492–494; shuttle, filtering of on, 203, 418 with strong bases, 528, 529 illus.; among top ten industrial chemi- prob. titration of, 542–543 lab; uses of, cals, 481 table; Brønsted-Lowry Air , 417 33 table; as weak acid, 498 illus., definition, 526–527; common Air pollution, 495; acid rain, 482, 499 names, 182 table; as electrolytes, 494, 495, 535; catalytic convert- Acetone, 644 488; hyrdronium ions, produc- ers and, 715 Acetylene, 324–325, 633 tion of in water, 483, 485; ioniza- Alanine, 671 Acetylene welding, 209 illus., 325 tion, 486, 488, 499; mono- vs. Alchemy, 25 lab illus., 633 polyprotic, 485 illus., 486 illus.; Alcoholic fermentation, 698, 699 Acetylsalicylic acid,32 names of common, 182 table;pH illus., 699 lab Acid-base indicators, 481, 507; bro- scale and, 500, 502–503, Alcohols, 642; hydrogen bonding mothymol blue, 518 lab; cabbage 506–508; reaction with carbon- and, 439; production of com- juice indicator, creating and ates, 482, 483 illus.; reaction with pounds containing, 646–647; using, 504–505 lab; list of, 852 metals, 236–237, 482, 483 illus.; testing for presence of, 568 lab, table; pH range of different, 508 strong, 498, 498 table; taste and 569; uses and properties of, 642; illus.; requirements for, 545; feel of, 480, 519; titration of. See volatility of, 35 titration and, 540 Titration; weak, 498 illus., 499; Aldehydes, 644 Acid-base reactions, 481, 482 lab, Word Origin, 485 Alkali materials, 498 516–517, 517 table; antacids and, Actinides, 92–93 illus., 94, 104, 107, Alkali metals, 86, 99, 263–264, 535–536, 538; blood gas mea- 250; radioactivity of, 295; Word 264–265; electron configuration, surements and, 487; buffers and, Origin, 295 263; ionic charge of, 157 table; 531–533, 535; cave formation Activated charcoal, 177 physical properties, 263; reactivi- and, 524; gas-phase, 527, 528 Activation energy, 218, 713–714; ty, 263, 264; valence electron illus.; ionic equations for, catalysts and, 222, 714 configuration, 243–244 517–518, 520, 521 prob.; salt Active site, 676 Alkaline earth metals, 99, 157 table, produced by, 516, 518 lab;strong Activities, ChemLabs. See 265; ion charges, 266–267 lab; acid plus strong base, 517–518, ChemLabs; MiniLabs. See properties, 265; reactivity, 97 lab, 520, 521 prob., 522; strong acid MiniLabs; safety guidelines, 839; 265, 266–267 lab, 268; valence plus weak base, 522–523, 525 safety symbols, 840 electron configuration, 243–244 prob., 525–526; weak acid plus Actual yield, 421 Alkanes (saturated hydrocarbons), strong base, 528–529, 529 prob., Addition reactions, 656 323, 623–626; first ten, 624 table; 530 prob.; weak acid plus weak Adenine (A), 689, 690 isomers, 627–628; naming, bases, 530 Adenosine diphosphate (ADP), 696, 623–626, 626–627 prob.; produc- Acid-base titration, 539–541, 544; 697 illus., 734 tion of compounds containing, of an acid with a base, 539; con- Adenosine triphosphate (ATP), 273, 646; properties, 629; structural centration from, 541, 542–543 696, 697 illus., 734 diagrams, 623–624, 626–627 prob.

Index 893 Index

Alkenes, 324, 629–631, 633; geomet- 358; buffer solution with ammo- Archaeological radiometry, ric isomers, 631 illus.;naming, nium salt, 531; formula and uses, 754–755, 757–758, 760 illus. 630–631; properties, 636 33 table; Haber process for syn- Argon, 132 illus., 133, 247, 281 Alkynes, 324, 633, 633 table;nam- thesizing, 216–217, 219; molecu- Aromas, synthetic, 646 lab ing, 633 table; properties, 635 lar shape of, 322; polarity of, 331; Aromatic hydrocarbons, 636–637, Allotropes, 175, 179; of carbon, reaction with hydrochloric acid, 639 176–178, 179; of oxygen, 175, 527, 528 illus.; water vs., 437 Arsenic, 273; as dopant, 111; galli- 276; of phosphorus, 179, 274 table; as weak base, 489, 492, 500 um arsenide, 274 Alloys, 23, 103 illus., 106, 282; com- Ammonium chloride, 195, 523 Art Connection, Asante brass mon, 23 table; of copper and Ammonium hydrogen phosphate, weights, 411; Chinese porcelain, zinc, 25 lab; crystal structure of, 274 163; glass sculptures, 346; 108; misch metal, 294; shape- Ammonium hydroxide, 493 illus. radioactive dating of forged art, memory, 108–109; steel. See Steel Ammonium nitrate, 204 illus., 274; 759 Alloy steels, 290, 290 table in cold packs, 460 illus., 710 Art forgeries, 759 Almond flavor, 644 Ammonium perchlorate, 566 Artificial blood, 537 Alnico steel, 290, 290 table Ammonium sulfate, 169, 274 Asante brass weights, 411 Alpha decay, 747 Ammonium thiocyanate, 43 illus. Ascorbic acid, 33 table, 498 illus., Alpha particles, 64, 230, 747 Amorphous materials, 346, 347 809 table Alpha radiation, 747 illus. Aspartame,5 illus., 33 table, 519 Alternative energy sources, Anaerobic, 698 Aspirin,5 illus., 10, 33 table, 809 728–729; geothermal energy, Anhydrides, 496; acidic, 492–494; table; derivation of from plants, 728–729; nuclear energy. See basic, 492, 494, 496 146; modeling, 11; structure, 10 Nuclear power plants; solar ener- Anhydrous compounds, 168, 169 illus.; synthesis, 32 gy, 728; wind energy, 729 illus. Astatine, 278 Alumina, 157 Animal fats, 630 lab, 633 illus. Atherosclerosis, 687 Aluminum, 25 illus., 98 illus., 269; Animal starch, 681, 682 illus. Atmosphere, carbon dioxide in, corrosion, 570 illus.; density, 36 Anions, 586 493–494; composition of, 354; table; in Earth’s crust, 669 illus.; Anodes, 585, 586 nitrogen in, 273; oxygen in, 276; Hall-Héroult method of produc- Antacids, 503 lab, 535–536, 538; pollution of, 493–494, 495; pres- ing, 215, 269, 588 illus., 589, 725; carbonates, 538; compounds sure of, 344 importance of, 269; ionic com- used in, 536 table; hydroxides, Atmospheric pressure, 344, 376, pounds formed by, 135 lab;oxi- 538 378; boiling and, 358; equivalent dation-reduction (redox) reac- Antibacterials, halogens as, 279 units, 379 table tions, 570; reaction capacity, Antibodies, 670 illus., 673 Atomic bombs, 232, 761, 764 236–237; reaction with chlorine, Antifreeze, 466, 642 Atomic collisions, 130, 138–139 716; , 269, 589 illus., Antifreeze proteins, 670 Atomic force microscope (AFM), 241 725; uses of, 269, 269–270 Antimony, 273; in alloys, 274; Atomic mass, 67, 68 illus., 86, 92–93 Aluminum chloride, 716 chemical symbol for, 27 table;as illus. Aluminum hydroxide, 269, 489 dopant, 111 Atomic mass unit, 67 illus.; reaction with hydrobromic Antioxidants, 576 Atomic models,10 acid, 522–523; reaction with Aqueous solutions, 23, 450–454. See Atomic number, 66, 92–93 illus. weak acid, 530 illus. also Colloids; Solutions; boiling- Atomic size (radii), atom size-ion Aluminum oxide, 157, 269, 570 point elevation, 465; concentrat- size relationship, 260 illus.;main Aluminum zirconium, 269 ed versus dilute, 458; of covalent group element patterns, Amethyst, 248 illus. substances, 453; 258–259, 258–259, 259 illus., 262 Amide groups, 645, 672 endothermic/exothermic reac- lab; transition element patterns, Amides, 645 tions in, 712 lab; freeze-point 285 Amines, 645 depression, 465; of gases in Atomic structure, Bohr’s model of, Amino acids, 500, 670–672; in hair, water, 469; guidelines for, 851 231; discovery of, 61–65; electron 657 table; identification of, 456–457 cloud model of, 77, 238–239; Amino group, 645, 671 lab; of ionic substances, 451–453, nuclear model of, 65; periodic Ammonia, 274, 809 table; acid-base 452 lab; molarity and, 460–461, table and, 95–96, 97 lab, 98–99, reactions and, 523; aqueous solu- 462–464 prob.; temperature and 243–251 tion of, 493 illus.; boiling point, solubility, 459–460; unsaturated Atomic theory of matter, 53–55, vs. saturated, 458–459 230–231; conservation of matter 894 Index Index

and, 53, 55, 56–57 lab; Dalton’s Barium nitrate, 456 Biochemist, 678–679 atomic theory and, 54–55; early Barium sulfate, 456 Biochemistry, 668–669 Greek ideas about, 52–53; Barometers, 283 illus., 376;Word Biological specimens, freeze drying Lavoisier’s contributions to, 53; Origin, 376 of, 353 Proust’s contributions to, 53–54 Barometric pressure units, convert- Biology Connection, blood gases, Atoms,7,53; chemical changes and, ing, 379 prob. measurement of, 487; fluorida- 41–42; conservation of in chemi- Bartlett, Neil, 195 tion, 280; Hershey and Chase’s cal reactions, 42, 53, 55, 198–199; Bases, 481, 488–489, 492. See also experiments on DNA with trac- number in a sample, 408 prob.; Acid-base reactions; Acids; acid- ers, 772; regulation of air quality particles of, 61–62, 66, 67 table; base indicators and, 481, in space vehicles, 203; vision and size of, 10, 65; Word Origin, 53 504–505 lab; among top ten vitamin A, 632 ATP. See Adenosine triphosphate; industrial chemicals, 481 table; Bioluminescence, 575; Word Origin, Adenosine triphosphate (ATP) antacids and, 503 lab, 535–536, 575 Aurora borealis, 73. See also Word 538; basic anhydrides, 492, 494, Biomolecules, 668–669. See also Origin 496; Brønsted-Lowry definition Metabolism; carbohydrates, 677, Austenite phase, 108 of, 526–527; common names, 680–682; lipids, 682, 684, 685, Automobile air bags, 417 182 table; as electrolytes, 492; 686–687; nucleic acids, 688 lab, Automobile batteries, lead-acid, hydroxide ions, production of by, 688–690; proteins, 670–673, 273, 611, 613; rechargeable for 488–489; ionization of, 489; 674–675 lab, 676–677; vitamins, electric cars, 613–614 names of common, 182 table; 690–691 Avicel, 685 strong, 497–498, 498 table; taste Biorefining, 727 Avogadro, Amedeo, 398 and feel of, 480, 519; titration of. Bismuth, 273 Avogadro’s constant, 405–406 See Titration; weak, 500 Bitter taste, 519 Avogadro’s principle, 398, 404 BASF, 217 Black phosphorus, 179 Basic anhydrides, 492, 494, 496 Blast furnaces, 558 illus., 567 Batteries, 601, 602, 605, 608. See also Bleaching reactions, 194, 567–568 Electrochemical cells; carbon- Blood, artificial, 537; buffers and, B zinc dry cell, 608–609; lead stor- 531, 533; as complex mixture, 18 age, 611, 613; lemon, 599–601, illus.; forensic detection of, 573, Bacteria, cavities and, 280; refining 600 lab, 608 illus.; lithium, 610, 574; hemoglobin in, 286, 670, of ores by, 727 613, 615; NiCad, 612; recharge- 693; pH of, 531, 533 Bakelite, 658 able, 210 illus., 612, 613, 615 Blood gases, measurement of, 487 Baking soda, 143 illus.; chemical Bauxite, 215, 269, 589 Blood sugar. See Glucose properties of, 41 illus.; endother- Becquerel, Henri, 745–746 Bohr, Neils, 69–70, 74–75, 231, 232 mic reactions of, 43; formula for, Beeswax, 684 illus. Bohr’s atomic model, 69–70, 231 33 table, 809 table; reaction with Behavior of matter,4,5 illus. illus., 232 vinegar, 41 illus., 192–193, 195, Benz, Karl, 466 Boiling, 356, 358, 360 420 lab; uses of, 33 table Benzene, 636 Boiling point, 35, 358;bond type Balances, double-pan, 407 illus., Benzoic acid, 498 illus. and, 311 illus.; elevation of in 790; electronic, 410; triple-beam, Beryllium, 265; atomic size, 259; solution, 465; periodic table 790 electron configuration, 244, 246 trends, 88 Balancing, of chemical equations, table; melting point of, 283; reac- Bonding electron pairs, 318 198–199, 200–201 prob.; of tivity of, 261, 265; uses of, 268 Bonds, covalent. See Covalent nuclear equations, 750–751 prob. Beta-carotene, 632 bonds; electron sharing model Ballooning, 394 illus. Beta decay, 749 of, 303; electronegativity and, Balsa wood, density of, 36 table Beta particles, 749 303–305; electronegativity differ- Bar graphs, 805 Beta radiation, 749 ence between bonding atoms Barium, 265; reactivity of, 265, BHA, 576 illus. (?EN), 305–306, 308–311, 312 266–267 lab BHT, 576 illus. prob.; hydrogen. See Hydrogen Barium hydroxide, 498 table Binary compounds, 155–156; bina- bonding; ionic. See Ionic bonds; Barium hydroxide octahydrate, ry inorganic compounds, metallic, 313–314; peptide, 672 reaction with ammonium chlo- 180–182, 181 prob.; binary ionic Bone, osteoporosis detection, 769 ride, 195; reaction with ammoni- compounds, 155–156; Word illus.; reaction of with vinegar, um thiocyanate, 43 illus. Origin (binary), 155 171 lab; scintigraphic scanning, 770 illus. Index 895 Index

Borax, 269 Calcium-40, 750 prob. Carbon-14, 749 Boric acid, 269 Calcium carbonate. See Limestone Carbon-14 dating, 754–755, 757, Boron, 269; electron configuration, (calcium carbonate) 758 prob. 246 table; reactivity of, 262; uses Calcium chloride, in hot packs, 460 Carbon blacks, 176 of, 269 illus., 710; reaction with potassi- Carbon dioxide, 124–125, 124–125, Boyle, Robert, 382–383 um hydroxide, 215 illus.; use as 809 table; acid rain and, Boyle’s law, 383, 388–389 prob.; road salt, 465 493–494, 495; as acidic anhy- deduction of, 384–385 lab; kinet- Calcium fluoride, 156 illus. dride, 493; air quality in space ic explanation of, 386; straws Calcium hydroxide, 265, 489 illus., vehicles and, 203; in atmosphere, and, 388 lab; weather balloons 494, 498 table 203; blood buffering, 533; dis- and, 386, 387 Calcium oxide, 157 illus., 494 solved in sodas, 331 illus.;elec- Branched hydrocarbons, 623 Calcium phosphate, 154 illus. tron sharing in, 142 illus.;forma- Brass, 23 table, 293 Calcium sulfate dihydrate, 167, 168 tion of, 199 illus.; formula and Breakfast cereal, fortified, 30 lab Calculators, computations with, uses, 33 table; molecular model- Breathalyzer tests, 568 lab, 569 799–801 ing of, 321; nonpolarity of, 331; Bromine, 86; as diatomic element, Californium, 102 illus. as pollutant, 495; reaction with 174–175; in halogen lamps, 107; Californium-252, 295 sodium hydroxide, 199 physical state and color, 87; reac- Caloric, 731 Carbon disulfide, 180 illus., 309 tivity, 97 lab, 278 Calorie (food), 721; caloric value of illus., 311 Brønsted-Lowry model of acids some foods, 721 table; measure- Carbon monoxide, 495, 693 and bases, 526–527 ment of, 724 prob. Carbon monoxide poisoning, 693 Bronze, 23 table, 106 Calorie (heat), 721 Carbon steels, 288 table, 288–289 Bronze Age, 567 Calorimeter, 719 illus. Carbon tetrachloride, 279, 640 Brownian motion, 342 Calorimetry, of food, 722–723 lab, Carbon-zinc dry cell batteries, Brown, Robert, 342 724, 724 prob.; heat of reaction 608–609 Buckminsterfullerene, 178 and, 719–720, 720 prob., 721 Carbonate antacids, 538 Buffered lakes, 535 prob. Carbonates, reaction with acids, Buffers, 531–533, 532 lab;blood, Calvin cycle, 735 482, 483 illus.; solubility of, 482 531, 533; buffered lakes, 535 Cancer, detection with tracers, 768 Carbonyl group, 644 Butane, 144 illus., 623; formula, 33 illus.; radiation therapy and, 770 Carboxyl group, 642 table, 809 table;isomers, illus. Carboxylic acids, 642 627–628; uses of, 33 table Candle, observing burning of, 8–9 Career Connection. See also People 1-Butene, 631 lab in Chemistry; chemical engineer, cis-2-Butene, 631 illus. Candy, chromatography of dyes in, 317; chemical laboratory techni- trans-2-Butene, 631 illus. 328–329 lab cian, 317; cosmetologist, 491; Butter, 145 illus. Capillarity, 443–444; paper chro- crime lab technologist, 13; envi- matography and, 22 lab;Word ronmental health inspector, 449; Origin, 443 environmental technician, 449; Capillary action, 22 lab, 443–444 fingerprint classifier, 13; food C Capillary tube, 443, 444 and drug inspector, 491; horti- Carbohydrates, 677, 680–682; disac- culturalist, 213; industrial chemi- Cadaverine, 645 charides, 680–681; as fake fats, cal worker, 317; industrial Caffeine, 33 table, 809 table 685; hydrogen bonding in, 439; machinery mechanic, 449; land- Calcium, in Earth’s crust, 669 illus.; monosaccharides, 680; oxidation scape architect, 213; manufactur- electron configuration, 247; as in respiration, 694; polysaccha- er’s sales representative, 491; essential element, 128; in human rides, 681–682; role of in living medical laboratory technician, body, 669 illus.; importance of, things, 677 679; medical records technician, 265, 268; ionic compounds Carbon, 107, 263, 270; allotropes of, 679; medical technologist, 679; formed by, 135 lab; oxidation 176–178, 179; electron configu- metallurgical technician, 597; number, 157 illus.; reaction of ration, 244, 246 table; as essential mining engineer, 597; pharma- bones with vinegar, 171 lab;reac- element, 128; in human body, ceutical production worker, 635; tivity of, 97 lab, 265, 266–267 669 illus.; molar mass of, 407 pharmaceutical technician, 635; lab, 268; shielding effect in, 305 illus.; properties, 125; reactivity, pharmacologist, 635; private illus. 263 investigator, 13; scrap metal pro-

896 Index Index

cessing worker, 597; soil conser- Chemical coolants, 466 tion, 573; fractionation of air, vation technician, 213 Chemical engineer, 317 354–355; Haber process, Carothers, Wallace, 654 Chemical equations, balancing, 216–217; hyperbaric oxygen Cars, air bags, 417; batteries. See 198–201; converting word equa- (HBO) chambers, 390; micro- Automobile batteries; electric, tions to, 193; energy and, scopes, 240–241; refining of cop- 613–614 195–196; writing, 192–193, 195, per ore, 590–592; shape-memory Catalase, 674–675 lab 201–202 prob. metals, 108–109 Catalysts, 222; activation energy Chemical formulas. See Formulas Chemistry Data Handbook, and, 714; commercial energy Chemical laboratory technician, 841–852; acid-base indicators, production and, 730; Haber 317 852 table; alphabetical table of process (synthesis of ammonia) Chemical properties, 40, 41 illus.;of elements, 844 table; aqueous and, 217; platinum group, 292 kitchen chemicals, 16–17 lab solutions, guidelines for, 851 Catalytic , 715 Chemical reaction rates. See table; electron configuration of Catalytic decomposition, 674–675 Reaction rates each element, 848–849 table; lab Chemical reactions, 40–43. See also periodic table of elements, Cathode rays, 61, 62 specific types; activation energy 842–843; physical constants, 850 Cathode-ray tubes, 61, 62 and, 713–714; atoms and, 41–42; table; polyatomic ions, names Cathodes, 585, 586 classification of, 202–205, and charges of, 850 table; solubil- Cations, 586 206–207 lab, 208 table, 208–209; ity product constants, 851 table; Caves, formation of, 524 direction of, 717–718, 718 table; symbols and abbreviations, 841 CDs (compact discs), 594 endothermic, 43, 709, 712 lab, Chemistry Skill Handbook, Celluloid, 660 726 lab; energy changes and, 785–808; calculators, 799–801; Cellulose, 653, 655, 680, 681–682; as 42–43, 195–196, 215, 708–709, factor label method, 801–803; fake fats, 685; structure of, 654 711–712; entropy and, 716–717; graphs, making and using, illus. equations for. See Chemical 805–807; measurements, making Celsius scale, 349–350, 350 prob., equations; equilibrium and, and interpreting, 791–799; SI 789 210–211, 214–215; exothermic, units, 785–787; tables, making Cement, 167, 445 table 42, 708–709, 712 lab, 726 lab; and using, 804 Center of gravity of a mass,26 heat of reaction from calorime- Chemists, 316–317 Cereal, fortified, 30 lab try, 719–720, 720 prob., 721 ChemLabs. See also MiniLabs; acid- Cerium, 294 prob.; oxidation-reduction base indicators, 504–505 lab; Cerium sulfate, 459 (redox). See Oxidation-reduction alkaline earth metals, reactions Cesium, 263; electronegativity, 304; reactions; rate of. See Reaction and ion charges, 266–267 lab; ionic size, 260 illus.; reactivity, rates; signs of, 190–191, 206–207 aqueous solutions, identification 263 lab; spontaneity of, 604, of, 456–457 lab; Boyle’s law, Cesium chloride, 260 illus. 717–718, 718 table; synthesis, 384–385 lab; burning of a can- Challenger explosion, 141 203–204; theoretical yield and dle, 8–9 lab; catalytic decomposi- Changes of state, 35, 360–361, actual yield, 421, 424–425; word tion, 674–675 lab; change of state 362–363 lab, 364–365; condensa- equations for, 193 and kinetic energy, 362–363 lab; tion, 356; evaporation, 352–353; Chemical symbols, historic origins chemical reactions, types of, heat of fusion and, 364; heat of of, 27 table; periodic table, 92–93 206–207 lab; classification of vaporization and, 360–361; illus. compounds as ionic or covalent, kinetic energy and, 362–363 lab; Chemical worker, industrial, 317 172–173 lab; composition of a pressure cookers and, 359; subli- Chemiluminescence, 197, 574 illus., penny, 38–39 lab; conservation mation, 356; vapor pressure and 575 illus. of matter, 56–57 lab; energy con- boiling, 356–358, 357 lab, 360 Chemistry,4 tent of common foods, 722–723 Charcoal, 125 illus., 140, 177 Chemistry and Society, artificial lab; formation and decomposi- Charles, Jacques, 141, 391 blood, 537; medicines from rain tion of zinc iodide, 136–137 lab; Charles’s law, 391–392, 393 prob. forests, 146; recycling of glass, kitchen chemicals, 16–17 lab; Chase, Martha, 772 60; water-treatment plants, 447 mass percents of compounds in Chemical bonds. See Bonds Chemistry and Technology, alterna- a mixture, 422–423 lab; oxida- Chemical change, 40–43; atoms tive energy sources, 728–729; tion-reduction (redox) reactions and, 41–42, 198; energy and, archaeological radiochemistry, in electrochemical cells, 606–607 42–43, 191, 195–196, 196 lab 754–755; forensic blood detec- lab; oxidation-reduction (redox)

Index 897 Index

reactions involving copper, Citric acid, 642 molar mass of, 409, 412–413 560–561 lab; paper chromatogra- Citrine, 248 illus. prob.; natural vs. synthetic, 31, 33 phy, 328–329 lab; periodic table Clock reactions, 220 lab Computer chips, 113 trends, 100–101 lab; polymers, Clot captor, 109 Concentrated solutions, 458 differentiating between, 650–652 Clouds, 127 illus. Concentration, 219, 458–460; of lab; radioactive decay, 752–753 Club soda, 469 illus. acids and bases, 500; concentrat- lab; reaction capacities of metals Coal, 107, 199 illus., 637, 639 ed versus dilute solutions, 458; and valence electrons, 236–267 Coal-fired power plants, 726 illus. molarity and, 460–461, 462–464 lab; titration of vinegar, 542–543 Cobalt, 292; electron configuration, prob.; rate of reaction and, lab 247 illus.; as essential element, 219–220; from titration, 541, Chemotherapy, 584 128; properties of, 292 542–543 lab, 544 prob., 546 prob. Chernobyl nuclear power plant, Cobalt(II) chloride, 166 lab Condensation, 35, 356, 446 765 illus. Cobalt fluorides, 247 Condensation reactions, 658 Chinese porcelain, 163 Codeine, 146 Conductivity, 313, 314, 488 illus. Chips, 113 Coefficients, 199 Conservation of energy, 711–712 Chitin, 680 Coenzymes, 691 Conservation of mass, 42, 198–199 Chloride ion, 260 illus. Coffee filters, chromatography with, Conservation of matter, 53 illus., Chlorine, 86, 99; average atomic 312 lab 55, 56–57 lab mass, 68 table; compounds of Coinage metals, 86, 110, 292 Contact-lens cleaning solutions, copper and chlorine, 164 table; Cold packs, 460 illus., 710 677 illus. copper compounds containing, Cold-working of steel, 290, 291 Contact process, production of sul- 164 table; as diatomic element, Collagen, 670, 672 illus. furic acid by, 424, 425, 484 174–175; as essential element, Colloids, 470–471, 472; emulsions, Cooling towers, 732 128; physical state and color of, 470; foams, 471; gels, 471; liquid Cool light, 197 87 illus.; production of by elec- aerosols, 470; pastes, 471; solid Copper, 292; alloy of copper and trolysis, 585 illus., 586 illus.; aerosols, 470; sols, 470; Tyndall zinc, 25 lab; biorefining of, 727; properties, 123; reaction with effect and, 472, 473 illus.;Word chemical symbol for, 27 table; aluminum, 716; reaction with Origin, 472 chlorine-containing compounds, iron, 129 illus.; reaction with Color change, chemical reactions 164 table; as coinage metal, 86, sodium, 133, 134 table; reactivity, and, 190 illus. 110, 292; conductivity of, 313; 97 lab, 278; uses of, 278, 279 Color televisions, 107 corrosion, 570 illus.; ductility, Chlorofluorocarbons (CFCs), 641 Combined gas law, 394–395, 313; electron configuration, 247 Chloroform, 279, 640 395–396 prob. illus.; as essential element, 128; Chloromethane, 640 Combustion reactions, 209, 713; magnesium-copper galvanic cell, Chlorophyll, 733, 734–735; Word classification of reactions as, 602–603; magnesium-copper Origin, 734 206–207 lab; heat of reaction cal- redox reaction, 608 illus.; melting Chloroplasts, 733 culation, 720 prob.; reactants and point, 283; oxidation-reduction Cholesterol, 642, 686, 687 illus. products of, 8–9 lab, 208 table, (redox) reactions involving, 559, Chromatography, 326–327; gas, 209; Word Origin, 209, 713 560–561 lab, 562, 570; properties 327; gel, 327; paper, 22 lab, 312 Common names, inorganic com- of, 106; refining of by electroly- lab, 326, 328–329 lab; thin-layer, pounds, 181–182, 182 table sis, 590–592; specific heat, 445 326–327 Compact discs (CDs), production table Chrome plating, 106 of, 594 Copper sulfate, 143 illus.;hydrated, Chromium, 293; colored com- Composition of matter,4,5 illus.,6; 169 illus.; reaction of aqueous pounds of, 103; electron configu- classification of matter by, 14 with iron, 205 illus. ration, 247 illus., 293; electro- Compounds, 30–31. See also Copper(II) nitrate, 205 lab plating, 593 illus.; as essential Covalent compounds; Inorganic Copper(II) sulfate, 143 illus., 559 element, 128; properties of, 293 compounds; Organic com- Copper(II) sulfate pentahydrate, Cigarettes, radiation exposure from, pounds; classification of, 172–173 169 illus. 778 illus. lab; common, 33 table;decompo- Cork, density of, 36 table Cinnamon flavor, 644 sition of, 136–137 lab; formula of Corrosion, 554, 570, 572; ease of cis configuration, 631; Word Origin unknown, 427–429; formula different metals, 602 table;of (cis), 631 units in a sample of, 411, 412 iron, 555 illus., 557 lab, 570; Cisplatin, 584 prob.; formulas for, 31, 138; Word Origin, 595

898 Index Index

Cosmetic bench chemist, Fe Tayag, Diffusion, 352; of gases, 343 lab, 490–491 D 352; in liquids, 352 Cosmetics, pH of, 501 Digestion, enzymes and, 676 Cosmetologist, 491 Dilute solutions, 458 d orbitals, periodic table and, 244, Cottrell precipitators, 470 2,2-Dimethlypropane, 625, 628 247, 250 Covalent bonds, 140, 302–303; elec- illus. d sublevels, 235, 238, 238 table tronegativity difference between Dinitrogen trioxide, 181 illus. da Vinci, Leonardo, 564 bonding atoms (?EN), 308–309; Diodes, 112–113 Dacron, 658 equal electron sharing, 308; Diprotic acids, 485 illus., 486 illus. Daguerre, L. J. M., 564 nearly equal electron sharing, Direct relationships, graphs and, 807 Daguerreotypes, 564 309; polar, 310–311 Disaccharides, 680–681 Dalton, John, 54–55, 61, 230 Covalent compounds, 140; classifi- Disorder, entropy and, 716–717 Dalton’s atomic theory of matter, cation of compounds as, Displacement reactions, 205, 54–55, 61, 230, 231 illus. 172–173 lab; electron sharing in, 206–207 lab, 208 Damascus steel, 288, 289 138–140, 142; electronegativity Dissociation, 453 Davy, Humphrey,9 lab, 585, 604 difference between bonding Dissolution, 712 DDT, 641 atoms (?EN), 308–309; molecu- Distillation, 171, 638; fractional. See Dead Sea, 458 lar substances, 170–171, 174; Fractional distillation; Word Decomposition reactions, 198–199, naming of, 179–183; properties Origin, 638 204, 206–207 lab, 208 table of, 144–145, 147, 302 table, DNA (deoxyribonucleic acid), 273, Definite proportions, law of, 54 332–333; separating from ionic 688, 690; acid-base interactions Deforestation, 146 substances, 170–171, 171 lab; in, 500; damage to by radiation, Degrees, 350 solubility of, 453 776; double helix structure, 440, Deicing, 465 illus. Cracking, 638, 647 690; extraction of, 688 lab; Deliquescent substances, 166 Crayons, 170 illus. Hershey and Chase’s experi- Demineralization, 280 Crick, Francis, 690 ments on with tracers, 772; iden- Democritus,53 Crime analysis. See Forensics tification of as genetic material, Denaturation, 673, 674–675 lab Crime lab technologists,13 772; nucleotides in, 689, 690 Density, 36–37; of common materi- Cross-Curricular Connections. Dobereiner, J. W.,87 als, 36 table; composition of a See Art Connection; Biology Dobereiner’s triads, 87–88 penny and, 38–39 lab;determi- Connection; Earth Science Double bonds, 321, 629 illus., 634 nation of, 37; periodic table Connection; Health Double-displacement reactions, trends, 88; of water, 36 table, 437, Connection; History 206–207 lab, 208, 208 table 440–441 Connection; Literature Double helix, DNA, 440, 690 Dentrification, 571 Connection; Physics Double-pan balances, 407 illus., 790 Deoxyribonucleic acid. See DNA Connection Downs cell, 585 illus. (deoxyribonucleic acid) Cross-linking, 657, 658 Drinking water, fluoridation of, Deoxyribose, 689 Crude iron, 286 279, 280 Dependent variable, 806 illus. Crystal lattices, 240 illus., 345 Drugs, development of new, 32 Desalination, 465, 468 Crystals, 134; color of, 248; liquid, Dry cells, carbon-zinc, 608–609 Desiccants, 168 345; snowflakes, 360 Dry ice, 125 illus.; sublimation of, Designer fats, 685 Curie, Irene, 746 375 lab Detergents, 455 Curie, Marie, 746, 774 Drying agents. See Desiccants Detergent solutions, 443 Curie, Pierre, 746 Ductile metals, 313 Deuterium (D), 766 Cyclohexane, 623, 624, 626 Dynamic equilibrium, 211 1,6-Diaminohexane, 658 illus. Cyclononane, 626 Dynamite, 104 illus. Diamonds, 24 illus., 107, 177, 179 Cyclopentane, 623, 624 Dysprosium, 295 Diapers, comparing polymers in, Cyclotrons, 773 illus. 653 lab Cysteine, 671 Diatomic elements, 174–175, 398; Cytochrome c, 174 illus. covalent bonds between, 308; Cytosine (C), 689, 690 gumdrop models of, 318 E Dichloromethane, 641 Diethyl ether, 644 Earth, elements in crust of, 126 illus., 272, 286, 669 illus.; mass

Index 899 Index

on (weight), 4; surface tempera- 848–849 table; first period ele- molar mass of, 407; number of ture of and water, 446 ments, 244; fourth period ele- atoms in a sample of, 407, 408 Earth Science Connection, cave for- ments, 247; inner transition ele- prob.; Periodic Table of. See mation, 524; refining of ores by ments, 250; noble gases, 247; Periodic table of elements; pre- bacteria, 727; weather balloons, periodic table trends, 243–247, dicting properties of unknown, 387 250; probability of distribution 89 lab; properties of each, Efficiency of industrial power pro- in 1s orbital, 245 lab;second 845–847 table; relative masses of, duction, 731 table, 731–732 period elements, 244; third peri- 407; symbols for, 27, 27 table, Efficiency of reaction, 421 od elements, 245–246; transition 92–93 illus.; synthetic, 102 Eggshells, 154 illus.; calcium in, 171 elements, 247, 250 Emergency light sticks, 197 lab; reaction with vinegar, 483 Electron dot diagram, 133; convert- Emission spectra, 74, 77 lab, illus. ing to molecular models, 233–234, 234 lab, 235 illus. Egg whites, protein denaturation in, 318–319 Empirical formula, 428–429; deter- 673 illus. Electronegativity, 303–305; cova- mining correct molecular formu- Einstein, Alfred, 761 lent compounds and, 308–311; la from, 429; determining mass Eka-aluminum,91 differences in. See percents from, 428; Word Origin, Eka-silicon,91 Electronegativity difference 428 Elastic collisions, kinetic model of (?EN); hydrogen bonding and, Emulsions, 470 gases and, 343 439; ionic compounds and, Endothermic reactions, 43, 195, Electrical conductivity. See 305–306, 308; periodic table 215, 708 illus., 709, 712 lab, 726 Conductivity trends, 304–305; Word Origin, lab; activation energy and, 714; Electrical current, 584 310 cold packs and, 710; decomposi- Electric cars, batteries for, 613, 615 Electronegativity difference (∆EN), tion of orange mercuric oxide, Electricity, 726 305–306, 312 prob.; covalent 58, 709; direction of, 718, 718 Electrochemical cells, 585, 599–615; bonding and, 308–310; ionic table galvanic cells, 602–605; lemon bonding and, 305–306; polar Energy, 42, 364; alternative sources batteries, 599–601, 600 lab;oxi- covalent bonds and, 310–311 of, 728–729; in chemical reac- dation-reduction (redox) reac- Electronic balances, 410 tions. See Energy changes, chem- tions in, 603–604, 606–607 lab; Electrons, 61, 66, 67 table. See also ical reactions and; conservation potential difference and, 601–602 Valence electrons; Bohr’s model of, 711–712; in food, 721, 721 Electrodeposition, 594 of atom and, 69–70; bonding table, 722–723 lab, 724, 724 Electrolysis, 584–589, 593, 595, 598; pairs, 318; discovery of, 61–62, prob.; in natural systems, chemicals production and, 230; electron cloud model of, 77, 736–737; nuclear reactions and, 587–588; cleaning by, 595, 598; 238–239; energy levels and. See 761; relationship with mass electroplating and, 593, 595; for- Energy levels; nonbonding, 318; (E=mc2), 761; storage of in ATP mation and decomposition of orbits, 69–70, 70 illus.; sharing, and ADP, 696; Word Origin, 711 zinc iodide by, 136–137 lab;for- 138–140, 142; sublevels of, Energy changes, chemical reactions mation of metallic sodium from, 234–235 and, 42–43, 191, 196 lab, 264; process of, 586–587, 587 lab; Electron transport chain, 697 illus., 708–709, 711–714; activation refining of ores by, 588 illus., 698 energy and, 713–714; chemical 589, 590–592; of toxic wastes, Electrophoresis, 598 equations and, 195–196; direc- 598; Word Origin, 586 Electroplating, 593, 594, 595 tion of reaction and, 215; disso- Electrolytes, 144; acids as, 488; Elements, 24–25, 27; alphabetical lution of solids in water and, 712 bases as, 492 listing of, 844 table; cereal forti- lab; endothermic reactions, Electrolytic cells, 585 illus., 586, 587 fied with, 30 lab; compounds of. 195–196, 708 illus., 709; exother- lab See Compounds; diatomic, mic reactions, 196, 196 lab, Electrolytic cleaning, 595 illus., 598 174–175; in Earth’s crust, 126 708–709; hot and cold packs Electrolytic conduction, 586 illus., 669 illus.; electron configu- and, 710; symbols depicting, Electromagnetic radiation, 70–73, ration of each, 848–849 table; 711–712 233 emission spectrum of, 74, 77 lab; Energy costs, alternative energy Electromagnetic spectrum, 71–72 essential for good health, 128; in sources and, 728–729; catalysts Electron cloud model, 77, 238–239 human body, 669 illus.; ionic and, 730; efficiency and, Electron configurations, 242, charges of some, 157 table; mass 731–732; electricity generation 244–246; of each element, percent in compounds, 426–427; and, 726; increased entropy,

900 Index Index

730–731; production and recy- Ethylene glycol, 33 table, 465 illus., Fatty acids, 684, 686; monounsatu- cling of aluminum and, 725 466, 630, 642, 809 table rated, 686; polyunsaturated, 686; Energy levels, 75, 78–79, 214, Ethyne, 633; molecular shape of, saturated, 686 233–235; electron distribution 324–325 Fermentation, 698, 700; alcoholic, in, 235 illus., 238 table, 238–242; Europium, 107, 294–295 698, 699 illus., 699 lab;lactic stable, 132–135 Evaporation, 352–353, 446 acid, 698, 700 Engine coolants, 466 Everyday Chemistry, air bags, 417; Fertilizers, 274, 424, 571 Entropy, 716–717; energy produc- bleaching reactions, 194; catalyt- Fillings, 608 tion and, 730–731; living systems ic converters, 715; chemicals in Fingerprint classifier,13 and, 736–737 food, 19; chemicals in the body, Fingerprints, development of,12 Environmental health inspector, 19; coinage metals, 110; compact Fire extinguishers, 125 illus. 449 disc (CD) production, 594; Fireflies, 575 illus. Environmental technician, 449 essential elements, 128; fake fats Fireworks,76 Enzymes, 222, 676–677; active site and designer fats, 685; fireworks, First aid, 839 model, 676 illus.; denaturation 76; flameless ration heaters, 221; Fish, antifreeze proteins in, 670 of, 673, 674–675 lab; metabolism freeze drying, 353; gem stones, Fission, nuclear. See Nuclear fission and, 692 color of, 248–249; hard water, Fission nuclear power plant, Equations, chemical. See Chemical 160; hiccups, 534; lightning-pro- 764–765 equations; nuclear, 746, 750–751 duced fertilizer, 571; matches, Fixer, 565 illus. prob. chemistry of, 275; microwave Flame tests, 234 lab Equilibrium, 211, 214–215; adding heating and decomposition, 320; Flameless ration heaters, 221 of reactants or energy and, 215; permanent waves, 657; popping Flavin adenine dinucleotide Haber process (synthesis of of popcorn, 397; soaps and (FADH2), 697 illus. ammonia) and, 216–217; Le detergents, 455; sweetness of Flavorings, 643 Chatelier’s principle, 214; remov- foods, 683 Flexinol, 109 ing products and, 214–215; Exothermic reactions, 42, 196, 196 Fluids. See Gases; Liquids vapor-liquid, 356–357, 358 lab, 708–709, 712 lab, 726 lab; Fluorapatite, 280 Essential elements, 128 activation energy and, 218, 713; Fluorescent lights, 347 Esters, 643, 646 lab direction of, 717, 718 table; hot Fluoridation, 279, 280 Estimated Safe and Adequate packs and, 710 Fluorides, 279, 280 Dietary Intake (ESAI), 128 Explosives, 419 illus. Fluorine, 278; as diatomic element, Ethane, 183, 623, 633; dehydrogena- , 290–291 174–175; electron configuration, tion, 730; molecular shape of, Eye, vision and vitamin A, 632 246 table; electronegativity, 304; 323–324 as essential element, 128; fluori- Ethanol, 140 illus., 642, 809 table; dation and, 279, 280; hydrogen Breathalyzer tests for, 569; for- bonding by, 439; reaction with mula and uses, 33 table; produc- F noble gases, 131; reactivity of, tion of by fermentation, 698; 263, 278 specific heat, 445 table; synthesis f orbitals, 247, 250 Fluorite, 156 illus. of, 647; vapor pressure of, 357; f sublevel, 235, 238, 238 table Foam, 471 vaporization of, 357 lab Fabric, testing for synthetic fibers, Fog, 470 Ethene. See Ethylene 650–652 lab Food, chemicals found in, 19; chro- Ether (diethyl ether), 644 Factor label method, 379 prob., 380, matography of dyes in, 328–329 Ethers, 644 380 prob., 801–803 lab; energy content of, 721, 721 Ethnobotany, 146 FADH2, 697 illus. table, 722–723 lab, 724, 724 Ethyl alcohol. See Ethanol Fahrenheit scale, 349–350, 789 prob.; freeze drying of, 353; irra- Ethyl butyrate, 643 Fake fats, 685 diation of, 771, 773; spoilage of, 4-Ethyl-3-methylheptane, 626 Families. See Groups 191, 223 Ethylene, 630, 630 illus.;hydrogena- Faraday, Michael, 604; observation Food and drug inspector, 491 tion, 633; molecular modeling of burning candle by, 8 lab Food irradiation, 771, 773 of, 324; polymerization reac- Fats, 682. See also Lipids; fake, 685; Food webs, 736 illus. tions, 656 illus.; synthesis of, 730 fatty acids in, 684 Fool’s gold, 54 illus., 165 illus. Ethyl ether, 644 Fat-soluble vitamins, 691 Forensic Analytical Specialties, 12–13

Index 901 Index

Forensics, detection of blood stains Furnaces, 558 lab, 388–389 prob.; Charles’s law, with luminol, 573, 574; forensic Fusion, heat of, 364 391–392, 393 prob.; combined scientists, 12–13 Fusion, nuclear, 347, 766–767; Word gas law, 394–395, 395–396 prob.; Forensic scientists, 12–13 Origin, 766 ideal gas law, 419, 419 prob., 420 Forging, 290 Fusion reactors, 766–767 lab, 420 prob.; law of combining Formaldehyde, 644 gas volumes, 396–398 Formic acid, 498 illus., 538, 642 Gasoline, 23, 145 illus., 622, 623, 624 Formula mass, 409, 412 prob. illus.; alkenes in, 629; combus- Formulas, 31, 138; for binary ionic G tion, 191; octane rating of, 624; compounds, 155–156, 158 prob.; production, 638 illus.; volatility determining unknown with mass Gadolinium, 295 of, 35 percents, 427–429; empirical, Gadolinium-153, 769 illus. Gas pressure, 344, 372–376, 428–429; for hydrates, 168; for Galena, 273 378–381; devices that measure, molecular compounds, 180–181; Gallium, 91 illus., 269, 270 376, 377, 378; number of parti- multiple formula units in, Gallium arsenide, 274 cles and, 373–374; pressure-vol- 168–169; for polyatomic ions, Galvanic cells, 602–605; carbon- ume relationship (Boyle’s law), 159, 161 prob., 162 prob.; for zinc dry cell batteries, 608–609; 382–383, 384–385 lab, 386, 388 transition element compounds, lead storage batteries, 611, 613; lab, 388–389 prob.; temperature 165, 165 prob. NiCad rechargeable batteries, and, 374–375, 391–392, 393 Formula unit, 156; formula mass 612 prob.; units used for, 378–380, and, 409, 412 prob.; representing Galvani, Luigi, 599 379 prob., 380 prob. multiple, 168–169 Galvanizing, 293, 555 illus., 593–594 Gastric ulcers, 536 illus. Fortified cereals, 30 lab Gamma decay, 749–750 Geiger counters, 751 illus. Fossil fuels, 637, 713, 726; coal, 637; Gamma radiation, 749–750 Gel chromatography, 327 natural gas, 637; petroleum, Gamma rays, 72 illus., 749–750; Gels, 40 lab, 471 637–639 food irradiation with, 771 Gemstones, colors of, 248–249 Fossils, radioactive dating of, Garcia, John (pharmacologist), Genetic code, 690. See also DNA 756–757, 758 prob., 760 634–635 (Deoxyribonucleic acid) Fourth period elements,electron Gardening, basic anhydrides and, Geochemical cycles, conservation of configuration, 247; properties, 494 matter and, 55 283 Gas chromatography, 327 Geometric isomers, 631 Fractional distillation, 274, Gases, 34–35, 341; Avogadro’s prin- Geothermal energy, 728–729 354–355, 638 ciple, 398; condensation of, 356; Geraniol, 426–427 Francium, 263 diffusion of, 343 lab, 352; gas Germanium, 91 table, 270 Frasch, Herman, 276 illus. laws governing behavior of. See Geysers, 729 Frasch process, 276 Gas laws; ideal, 343; kinetic Glacial acetic acid, 528 Freeze drying, 353 model of, 342–343, 343 lab, 386 Glass, blowing of soda-lead for Freeze-point depression, 465, 466 illus., 392 illus.; mass-pressure sculptures, 346; colored, 249, Freezing point, 35, 364 relationship, 373 illus., 373–374; 294; lanthanides in, 294; recy- Freon, 641 mass-volume relationship, 375 cling of, 60; specific heat, 445 Frequency, 71 illus., 233 lab; molar volume, 416, 418 table Fructose, 680 prob.; particle speed distribu- Glass cullet,60 Fruit, oxidation of cut surfaces, 575, tion, 348 illus.; pressure of. See Glazes, 163 576 illus.; treatment with ethyl- Gas pressure; properties of, 341 Glucose, 677, 680, 681; metabolism ene, 630 illus. illus.; release of by chemical reac- of, 694, 696–698; production of Fudge, 459 illus. tions, 191; solubility in liquids, by photosynthesis, 734; struc- Fuel cells, 614 469; temperature change when ture, 654 illus. Fullerenes, 178, 179 cooling, 365 illus.;temperature- Glycerin, 455 Functional groups, 640–647; amino pressure relationship, 374–375; Glycerol, 684 group, 645; carbonyl group, 644; temperature-volume relation- Glycine, 671, 672 carboxyl group, 642; halogens, ship, 391–392, 393 prob. Glycogen, 677, 681–682 641; hydroxyl group, 642; nota- Gas laws, 382–383, 386, 388–389 Glycolysis, 696, 697 illus. tion used for, 641; production of prob., 391–398; Boyle’s law, Gold. See also Fool’s gold; Asante compounds containing, 646–647 382–383, 384–385 lab, 386, 388 weights and, 411; attempts to

902 Index Index

convert common metals into, 25 Groups, 96; atomic structure of ele- tions; units of (joules), 711 lab; biorefining of, 727; chemical ments in, 98–99; reactivity with- Heat of fusion, 364 symbols for, 27 table; as coinage in, 97 lab Heat of reaction, 712; activation metal, 86, 110, 292; density of, 36 Guanine (G), 689, 690 energy and, 713–714; measuring table; 18-karat, 23 table; 14-karat, Gumdrop models, 315, 318; of by calorimetry, 719–720, 721 23 table; malleability of, 313; ammonia, 322; of carbon diox- prob. nuggets of, 24 illus.; specific heat, ide, 321; of diatomic elements, Heat of solution, 460 445 table 318; of ethane, 323–324; of Heat of vaporization, 361, 446 Gold foil experiment, Rutherford’s, ethyne, 324–325, 324–325; of Heisenberg uncertainty principle, 64, 230 methane, 323; of water, 318–319 238–239 Goodyear, Charles, 658 Heisenberg, Werner, 238 Granite, 21 illus. Helium, 95–96, 98, 281; in airships, Graphite, 107, 176, 179 141; in balloons, 94 illus.; densi- Graphs, 805–807; bar graphs, 805; H ty, 36 table; electron configura- of direct relationships, 807; of tion, 132 illus., 244, 246; molar inverse relationships, 808; line Haber, Fritz, 216–217 volume, 416 illus. graphs, 805–806; pie graphs, 805 Haber process, 215, 216–217, 571 Heme, 286, 693 Gray (radiation unit), 776 Hafnium, 89 illus. Hemoglobin, 286, 537, 670, 672 Greeks, early ideas on matter, 52–53; Hahn, Otto, 762 illus., 693 use of scientific models by, 11 Hair, chemistry of perms, 657; dis- Héroult, Paul, 269, 589 Green chemistry, 425 solving of by bases, 480 illus. Hershey, Alfred Day, 772 Green technology, 425 Half-life, 756; of commonly used Hertz (Hz), 71 illus. Group 1 elements. See Alkali metals isotopes, 756 table; modeling, Heterogeneous mixtures, 21–22; Group 2 elements. See Alkaline 752–753 lab Word Origin (heterogeneous), 23 earth metals Half reactions, electrolysis, 585, 587; Hexane, isomers, 628; vaporization Group 3 elements, 283 redox, 556, 557–558 of, 357 lab Group 5 elements, 283 Hall, Charles Martin, 269, 589 Hiccups, 534 Group 6 elements, 283 Hall-Héroult process, 215, 269, 588 High-density Group 13 elements, 269, 269–270; illus., 589, 725 (HDOE), 659 ionic charge, 157 table;proper- Halogenated compounds, 641 Hindenburg, 141 ties, 269; uses of, 269, 269–270; Halogen lamp, 107 History Connection,the valence electron configuration, Halogens, 86, 99, 278, 279; halo- Hindenburg, 141; Lavoisier, poli- 243, 244, 269 genated hydrocarbons, 641; tics and chemistry, 58; lead poi- Group 14 elements, 270, 272; prop- properties of, 87, 87 table;reac- soning in Rome, 271 erties, 270; uses of, 272, 272–273; tivity, 278; uses, 278, 279; valence Holes, semiconductors, 112 valence electron configuration, electron configuration, 278; Homogeneous mixtures. See 243, 244, 270 Word Origin, 278 Solutions Group 15 elements, 273–274; ionic Halogen triad, 87 table, 87–88 Homogeneous, Word Origin, 24 charge of, 157 table; valence elec- Hard water, 160, 191, 452 lab, 455 Honeycombs, 684 illus. tron configuration, 243, 244, 273 HBO therapy. See Hyperbaric oxy- Hormones, 694 Group 16 elements, 276–277; ionic gen (HBO) chambers Horticulturalist, 213 charge of, 157 table; properties, HDPE, 659 Hot-air balloons, 391 276; uses of, 277; valence elec- Health Connection, hemoglobin, Hot packs, 460 illus., 710 tron configuration, 234, 244, 276 693; lithium batteries in pace- Hot-working of steel, 290–291 Group 17 elements, 278, 279; ionic makers, 610 Household bleach, 194 charge of, 157 table;reactivity,97 Heartburn, antacids and, 503 lab Household chemicals, chemical and lab, 278; uses of, 279; valence Heart disease, 687 physical properties of, 16–17 lab electron configuration, 234, 244, Heart imaging, 770 illus. Housepaints, as colloids, 470 278 Heat, 711; absorption of by chemi- How It Works, breathalyzer test, Group 18 elements (noble gases), cal reactions, 709. See also 569; cement, 167; electronic bal- 98, 99, 281; electron configura- Endothermic reactions; reducing ances, 410; emergency light tion, 246, 246 table, 281; stability release of waste heat, 731–732; sticks, 197; hot and cold packs, of, 131–132, 281; valence elec- release of by chemical reactions, 710; hydrogen-oxygen fuel cell, tron configuration, 234, 244 709. See also Exothermic reac- 614; indicators, 545; lightbulbs,

Index 903 Index

284; pressure cookers, 359; Hydrogen peroxide, catalytic Infrared waves, 72 illus. reverse osmosis units, 468; decomposition of, 674–675 lab; Inhibitors, 223 smoke detectors, 748; taste, 519; chemical properties of, 41 illus.; Inks, chromatography of, 22 lab tire-pressure gauge, 378 inhibitors and, 223; instability, Inner transition elements, 104, 250, Human body, composition of, 19, 40, 277; reaction with magne- 294–295; electron configuration, 669 illus. sium dioxide, 41 illus. 250, 294; radioactivity, 295; uses Hydrates, 165–166, 168; cement, Hydroiodic acid, 498 table of, 294–295 167; chemical weather predic- Hydronium ions, 483, 485, 517; pH Inorganic compounds, 180;nam- tors, 166 lab; formulas, 168; and, 502, 502 prob., 506–507 ing, 180–182 naming, 168 Hydroxide antacids, 538 Insoluble compounds, 215 Hydrides, 311 Hydroxide ions, 159 illus., 488–489, Insulin, 671 illus., 694 Hydrobromic acid, 498 table, 517; pH and, 502, 502 prob., Integrated circuits, 113 522–523 506–507 International System of Units, Hydrocarbons, 183, 183 table, 495. Hydroxides, 264 785–786 See also Alkanes; Alkenes; Hydroxyapatite, 280 Interparticle forces, 144–145, 147 Alkynes; air pollution and, 495; Hydroxyl group, 642 Invar, 290 table aromatic, 636–637; branching of, Hygroscopic substances, 166 Inverse relationships, graphs and, 623; cracking and, 638, 647; fos- Hyperbaric oxygen (HBO) cham- 808 sil fuels, 637–639, 713; functional bers, 390 Iodine, 86, 107, 278; as antibacterial, groups on substituted, 640–647; Hyperventilation, 533 279; biological importance of, modeling of, 323–325, 325 lab; Hypochlorite bleaches, 567–568 278; as diatomic element, reforming and, 639; saturated. Hypothesis, 59 174–175; as essential element, See Alkanes (saturated hydrocar- 128; halogen triad, 87, 87 table; bons); unsaturated, 625, ionic compounds formed by, 135 629–631, 630 lab, 633, 636 lab; properties of, 87 table;reac- Hydrochloric acid, 809 table;for- I tion with starch, 190 illus., 220 mula and uses, 33 table; ioniza- lab; reactivity, 97 lab, 278; size of, tion, 486; polar covalent bond- Ice, 127 illus., 436; density, 36 table, 174 illus.; sublimation, 356 illus. ing, 310; production of hydroni- 437, 440–441; sublimation, 356, Iodine-131, 769 illus. um when dissolved in water, 485; 375 lab Ion exchangers, 160 reaction with ammonia, 527, 528 Icebergs, center of gravity of, 26, Ionic attraction, 135 illus.; reaction with calcium car- 127 illus. Ionic bonds, 134, 135, 302–303; bonate, 717–718; reaction with Ice man, dating of, 754–755 electronegativity difference sodium hydroxide, 516 illus.;as Ideal gases, 343 between bonding atoms (?EN) strong acid, 498, 498 table Ideal gas law, 419, 419 prob., 420 and, 306, 308 Hydrogen, 95, 98; as diatomic ele- lab, 420 prob. Ionic charges, predicting, 157; of ment, 174–175; in Earth’s crust, Incandescent lights, 131 illus. representative elements, 157 table 669 illus.; electron cloud model Independent variable, 806 illus. Ionic compounds, 134;binary, of, 239 illus.; electron configura- Indicators, acid-base. See Acid-base 155–156; classification of com- tion, 244; emission spectrum, 74 indicators pounds as, 172–173 lab; differ- illus., 233, 235 illus.; energy lev- Indigo, 429 ence between electronegativities els, 75 illus., 78 illus.; as essential Indium, 269, 270 (?EN) of bonding atoms and, element, 128; as fuel source, 141; Industrial chemicals, 481 table 305–306, 308; dissolving of by in human body, 669 illus.;prop- Industrial chemical worker, 317 water, 451–453; formation of by erties, 127; reaction with oxygen, Industrial machinery mechanic, electron transfer, 133–134, 135 127 illus., 200 prob., 218, 709 449 lab, 136–137 lab; formulas and illus. Industrial processes. See also specific names of, 154–162, 164–166, Hydrogenation, 633 processes; aluminum production 168–169; hydrates, 165–166, 168; Hydrogen bonding, 439. See also and recycling, 725; catalysts in, identification of aqueous solu- Water; sweetness and, 683 730; efficiency of, 731 table, tions and, 456–457 lab; interpar- Hydrogen carbonate ion, buffers 731–732; energy production and, ticle forces in, 144 illus.;ion and, 533, 535 726; entropy from, 730–731 charge prediction, 156–157; Hydrogen chloride. See Inert gases, 131–132, 281, 284. See polyatomic, 158–162; properties, Hydrochloric acid also Noble gases 143–144, 302 table, 332–333; Hydrogen-oxygen fuel cell, 614 separating from covalent sub- 904 Index Index

stances, 170–171, 171 lab;transi- Latex paints, 661 tion elements, 162, 164 table, J Laughing gas, 574 164–165 Launch Labs, A Lemon Battery?, Ionic crystals, 134–135 583; Chain Reactions, 743; Jewelry alloys, 23 table Ionic equations, 517–518, 520, 521 Defying Density, 339; Elements, Jolliot-Curie, Frederick, 746 prob. Compounds, and Mixtures, 153; Jordan, Lynda, 678–679 Ionic size (radii), 260; atom size-ion How Much is a Mole?, 403; Joule (J), 361, 711 size relationship, 260 illus.; pat- Magnetic Materials, 257; Making terns in main group elements, Slime, 621; More Than Just Hot 260, 261 Air, 371; Observing a Chemical Ionization, 488; of acids, 486, 488, Reaction, 189; Observing an 499; of bases, 489 K Oxidation-Reduction Reaction, Ionizing radiation, 776 553; Observing Electrical Ionizing smoke detectors, 748 Kekulé, August, 636 Charge, 229; Oil and Vinegar Ions, 134, 242; charge prediction, Kelvins (K), 350 Dressing, 301; Physical or 156–158; spectator, 520 Kelvin scale, 349–350, 350 prob., Chemical Change?, 515; Red Iridium, 292 789 Liquid to Clear Liquid, 119; Iron, 286, 286–287, 292; biological Keratin, 501, 670 Solution Formation, 435; importance, 286; chemical sym- Kerosene, 638 illus. Speeding Reactions, 707; Testing bol, 27 table; in Earth’s crust, 669 Ketones, 644 for Simple Sugars, 667; Testing illus.; electron configuration, 247 Kilocalories, 721 pH Using Natural Indicators, illus., 285 lab; as essential ele- Kilopascal (kPa), 378 479; Versatile Metals, 85; What’s ment, 128; molar mass, 407 illus.; Kinetic energy, diffusion and, 352; Inside?, 51; Where is It?, 3 oxidation states, 283; properties, Kelvin scale and, 349–350; mass Lavoisier, Antoine, 53, 58, 198 6 illus., 40, 41 illus., 106, 282, and speed and particles and, 351; Law of combining gas volumes, 292; reaction of with chlorine, temperature and, 348–350, 396–398, 404 129 illus.; reaction with copper 362–363 lab Law of conservation of energy, 711 sulfate, 205 illus.; reaction with Kinetic theory, 342–345; Boyle’s law Law of conservation of matter HCL, 482, 483 illus.; rusting, 41 and, 386; Charles’s law and, 392; (mass), 42, 56–57 lab; discovery illus., 122 lab, 204 illus., 250, 555 of gases, 342–344, 343 lab, 386 of, 53, 198; recycling and, 55 illus., 557 lab, 570; separation of illus.; of liquids, 344; of solids, 345 Law of definite proportions, 54 from ore, 286; smelting of in Kitchen chemicals, 16–17 lab LCDs (liquid crystal displays), 345 blast furnaces, 558 illus., 567; Krypton, 131, 132 illus., 281 LDPE, 659 specific heat, 445 table Le Chatelier, Henri Louis, 214 Iron Age, 567 Le Chatelier’s principle, 214 Iron chloride, 140 illus. Lead, 270; density, 36 table;symbol Iron(III) oxide, 555 illus. L for, 27 table; uses, 273 Iron pyrite, 54 illus., 165 illus. Lead-acid storage battery, 273, 611, Iron smelting, 558 illus. Labs, ChemLab. See ChemLab; 613 Iron(II) sulfate, 162 illus. MiniLab. See MiniLab; safety Lead-chamber process, production Iron(III) sulfate, 162 illus. guidelines, 839; safety symbols, of sulfuric acid by, 424 Iron triad, 292 840; Launch Labs. See Launch Lead(II) iodide, 208 illus. Irradiation, food, 771, 773 Labs; Try at Home Labs. See Try Lead(II) nitrate, 208 illus. Irrigation, 156 at Home Labs. Lead poisoning, 271 Isomers, 627–628; geometric, 631; Lactase, 676–677 LEDs, 605 illus. positional, 631; structural, 628 Lactic acid, 429 Lemon batteries, 599–601, 600 lab, Isopropanol, 642 Lactic acid fermentation, 698, 700 608 illus. Isopropyl alcohol, 358, 642 Lactose, 681 Length, measuring, 788, 792 Isotopes, 62. See also Radioisotopes; Lactose intolerance, 222, 223 illus., Levi, Primo,96 atomic mass and, 67, 68 illus.; 676–677 Lewis dot diagrams, 79; for main half life of common, 756 table; Landscape architect, 213 groups of elements, 98 illus. nuclear notation and, 746; repre- Language Arts. See Literature Libby, Willard, 754–755 senting with pennies, 63 lab Connection Life, molecules of. See Biomolecules Lanthanides, 92–93 illus., 94, 104, Light, electromagnetic spectrum 107, 250, 294–295 and, 233 Lanthanum, 294 Index 905 Index

Light-emitting diodes (LEDs), 605 Litmus paper, 481, 482 lab Manhattan project, 232 illus. Lone electron pairs, 318 Manufacturers’ sales Light reactions, photosynthesis and, Low-density polyethylene (LDPE), representative, 491 734–735 656 illus., 659 Marble, acid dissolution of, 482, 483 Lightbulbs, 284 Luciferase, 575 illus. illus. Lighter fuel, 627 illus. Luminol, 573, 574 Margarine, 633 illus. Lightning, 571, 574 illus. Lung cancer, radon exposure and, Martensite phase, 108 Light sticks, 197 777, 778 Mass, 4, 5; atomic. See Atomic mass; Lime, 157 illus.; formation of, 211, Lye, 455 comparing, 4, 5 illus.; conserva- 214; as soil treatment, 494 Lysine, 672 tion of, 42, 198–199; determining Limestone (calcium carbonate), acid number of atoms by, 408 lab; dissolution, 482 lab, 483 illus., measurement of, 410, 790–791; 524; cave formation and, 524; molar. See Molar mass; molecular, damage to sculptures by, 483 M 409; relationship with energy illus.; decomposition, 211, 214; (E mc 2), 761; relationship with formula, 33 table, 809 table; hard Macroscopic world,7 gas volume, 375 lab; speed of par- water and, 160; neutralization of Magma, 728 ticles in and kinetic energy, 351 lakes by, 535; reaction with HCl, Magnesium, 265; in Earth’s crust, Mass formula, 409 717–718 669 illus.; as essential element, Mass number, 66 Limiting reactant, 220 128; ionic compounds formed Mass percents, determination of, Linear acetylenic carbon, 178 by, 135 lab; magnesium-copper 422–423 lab, 426–427; determin- Linear molecular geometry, 318 redox reaction, 604 illus.;proper- ing chemical formulas from, illus., 321 illus., 325 illus. ties, 268; reactivity, 97 lab, 265; 427–429 Line graphs, 805–806 in seawater, 598; shielding effect, Mass spectrometers, 327 Lipid membranes, 687 304, 305 illus.; uses, 268 Matches, chemistry of, 275 Lipids, 682, 684; fake fats and, 685, Magnesium alloys, 268 Matter, 4. See also Atoms; 686–687; fatty acids and, 684, Magnesium chloride, reaction with Compounds; Elements; States of 686; functions, 687; steroids, silver nitrate, 200–201 prob. matter; atomic model of, 11; 686–687; structure, 684, 686 Magnesium-copper galvanic cell, change in state of, 352–353, Lipstick, 684 illus. 602–604 356–358, 360–361, 362–363 lab, Liquid aerosols, 470 Magnesium dioxide, 41 illus. 364–365; classification of, 14–15, Liquid crystal displays (LCDs), 345 Magnesium hydroxide, 33 table, 498 18, 20–24, 24 illus.; composition Liquid crystals, 345 table, 809 table and behavior of, 4, 5 illus.;con- Liquid hydrogen, 141 Magnesium oxide, 155, 268 servation of, 53 illus., 55, 56–57 Liquids, 34–35, 341; boiling, 358, Main group elements, 238–274, lab; density of, 36–37; early 360; diffusion in, 352; dissolved 258–265, 276–279, 280; alkali Greek ideas about, 52–53; kinetic gases in, 469 illus.; evaporation, metals. See Alkali metals; alkaline theory of, 342–345; macroscopic 352–353; freezing, 364; kinetic earth metals. See Alkaline earth view of, 7; mixtures of, 15, 18, model of, 344; properties, 341 metals; atomic radii trends, 20–24; properties of, 4, 5 illus.,6, illus.; surface tension and, 442; 258–259; halogens. See Halogens; 40–43; states of, 34–35, 340–341; volatile, 353, 357 ionic radii trends, 260, 261; submicroscopic view of, 7, 10; Literature Connection, Jules Verne, metal-metalloid-nonmetal-noble substances, 15 icebergs, 26; Primo Levi, lan- gas pattern, 258, 259 illus.; Measurements, of length, 789, 792; guage of a chemist, 96 metallic property trends, 259 of mass and weight, 790–791; Lithium, 86, 96, 99, 261, 263; atomic illus.; period 2 chemical reactivi- precision and accuracy of, 793; as size, 259; atomic structure, 66 ty, 261–263 a quantitative observation, 14; illus.; electron configuration, 244, Malachite, 249 illus. scientific notation and, 795–799; 245, 246 table; ionic compounds Malleability, 313 SI system for, 786–787; signifi- formed by, 135 lab; ionic radii Maltose, 681 cant digits and, 793–795; of tem- and, 261; reactivity, 261, 263 Manganese, electron configuration, perature, 789; of volume, 789 Lithium batteries, for electric cars, 247 illus.; as essential element, Medical laboratory technician, 679 613, 615; in pacemakers, 610 128 Medical records technician, 679 Lithium fluoride, 263 illus., 308 Manganese(IV) oxide, reduction in Medical technologist, 679 Lithium hydroxide, 203, 418 prob., carbon-zinc dry cells, 609 illus. Medicines from rain forests, 146 498 table Manganese steel, 290 table Meitner, Lise, 762 906 Index Index

Melting point, 35, 364; periodic Metric system,4,786 distribution in, 245 lab;single- table trends, 88 Microscopes, 240–241; atomic force displacement reactions, 205 lab; Mendeleev, Dmitri, 88–91, 94 microscope (AFM), 241; scan- starch-iodine clock reaction, 220 Mercury, boiling point, 358; emis- ning probe microscope (SPM), lab; straws and Boyle’s law, 388 sion spectrum, 235 illus.; melting 240; scanning tunneling micro- lab; vaporization rates, 357 lab; point, 283; physical properties, scope (STM), 10, 241 yeast fermentation, 699 lab 25 illus., 106; surface tension, Microwave decomposition, 320 Mining engineer, 597 442, 444 illus. Microwave heating, 320 Misch metal, 294 Mercury barometers, 283 illus. Microwave ovens, 320 Mixtures, 15, 18, 20–24; analysis of, Metabolism, 692, 693. See also Microwave radiation, 71, 72 illus., 422–423 lab; composition of, Biomolecules; fermentation, 320 determining, 16–17 lab;exam- 698–699, 699 lab; map of, 695 Milk of Magnesia, 538 ples of everyday, 18 illus.;hetero- illus.; photosynthesis, 733–737; Minerals, nutrition and, 128 geneous, 21; homogeneous respiration, 694, 696, 697 illus., MiniLabs. See also ChemLabs; alco- (solutions), 22–23; separation of, 698 hol, testing for presence of by 20, 326–327; of water and alco- Metal alloys. See Alloys redox, 568 lab;alloy ofcopper hol, 21 lab Metal hydroxides, 489 and zinc, 25 lab; antacids and Models, 10–11 Metallic bonds, 314 acid-base chemistry, 503 lab; Molarity, 460–461; calculation of, Metalloids, 105; atomic structure, atomic radii, periodic table pat- 463–464 prob.; preparing solu- 105, 106; periodic table trends, terns, 262 lab; buffers, 532 lab; tions based on, 462–463 prob.; 100–101 lab; position of on peri- calcium (bones), reaction with from titration, 541, 542–543 lab, odic table, 102; properties, 107; vinegar, 171 lab; cereal fortified 544, 544 prob. valence electron configuration, with elements, 30 lab; chemical Molar mass, 406–407;ofa com- 243 weather predictors, 166 lab; pound, 409, 412–413 prob.; of an Metallurgical technician, 597 chromatography, 22 lab, 312 lab; element, 407, 408 prob.; mass of Metal plater (Harvey Morser), 596 corrosion of iron and oxidation, a number of moles of a com- Metals, 102, 103–104; atomic struc- 557 lab; determining number of pound and, 413 prob.; number ture, 105, 106; bonding in, items by weight, 408 lab; diffu- of atoms in a sample of an ele- 313–314; conductivity of, 313, sion of gases in air, 343 lab;DNA ment from, 408 prob.; number of 314; corrosion, 555, 557 lab, 570, extraction, 688 lab; electrolysis, formula units in a sample of a 572; oxidation, ease of, 602 table; 587 lab; electron configuration of compound and, 412 prob.; pre- oxidation-reduction (redox) iron, 285 lab; elements, predict- dicting mass of a product and, reactions involving, 570; periodic ing properties of unknown, 89 415–416 prob.; predicting the table trends, 100–101 lab;prop- lab; emission spectrum, 77 lab, mass of a reactant and, 414–415 erties, 103, 105 table, 106, 107, 234 lab; esters, aroma of, 646 lab; prob. 313; reaction with acids, 482, 483 exothermic and endothermic Molar volume, 416, 418 prob., 420 illus.; shape-memory, 108–109; reactions, 196 lab, 712 lab, 726 lab valence electron configuration, lab; gel, properties of, 40 lab; Molded plastics, 660 illus. 236–267 lab, 243, 313–314 groups, reactivity within, 97 lab; Mole, 405; mass of, 413; number of Methane, 182 illus., 183, 309 illus., isotopes, representing with pen- things in (Avogadro’s constant), 623 illus., 809 table; combustion, nies, 63 lab; lemon batteries, 600 405–406 196, 713 illus.; deep-sea deposits lab; line emission spectra of ele- Molecular compounds, 179–183, of, 181; formula and uses, 33 ments, 77 lab; mass and volume 180 table. See also Molecular ele- table; molecular shape, 323; non- of a gas, 375 lab; mixture of ments polarity, 332; water vs., 437 table water and alcohol, 21 lab;molar Molecular elements, 174. See also Methanol, 406, 439 illus., 642 volume of a gas, 420 lab; molec- Molecular compounds; Methyl chloride, 640 ular shapes, modeling, 325 lab; allotropes, 175, 179; diatomic Methyl red, 540 illus. neutralization reactions, 518 lab; elements, 174–175 Methyl salicylate, 646 lab nuclear fission chain reaction, Molecular formula, from empirical 2-Methylbutane, 628 illus. 763 lab; paper chromatography, formula, 429 2-Methylhexane, 628 illus. 22 lab, 312 lab; polymers, com- Molecular mass, 409, 412–413 prob. 3-Methylhexane, 628 illus. paring, 653 lab; radon levels, 775 Molecular modeling, 314, 318–319, 2-Methylpropane, 623 illus., lab; rusting of iron, 122 lab;1s 321–325, 325 lab; ammonia, 322; 627–628 orbital, probability of electron carbon dioxide, 321; diatomic

Index 907 Index

elements, 318; ethane, 323–324; Neptunium, 102 Normal boiling point, 358 gumdrop models, 315, 318; Net ionic equations, 520, 521 prob. npn-junctions, 112 methane, 323; water, 318–319 Neutralization reaction, 516–517, Nuclear accidents, 765 Molecular shape, 315. See Polarity 518 lab. See also Acid-base reac- Nuclear equations, 746; radioactive Molecular substances, 170. See also tions decay and, 747, 749–750; writing Covalent compounds Neutral solutions, 503 and balancing, 746, 750–751 Molecules, 140 Neutrons, 62, 66; discovery of, 62; prob. Monomers, 649 properties, 67 table Nuclear fission, 232, 762–765; fis- Monoprotic acids, 485 illus. NiCad rechargeable batteries, 612 sion chain reaction, 762, 763 Monosaccharides, 680 Nickel, 292; as coinage metal, 110; illus., 763 lab; fission reactors, Monounsaturated fatty acids, 686 electron configuration, 247 illus.; 764–765; Word Origin (fission), Morser, Harvey (metal plater), 596 as essential element, 128; proper- 762 Mothballs, 35, 636–637 ties, 292 Nuclear fusion, 347, 766–767 Moving phase, paper chromatogra- Nickel-cadmium (NiCad) batteries, Nuclear fusion reactors, 767 illus. phy, 312 lab 612 Nuclear medicine, 768–770 MREs (Meal, Ready-to-Eat), 221 Nickel-metal hydride batteries, 613 Nuclear model of the atom,65 Muscles, 174, 698, 700 illus. Nicotinimide adenine dinucleotide Nuclear power plants, 737 illus., Myoglobin, 286, 576 (NAD+), 697 illus. 764–765 illus. Night vision, 632 Nuclear reactions, energy potential NiMH batteries, 613 of, 761; equations for, 746, Nitinol, 108–109 750–751 prob.; fission, 762–765, N Nitric acid, 498 table 763 illus.; fusion, 766–767; nota- Nitrogen, 273; biological importance tion for, 746; radioactive decay, 747–750 n-type semiconductors, 112 of, 273; cycling, 55 illus., 273; as Nuclear reactors, 764–765, 767 illus. NAD+, 697 illus. diatomic element, 174; electron Nuclear waste disposal, 778–779 NADH, 697 illus. configuration, 246 table; as essen- Nucleic acids, 688–690; deoxyri- Nagaoka, Hantaro,63 tial element, 128; fertilizers from, bonucleic acid (DNA), 688 lab, Nail polish remover, 643 274; from fractional distillation, 690; hydrogen bonding between, Names, alkanes, 625–626, 626–627 274, 354–355; in human body, 439; nucleotides in, 689; ribonu- prob.; alkenes, 630–631; alkynes, 669 illus.; hydrogen bonding by, cleic acid (RNA), 690 633; binary inorganic com- 439; ionic compounds formed by, Nucleotides, 689 pounds, 180–182, 181 prob.; 135 lab; liquid, 107; reactivity, Nucleus, 65, 230, 231 illus. binary ionic compounds, 155; 263; water vs., 437 table Nutrient cycles, conservation of organic compounds, 182–183; Nitrogen cycle, 55 illus., 273 matter and, 55 polyatomic ions, 160; transition Nitrogen dioxide, 309 illus. Nutrients, 721 illus. element compounds, 164, 164 Nitrogen fixation, 55 illus., 273, 571 Nutrition, 128 table, 165 Nitrogen-fixing bacteria, 216, 273 Nylon, 649, 654 Naphthalene, 35, 636 Nitrogen monoxide, 273, 495 Natural chemicals, vs. synthetic,32 Nitrogen oxides, 494 illus., 495 Natural gas, 637; deposits, 637 illus.; Nitroglycerin, 42 illus. processing, 638–639 Nitrous oxide, 574 Natural polymers, 653; comparing Noble gas compounds, 195, 281 O with synthetic, 653 lab; differen- Noble gas configuration, 132 tiating from synthetic polymers, Noble gases, 98, 99, 281; applica- Oaktree automatic arm, 109 650–652 lab tions, 131 illus.; electron configu- Observations, 14, 59; qualitative, 14; Natural radiation, 774 illus., 776 ration, 132 illus., 246, 246 table, quantitative, 14 Natural systems, energy in, 736–737 281; periodic table and, 94; sta- Octane ratings, 624 Neodymium, 107, 294 bility of, 131–132, 281 Octet rule, 132 Neon, 281; electron configuration, Nonbonding electron pairs, 318 Odor, changes in and chemical reac- 244, 245, 245–246, 246 table; Nonmetals, 102, 104; atomic struc- tions, 191; diffusion of gases in emission spectrum, 235 illus.; ture, 105, 106; electron configu- air and, 343 lab isotopes, 62 illus.,66 ration, 243; periodic table and, Oils, 682. See also Lipids; Petroleum; Neon lights, 131 illus. 100–101 lab, 102; properties, action of soaps and detergents Neoprene, 660 104, 105 table, 107 on, 455; fatty acids in, 684; insol- ubility in water, 454 908 Index Index

Oleic acid, 686 illus. and ions and, 559, 560–561 lab, Particle generators, 773 illus. Olestra, 685 562; corrosion of iron and oxida- Pascal, Blaise, 378 Operation Trinity, 764–765 tion, 555 illus., 557 lab; in elec- Pascal (Pa), 378 Opsin, 632 trochemical cells, 603–604, Pastes, 471 Orange juice, 21 illus. 606–607 lab; electrolysis and, Pauling, Linus, 307 Orbitals, 238–239; number of elec- 584, 585; half-reactions, combin- PCBs, 641 trons in each, 238, 238 table; ing, 557–558; identification of, Pectin, 471 overlapping, 242 illus.; periodic 559; lightning-produced fertilizer Pennies, composition of, 38–39 lab; table trends, 243–247, 250; size, and, 571; oxidizing and reducing creation of copper and zinc alloy 250–251; Word Origin, 247 agents and, 559, 562; photogra- with, 25 lab; electroplating of, Orbiter space shuttle, 203 phy and, 563–564, 565 illus.; tar- 593 illus.; modeling radioactive Ores, refining of by bacteria, 727; nishing of silver, 572 decay with, 752–753 lab;repre- separation of iron from, 286, 558 Oxides, 492 senting isotopes with, 63 lab; illus. Oxidizing agents, 559, 562 surface tension and, 443 lab Organic chemistry. See Oxyacetylene torches, 633 Pentane, 628 Biochemistry; Organic com- Oxygen, 276. See also Oxidation People in Chemistry. See also pounds reactions; abundance of, 276; Career Connection; biochemist, Organic compounds, 180, 622. See allotropes, 175, 276; as diatomic 678–679; chemist, 316–317; cos- also Saturated hydrocarbons; element, 174; dissolved in water, metic bench chemist, 490–491; Unsaturated hydrocarbons; alka- 469 illus.; in Earth’s crust, 669 forensic scientist, 12–13; metal nes, 623–626, 626–627 prob., illus.; electron configuration, 99 plater, 596–597; pharmacist, 628–629; alkenes, 629–631, 633; illus., 246 table; energy levels, 78 634–635; wastewater operator, alkynes, 633, 633 table, 636; aro- illus.; as essential element, 128; 448–449 matic hydrocarbons, 636–637; from fractional distillation, 276, Peptide bonds, 672 functional groups, 640–647; 354–355; in human body, 669 Percent yield, 421; improving in naming, 182–183; polymeriza- illus.; hydrogen bonding by, 439; chemical synthesis of sulfuric tion reactions, 655–656, 658, industrial uses of, 277; ionic acid, 424–425 660; polymers, 649, 650–652 lab, compounds formed by, 135 lab; Perchloric acid, 498 table 653 lab, 653–655; sources, properties, 126; reaction with Period 2, chemical reactivity in, 637–639 hydrogen, 127 illus., 200 prob., 261–263 Osmium, 292 218, 709 illus.; reactions with Periodic law, 94 Osmosis, 467–468; portable reverse metals and nonmetals, 276, 276 Periodic, Word Origin,99 osmosis units, 468; Word Origin, table; reactivity, 263, 276; water Periodicity, 90,94 467 vs., 437 table Periods, 96; atomic structure of ele- Osteoporosis, detection of with Ozone, 175, 276, 495 ments in, 98 radioisotopes, 769 illus. Periodic table of elements, 27, Oxalate ions, as polyatomic ion, 159 28–29 illus., 86–91, 92–93 illus., illus.; reactivity of alkaline earth 842–843. See also specific groups; elements with, 266–267 lab P atomic numbers, 66; atomic Oxidation number, 157; multiple in radius (size) patterns, 258–259, transition elements, 247 p orbitals, 239 illus., 242; periodic 262 lab; atomic structure and, Oxidation reactions, 554, 556. See table and, 243–247, 250 95–96, 97 lab, 98–99, 243–252; also Oxidation-reduction reac- p sublevels, 235, 238 classes of elements on, 102–105; tions; combining with reduction p-type semiconductors, 112 development of, 86–91, 89 lab; half-reactions, 557–558; metals, Pacemakers, lithium batteries in, electron configuration trends, ease of, 602 table; oxidizing and 610 243–247, 246 table, 250; elec- reducing agents and, 559, 562 Pacific yew tree, 31, 32 tronegativity trends, 304–305; Oxidation-reduction reactions, 555; Paints, 470, 661 information in each block of, 67 alcohol, testing for presence of Palladium, 292 illus.; ionic charge trends, 157; by, 568 lab; biochemical processes Paper chromatography, 22 lab, 312 ionic size patterns, 260–261; long involving, 574–576; blast furnaces lab, 326, 328–329 lab version of, 104–105 illus.; metal- and, 567, 568 illus.; bleaching Parent acids, 518 lab lic and nonmetallic characteris- processes and, 567–568; chemilu- Parent bases, 518 lab tics and, 100–101 lab;modern minescent, 574; copper atoms Particle accelerators, 102, 773 illus. version of, 94; physical states of

Index 909 Index

elements and, 102; reactivity of graph), 564 332–333; water, 311, 330–331 period 2 and, 261–263; synthetic Photosynthesis, 44 illus., 124–125, Polar solvents, 331 elements and, 102; valence elec- 733, 734–737; Calvin cycle, 735; Pollution, thermal, 469 illus.;track- trons and, 231, 232 endothermic reactions in, 43, ing with tracers, 771 Permanent waves, 657 733, 736; light reactions, Polonium, 276 Permeable membranes, 468 734–735; net equation for, 734; Polyatomic ions, 158–162; charge Peroxides, 277 redox reactions in, 575 of, 159, 850 table; common, 159 Perspiration, 446 illus. Photovoltaic cells, 728 table, 809 table; formulas for, Pesticides, tracking with tracers, 771 pH scale, 500 illus., 503 illus.;devel- 159, 161 prob., 162 prob.; nam- PET, 659 opment of, 500; interpreting, ing, 160 Petroleum, 145 illus., 637–639; 503, 506 , 643, 649 cracking and, 638–639; fractional Physical changes, 20, 35. See also Polyethylene, 656, 659, 730 distillation of, 637–638; reform- Changes of state; separation of Polyethylene terphthalate (PET), ing and, 639; Word Origin, 637 mixtures by, 20 659 Pharmaceutical production Physical processes,20 Polymerization reactions, 655–656, worker, 635 Physical properties, 20, 34–35; 658, 660; addition reactions, 656; Pharmaceutical technician, 635 composition of a penny and, condensation reactions, 658; Pharmacist, John Garcia, 634–635 38–39 lab; kitchen chemicals, cross-linking and rubber, 658, Pharmacologist, 635 16–17 lab; melting and freezing 660; plastics and, 660 Pharmacology, 634–635 points, 35 Polymers, 649, 649, 653. See also Phenolphthalein, 264, 540 illus. Physics Connection,Aurora Plastics; comparing natural and Phenylalanine, 671 Borealis, 73; Bohr, Neils, 232; synthetic, 653 lab; differentiating Pheromones, 642 solid rocket booster engines, 566 between natural and synthetic, pH, 502, 502 prob.; of blood, 531, Pie graphs, 805 650–652 lab; polymerization 533; buffers and, 531–533, 535; Pig iron, 286 reactions forming, 655–656, 658, of common materials, 506 illus., Pistons, 374 illus., 375 660; structure, 655–656; Word 507; of cosmetics, 501; develop- Plant-care specialists, 212–213 Origin, 649 ment of pH scale, 500; interpre- Plants, cellulose in, 680; medicines Polypeptide chains, 672. See also tation of pH scale, 503, 506; from, 146; nitrogen fixation by, Proteins measuring with acid-base indica- 273, 571; photosynthesis and. See (PP), 659 tors, 504–505 lab, 507–508; pro- Photosynthesis Polyprotic acids, 485 illus., 486 illus. tein denaturation and, 673; Plasmas, 34, 347 Polysaccharides, 681–682 strong acid plus strong base reac- Plaster of paris, 167, 168 Polyunsaturated fatty acids, 686 tions and, 522; strong acid plus Plastics, 660; recycling of, 659, 661 Polyvinyl alcohol, 40 lab weak base reactions and, illus.; thermoplastic, 660; ther- Polyvinyl chloride (PVC), 659 525–526 mosetting, 660 Polyvinylacetate, 656 illus. pH indicators. See Acid-base indica- Platen, 110 Popcorn, popping of, 397 tors Platinum, 292, 715 Porcelain, 163 Phosphate group, 273, 689 Platinum group, 292 Portable reverse osmosis units, 468 Phosphorescence, 744 illus. Plutonium, 102, 295, 765 Positional isomers, 631 Phosphoric acid, 33 table, 499, 809 Plutonium-238, 295 Positron emission tomography table pnp-junctions, 112 (PET), 769 illus. Phosphors, 294 Polar covalent bonds, 310–311; Potassium, 86, 263; decay of Phosphorus, 273; allotropes, 179, paper chromatography and, 312 Potassium-40, 750 prob.; in 274; biological importance, 273; lab; properties of compounds Earth’s crust, 669 illus.;electron as essential element, 128; in having, 311; water and, 311 configuration, 247; as essential human body, 669 illus. Polarity, 330–333; of ammonia, 331; element, 128; symbol, 27 table Phosphorus pentachloride, 214 chromatography and. See Potassium-argon dating, 755 Photochemical smog, 495 Chromatography; lack of in car- Potassium bromide, 308, 518 lab Photography, developing and print- bon dioxide, 331; of water, 311, Potassium chloride, 143 illus., 154, ing pictures, 565 illus.; oxidation- 330–331 459 reduction (redox) reactions and, Polar molecules, 331–333; ammo- Potassium chromate, 293 563–564; silver bromide in film, nia, 331; attraction to other polar Potassium dichromate, 293 279, 564; Word Origin (photo- molecules, 332; properties, Potassium hydroxide, 264; reaction

910 Index Index

with calcium chloride, 215 illus.; temperature and pressure), 395, as strong base, 498, 498 table 395–396 prob.; units of, R Potassium iodide, 154 378–379; vapor pressure, 357 Potassium perchlorate,76 Pressure cookers, 359 R (ideal gas law constant), 419 Potassium tartrate, 33 table, 809 Pressure gauges, 376, 377, 378 Radiant heat,71 table Pressure units, 378–380; converting Radiation. See Electromagnetic Potential difference, 600 lab, 601 between, 379 prob., 379–380, 380 radiation Power plants, coal-fired, 726 illus.; prob.; equivalent, 379 table Radiation detectors, 751 illus., 775 efficiency of, 731 table; nuclear, Priestly, Joseph, 574 lab 764 illus., 764–765 Princeton Review. See Standardized Radiation exposure, 776 Powers of ten. See Scientific notation Test Practice Radiation therapy, 770 illus. PP (polypropylene), 659 Private investigator,13 Radioactive dating, 756–757; Practice Problems, alkanes, formulas Products, 192; predicting mass of, Carbon-14 dating, 754–755, 757, and names of, 626–627 prob.; 415–416 prob.; Word Origin, 192 758 prob.; of forged art, 759 answers to, 853–862; Boyle’s law, Professional opportunities. See Radioactive decay, 747, 749–750; 389 prob.; Charles’s law, 393 Career Connection; People in alpha particles, 747; beta parti- prob.; converting pressure units, Chemistry cles, 749; gamma rays, 749–750; 381 prob.; electronegativity differ- Promethium, 295 modeling, 752–753 lab; nuclear ence between bonding atoms Propane, 33 table, 145 illus., 416, equations for, 747, 749–750, 750 (?EN), 312 prob.; food calories, 623, 638, 809 table prob. 724 prob.; formulas for binary Propene, 631 Radioactive isotopes, dating meth- ionic compounds, 158 prob.; for- Properties of matter, 4,5 illus.,6 ods using, 754–755, 756–757, mulas for polyatomic ions, 162 Prostratin, 146 758 prob.; half life of, 756, 756 prob.; half-life and rate of decay, Proteases, 222, 677 illus. table; modeling decay of, 758 prob.; heat of reaction, 721 Proteins, 670–673; denaturation, 752–753 lab; nuclear equations prob.; hydronium ion and 673; enzymes, 674–675 lab, 676; for, 746, 750–751 prob.; radia- hydroxide ion concentrations, 502 as fake fats, 685; hydrogen bond- tion released from, 747, 749–750 prob.; ideal gas law and, 420 ing and, 439; monomers of Radioactive wastes, 775, 778–779 prob.; ionic and net ionic equa- (amino acids), 670–671; role of Radioactivity, 746; detection of, 751, tions, 521 prob., 525 prob., 530 in human body, 670; structure 775 lab; discovery of, 744–746; prob.; molar mass, 412 prob., 413 of, 670–673 hazards of exposure to, 774–776, prob.; molar volume, 418 prob.; Protic, 485 illus. 776 table, 777, 778; nuclear equa- molarity, 463 prob., 464 prob., Protons, 62, 66, 230; discovery of, tions and, 746; radioactive dating 546 prob.; molecular compounds, 62; properties, 67 table and, 754–755, 756–757, 758 prob., naming, 181 prob.; nuclear equa- Proust, Joseph, 53–54 760; radioactive decay and, 747, tions, writing and balancing, 751 PS EPS, 659 749–750, 752–753 lab, 756–757, prob.; predicting the mass of Pure substances,15 758 prob.; radon and, 775 lab, reactants and products, 416 prob.; Putrescine, 645 777; waste disposal and, 778–779 supplemental problems PVC, 641, 659 Radioisotopes, Hershey and Chase’s (Appendix B), 809–838; tempera- Pyrite, 165 illus. experiments on DNA with, 772; ture conversions, 350 prob.; titra- medical applications of, 768–770; tion, 546 prob. nonmedical applications of, 771, Praseodymium, 294 773; release of radiation by, 747, Precipitation, chemical reactions Q 749–750; sources of, 773 and, 191, 215 Radio waves, 71, 72 illus. Precision, 793 Qualitative expression of composi- Radium, 265 Pressure, 344; converting units of, tion, 14,34 Radon, 132, 281, 775 lab, 777 379 prob., 379–380, 380–381 Quantitative expression of compo- Radon-testing kits, 775 lab prob.; gas pressure and volume sition, 14,34 Rain forests, medicines from, 146 and. See Boyle’s law; of gases, Quantities, 785 Rare earth metals. See Lanthanides 344; Haber process and, 216; Quantum theory of chemistry, 307 Ration heaters, flameless, 221 ideal gas law and, 419; measure- Quartz, 248 illus. Reactants, 192; limiting, 220; pre- ment of, 376, 377, 378; standard Quinine, 146 dicting mass of, 414–415 prob., atmosphere, 376; STP (standard 420 lab

Index 911 Index

Reaction capacity, metals and Roman numerals, in names of tran- molarity, 462–464 prob.; molari- valence electrons, 236–267 lab sition-element compounds, 164 ty from titration, 544 prob.; Reaction rates, 218–220, 222–223; table, 164–165 nuclear equations, writing and activation energy and, 218; cata- Rubber, cross-linking in, 658; vul- balancing, 750 prob.; number of lysts and, 222; concentration canized, 658 formula units in a sample of a and, 219–220; determining speed Rubbing alcohol (isopropyl alco- compound, 412 prob.; radioac- of, 218–219; inhibitors and, 223; hol), 140 illus., 358, 642 tive dating of fossils, 758 prob.; starch-iodine clock reaction, 220 Rubidium, 263 writing chemical equations, 200 lab; temperature and, 219 Rubidium-strontium dating, 755 prob. Recommended Dietary Allowance Rubies, 248, 249 Sapa, 271 (RDA), 128 Rust, 41 illus., 122 lab, 204 illus., Sapphire, 249 illus. Recycling, 55, 731; aluminum, 589 250, 555 illus., 557, 570 Satellites,70 illus., 725; conservation of matter Ruthenium, 292 Saturated fats, 630, 633 illus. and, 55; glass, 60; plastics, 659, Rutherford, Ernest, 64, 65, 230 Saturated fatty acids, 686 661 illus. Saturated hydrocarbons (alkanes), Redox reactions. See Oxidation- 623–626; isomers, 627–628; reduction reactions properties, 629; structural dia- Red phosphorus, 179, 274 S grams and names, 623–626, Reducing agent, 559, 562 626–627 prob. Reduction reactions, 556. See also s orbitals, 238 table, 239; predicting Saturated solutions, 458 Oxidation-reduction reactions; distribution in, 245 lab Scandium, 247 combining with oxidation half- s sublevels, 235, 238 Scanning probe microscope (SPM), reactions, 557–558; oxidizing Saccharin,5 illus. 240 and reducing agents and, 559, Safety guidelines, 839 Scanning tunneling microscope 562; Word Origin (reduction), Safety Handbook, 839–840 (STM), 10, 241 556 Safety symbols, 840 Scientific laws, 59 Reforming, 638 Salicylic acid, 32, 642 Scientific method,59 Respiration, 124, 574–575, 694, 696, Salt bridge, 602 illus., 604 Scientific models, 11 697 illus., 698; ATP and energy Salt (table salt). See Sodium chlo- Scientific notation, 795–798, storage and, 696; electron trans- ride 799–800 port chain, 698; glycolysis, 696; Salts, 516 Scintigraphy, 770 illus. photosynthesis and, 737 illus.; Samarium, 295 Scintillation counters, 751 illus. tricarboxylic acid cycle, 698 Sample Problems, atoms, number Scrap metal processing worker, 597 Retinal, 632 in a sample of an element, 408 Scurvy, 691 Reverse osmosis, 467 prob.; Boyle’s law, 388–389 prob.; Seaborgium, 102 illus. Reverse osmosis purification Charles’s law, 393 prob.; com- Seawater, floatation of icebergs on, plants, 465 bined gas law, 395–396 prob.; 26; as mixture, 18 illus. Reverse osmosis units, 468 converting pressure units, 379 Second period elements, 244, 246 Reversible reactions, 210–211, 214 prob., 380 prob.; food calories, table Rhodium, 292, 715 724 prob.; formula for a binary Selectively permeable membranes, Rhodopsin, 632 ionic compound, 158 prob.; for- 467 Ribonucleic acid. See RNA (ribonu- mula for a polyatomic ion, 161 Selenium, 276, 277; electron config- cleic acid) prob.; heat of reaction for com- uration, 99 illus.; as essential ele- Ribose, 680, 689 bustion, 720 prob.; ideal gas law ment, 128 RNA (ribonucleic acid), 273, 688, and, 419 prob.; ionic and net Semiconductors, 105, 111–113; 689, 690 ionic equations of strong diodes, 112–113; electrical con- Robotic arms, 109 acid/strong base reactions, 521 duction by, 111–112; gallium Rocket fuel, 566 prob.; ionic and net ionic equa- arsenide in, 274; n-type and p- Rockets, solid rocket booster tions of strong acid/weak base type, 112; properties of at room engines, 566 reactions, 525 prob.; ionic and temperature, 111; silicon in, 272; Rolling, 291 net ionic equations of weak Word Origin, 112 Roman Empire, lead poisoning and, acid/strong base reactions, 529 Shampoos, pH of, 501 271 prob.; mass of a number of Shape-memory metals, 108–109 moles of a compound, 413 prob.; Shielding effect, 304, 305 illus.

912 Index Index

Sievert (Sv), 776 Sodium carbonate, 33 table, 166, Solutions, 22–23. See also Aqueous Significant digits, 793–794 199, 809 table solutions; Colloids; alloys, 23, 23 Silica, 272 Sodium chloride,5 illus., 120–122, table; boiling-point elevation, Silicon, 105, 107, 270; doping, 111, 155; crystal structure of, 465; concentration, 458–459, 112 illus.; in Earth’s crust, 669 134–135; electrical conductivity, 460–461, 462 prob.; freeze-point illus.; as essential element, 128; 121; electrolysis of, 585, 587–588; depression, 465; of gases in liq- glass from, 272; uses of, 272; formation, 120–122, 133, 134 uids, 469; guidelines for, 851 valence electrons, 111 illus. table, 516 illus.; formula, 33 table; table; heat of, 460; identification Silicon chips, 113 illus. ionic bonding, 306, 308; mining, of, 456–457 lab; “like dissolves Silicon dioxide, 272, 347 illus. 121 illus.; properties, 121, 122; like”,453; molarity and, 460–461, Silk, 653 solubility of, 451, 452 illus., 459; 462–464 prob.; saturated, Silver, 23, 292; as coinage metal, 86, uses of, 33 table, 121 illus. 458–459; standard, 539; unsatu- 110, 292; conductivity, 313; elec- Sodium fluoride, 154, 279 rated, 458–459; volume when troplating, 593 illus.; symbol for, Sodium hydrogen carbonate, 143 mixed, 21 lab 27 table; tarnishing, 572 illus. Solvents, 23 Silver bromide, 30 illus., 279, 564, Sodium hydroxide, 809 table; as del- Soot, 470, 637 illus. 565 illus. iquescent substance, 166 illus.; Sørenson, S.P.L., 500 Silver nitrate, 200–201 prob. formula, 33 table; production by Sour taste, 519 Silverplate, 593 illus. electrolysis, 587–588; reaction Space shuttle, reaction of hydrogen Silver sulfide, 572 with acetic acid, 528, 529 illus.; and oxygen to fuel, 200 prob.; Simple sugars. See Sugars reaction with carbon dioxide, regulation of air quality in, 203, Single bonds, 629 illus. 199; reaction with HCl, 516 418 prob.; solid rocket booster Single-displacement reactions, 205, illus.; as strong base, 489, 498, engines, 566 205 lab, 206–207 lab, 208 table 498 table; uses, 33 table, 265 Specific heat, 445 table, 445–446 SI units, 785–787; base units, 785; Sodium hypochlorite, 194, 567–568 Spectator ions, 520 derived units, 785, 786 table; Sodium nitrate, 205 lab, 459 Spectrum. See also Electromagnetic English units and, 788; metric Sodium stearate, 160, 455 spectrum; Emission spectra; units and, 786, 788; prefixes for, Sodium sulfate, 456 Word Origin, 231 786–787, 787 table Soft water, 452 lab Speed of reaction, 218–219 Skawindski, William (chemist), Soil, adding lime to, 494 illus.;as Sphygmomanometer, 376 illus. 316–317 mixture, 18 illus. Spices, 18 illus. Skin care products, pH of, 501 Soil conservation technician, 213 Spinnerets, 653 Slag, 286, 567 illus. Solar energy, 728 SPM. See Scanning probe micro- Slime, creation of, 40 lab Solar stills, 171 scope (SPM) Smog, 495 Solar wind,73 Spontaneous reactions, 716–718; Smoke detectors, 748 Solder, 18 illus., 23 table predicting, 718 table;Word Snowflakes, 360, 441 illus. Solid aerosols, 470 Origin (spontaneous), 604 Soap scum, 160, 191 Solid rocket booster engines, 566 Stained-glass windows, 472 illus. Soaps, 455; production of, 455, 494, Solid rocket fuel, 566 Stainless steel, 23 table 496 Solids, 34–35, 340; kinetic model, Stalactites, 160, 524 Soda-lead glass, 346 345; melting, 364; properties, 340 Stalagmites, 160, 524 Sodium, 99, 263; as coinage metal, illus.; sublimation, 356, 375 lab Standard atmosphere (atm), 376 86; in Earth’s crust, 669 illus.; Sols, 470 Standardized Test Practice, 49, 83, from electrolysis, 585 illus., 586 Solubility, of carbonates, 482; of a 117, 151, 187, 227, 255, 299, 337, illus., 587–588; electron configu- gas in a liquid, 469; of ionic 369, 401, 433, 477, 513, 551, 581, ration, 245; as essential element, compounds, 451; “like dissolves 619, 665, 705, 741, 783 128; properties, 122, 123 illus.; like”,454; temperature and, Standard solutions, 539 reaction with chlorine, 133, 134 459–460 Standard temperature and pressure table, 264; reaction with water, Solubility product constants, 851 (STP), 395, 395–396 prob. 264; symbol for, 27 table table Starch, 655, 677, 681–682; as fat Sodium acetate, 531–532, 533 illus. Soluble, 215; Word Origin, 214 replacement, 685; reaction with Sodium azide, air bags and, 417 Soluble compounds, 215 iodine, 220 lab; structure, 655 Sodium bicarbonate, 143 illus. Solutes, 23 illus. Sodium bromide, 205 illus. Solution, heat of, 460 Starch-iodine clock reaction, 220 lab

Index 913 Index

States of matter, 34–35, 340–347. pressure (STP) Supersaturated solutions, 459 See also Gases; Liquids; Plasmas; Straight-chain hydrocarbons, 623 Supplemental Practice Problems, Solids; changes in. See Changes Straws, gas laws and, 388 lab 809–838 of state; periodic table trends, Strong acids, 498, 498 table Surface tension, 442, 443 lab 92–93 illus. Strong bases, 497–498, 498 table Sutliff, Caroline (plant-care special- Stationary phase, paper chromatog- Strontium, 265; reactivity, 266–267 ist), 212–213 raphy, 312 lab lab; uses, 268 Sweetness, 519, 683 Statue of Liberty, corrosion of, 570 Strontium hydroxide, 498 table Symbols, element, 27 table, 92–93 Steam, 127 illus., 436 Structural isomers, 628 illus. Stearic acid, 686 illus. Structural proteins, 670 Synthesis reactions, 203–204, 208 Steel, 23, 106, 282 illus., 288–291; Structure of matter,7 illus. table; recognizing, 206–207 lab; alloy steels, 290; carbon steels, Styrene-butadiene rubber, 660 Word Origin, 204 288 table, 289; classification, 288; Styrofoam, 36 illus. Synthetic aromas, 646 lab earliest known objects made of, Sublevels, 234–235 Synthetic chemicals,32 288; galvanized, 293, 555 illus., Sublimation, 356, 375 lab Synthetic elements, 102 593–594; production, 287; shap- Submicroscopic matter,7,10 Synthetic polymers, 649; comparing ing (working), 290–291 Subscripts, balancing chemical with natural, 653 lab; differenti- Steelmaking, 287, 288–291; alloy equations and, 199; formulas for ating between synthetic and nat- steels, 290, 290 table; carbon binary ionic compounds, ural, 650–652 lab steels, 288 table, 288–289; shap- 155–156 Synthetic rubber, 658 illus., 660 ing of steel, 290–291 Substances, 15, 24–25, 27–31; com- Sterling silver, 23 table pounds. See Compounds; ele- Steroids, 686–687; Word Origin, 687 ments. See Elements Stierle, Andrea,32 Substituted hydrocarbons, T Stierle, Donald,32 640–647. See also specific groups; STM. See Scanning tunneling micro- production of, 646–647 Tables, making and using, 804 scope (STM) Substrates, 676 Table salt. See Sodium chloride Stoichiometry, 405–409; atoms in a Sucrose,5 illus., 33 table, 145 illus., Table sugar. See Sucrose sample of an element, 408 prob.; 680, 809 table; models of, 10; sol- Tandem accelerator mass spec- Avogadro’s constant and, ubility, 453, 454; structure, 10 trometer (TAMS), 754–755 405–406; chemical formulas illus.; sweetness of, 519 Tandem Cascade Accelerator from, 427–428; formula units in Sugar of lead, 271 (TCA), 773 illus. a sample of a compound, 412 Sugars,6 illus., 36 table, 680–682. Tarnish, 572; Word Origin, 572 prob.; ideal gas law and, 419, 419 See also Carbohydrates Taste, 519, 683 prob.; mass of a number of Sulfate ion, 159 illus. Taste buds, 519 moles of a compound, 413 prob.; Sulfonates, 455 Taxol, 31, 32, 421 mass of a product, predicting, Sulfur, 276; electron configuration, Tayag, Fe (cosmetic bench chemist), 415–416 prob.; mass of a reac- 99 illus., 233 illus.;in human 490–491 tant, predicting, 414–415 prob.; body, 669 illus.; mining of by Technetium, 102 mass percents, 422–423 lab, Frasch process, 276, 276 illus.; Technetium-99m, 770 illus., 773 426–427; molar mass of a com- oxidation-reduction (redox) illus. pound, 409, 412–413 prob.; reactions, 563; uses, 277 Teflon, 648–649 molar mass of an element, 407, Sulfur dioxide, 495 Tellurium, 91, 94, 276, 277 408 prob.; molar volumes and, Sulfur oxides, acid rain and, Temperature, 348–349, 789; chemi- 416, 418 prob., 420 lab;molarity 493–494, 495 cal reaction rate and, 219; gas from titration, 541, 542–543 lab, Sulfuric acid, 277, 809 table; in lead- pressure and, 358, 374–375; gas 544, 544 prob.; percent yield and, acid batteries, 273, 611 illus., 613; volume and. See Charles’s law; 421; theoretical yield and actual manufacturing, 424–425, 484; Haber process (synthesis of yield, 421; Word Origin, 406 steelmaking and, 486 illus.;as ammonia) and, 216; ideal gas law Stomach, acidity of and antacids, strong acid, 498 table; uses, 33 and, 419; kinetic energy and, 535–536, 538 table, 424, 484 348–350, 362–363 lab; measure- Stone Age, 567 Super HILAC Accelerator, 102 illus. ment of, 789; protein denatura- Stoney, George,61 Superplastic steel, 288, 288 table, tion and, 674, 674–675 lab; solu- STP. See Standard temperature and 289 bility and, 459–460; standard

914 Index Index

temperature and pressure (STP), Toxic wastes, disposal of radioac- Units of measurement, 785–791 395 tive, 778–779; electrolysis of, 598 Unsaturated fats, 630, 630 illus. Temperature scales, 349–350, 789; Tracers, radioisotope, Hershey and Unsaturated fatty acids, 686 illus. converting between, 350, 350 Chase’s experiments on DNA Unsaturated hydrocarbons, 625, prob. with, 772; medical applications 636; alkenes, 629–631, 633; Terbium, 295 of, 768 illus.; tracking of pollu- alkynes, 633, 633 table, 636; Tetrachloromethane, 640 tants by, 771 aromatic hydrocarbons, Tetrafluoroethene, 648–649 trans isomer configuration, 631; 636–637; food oils and, 630 lab Tetrahedral molecular geometry, Word Origin (trans), 631 Unsaturated solutions, 458 319 illus., 322 illus., 323 illus. Transistors, 112–113 Uracil (U), 689, 690 Textiles, polymers in, 650–652 lab Transition elements, 94, 103–104, Uranium, 295; alpha decay, 746 Thallium, 269, 270 106. See also Actinides; illus., 750; Becquerel’s radioactiv- Theoretical yield, 421 Lanthanides; atomic size trends, ity experiment, 745 illus. Theories, 59 285; as coinage metals, 292; elec- Uranium-238, 747 Thermal pollution, 469 illus. tron configuration, 247, 250, 285 Uranium experiment, Becquerel’s, Thermoluminescence (TL) dating, lab; formulas for compounds 745–746 755 containing, 164–165, 165 prob.; Uranium-lead dating, 759 Thermometers, 283 illus. gemstones and, 248–249; ionic Urea, 669 Thermoplastics, 660 compounds of, 162, 164–165; Thermosetting, 660 multiple oxidation states, 283; Thin-layer chromatography, naming of compounds having, 326–327. See also 164, 164 table; oxidation number V Chromatography of, 162, 165; properties, 282–283, Thiobacillus ferroxidans, 727 285–287; uses, 286–287, 292–293 Vacuum tubes, discovery of elec- Third period elements, electron Transmutation, 749 trons and, 61 configuration, 245–246, 246 Triads, Dobereiner’s, 87–88 Valence electrons, 78–79, 98; atomic table Triangular pyramid molecular collisions and, 130; atomic size Thomson, J. J., 61–62, 230 geometry, 322 illus. and, 259; electron configurations Thomson’s atomic model, 63 illus., Tricarboxylic acid cycle, 697 illus., 698 and, 243–247; metal-acid reac- 230, 231 illus. Trichloromethane, 640 tions and, 236–267 lab; in metal- Thornton, John, 12–13 Triglycerides, 684 loids, 105, 106; in metals, 105, Three Mile Island, 765 illus. Triple-beam balances, 790 106; in nonmetals, 105, 106; Thymine (T), 689, 690 Triple bonds, 325, 629 illus., 633 periodic table trends, 231, 233, Thymol blue, 545 Triprotic acids, 485 illus. 243–247, 250; semiconductors Thyroid gland, iodine and, 278, 769 Tritium (T), 766 and, 111 illus.; sharing of, 303 illus. Try at Home Labs, 863–873 illus.; shielding effect, 304, 305 Thyroxin, 641 Tungsten, chemical symbols, 27 illus.; sublevels and, 234–235 Tin, 27 table, 270, 272, 570 illus. table; as light bulb filament, 284; Vanadium, electron configuration, Tin(II) fluoride, 279 melting point, 283, 284 247 illus.; melting point, 283 Tire-pressure gauges, 377, 378 Tungsten steel, 290 table Vanilla flavor, 644 Titanic, cleaning of by electrolysis, Twenty Thousand Leagues Under van Meegeren, Hans, 759 595 the Sea, Jules Verne’s,26 Vaporization, 356–358, 360; of dif- Titanium, 247 illus. Tyndall effect, 472, 473 illus. ferent liquids, 357 lab;as Titration, 539–541, 544; concentra- endothermic process, 446; heat tion from, 541, 542–543 lab, 544, of, 361 544 prob., 546 prob.; how to per- Vapor pressure, 357–358, 360 form, 540; indicators and, 540; U Vegetable fats, 630 lab, 633 illus. standard solutions and, 539 Vegetable oils, 687 TNT, 104 illus. Ultrahigh-carbon steel (UHCS), Verne, Jules,26 Tokamak Fusion Reactor, 767 illus. 288 table, 289 Vinegar, 485, 642. See also Acetic Tooth decay, prevention of by fluo- Ultraviolet waves,72 acid; reaction of bones with, 171 ridation, 279, 280 Unbranched hydrocarbons, 623 lab; reaction with baking soda, Toricelli barometer, 376 Uncertainty principle, Heisenberg’s, 41 illus., 192–193, 195, 420 lab; Torricelli, Evangelista, 376 238 reaction with egg shells, 483

Index 915 Index

illus.; reaction with strong bases, forces in, 438 illus., 438–439; product, 192; reduction, 556; 528; titration of, 542–543 lab; modeling shape of, 318–319; semiconductor, 112; soluble, 214; Word Origin, 528 osmosis and, 467; polar nature of, spectrum, 231; spontaneous, 604; Visible light, 71, 72 311, 330–331; properties, 41 illus., steroid, 687; stoichiometry, 406; Vision, vitamin A and, 632 126–127, 332 table, 436–437, 467 synthesis, 204; tarnish, 572; trans-, Vitamin A, 632, 691 table; regulation of Earth’s tem- 631; vinegar, 528; vitamin, 690 Vitamin C, 307, 498 illus., 576 illus., perature by, 446; soft, 452 lab;as Work,42 691 solvent, 23, 449, 450–454; specific Vitamin D, 691 heat of, 445; states of, 34, 126, 127 Vitamin E, 576 illus. illus., 436, 440–441; surface ten- Vitamins, 690–691; coenzymes, 691; sion, 442, 443 lab; vapor pressure X water- vs. fat-soluble, 691; Word of, 357 Origin, 690 Water softeners, 160 X rays, 72 illus., 745, 776, 778 illus. Volatile substances, 35, 353, 357 Water-soluble vitamins, 691 Xenon, 131, 132 illus., 281 Volta,Alessandro, 601 Water-treatment plants, 447 Xenon hexafluoride, 195, 416 prob. Voltage, 601 Watson, James, 690 Xerography, 277 Voltaic cells, 602–605 Wavelength, 71 illus., 233 Voltmeters, 604–605 Waves, 70–71 Volume, combined gas law and, Waxes, 682. See also Lipids 394–395, 395–396 prob.; gas pres- Weak acids, 498 illus., 499; reaction Y sure and. See Boyle’s law; gas pres- with strong bases, 528–539, sure and temperature and. See 529–530 prob.; reaction with Yaw ning, 533 Charles’s law; ideal gas law and, weak bases, 530 Yeasts, fermentation by, 698, 699 lab 419; law of combining gas vol- Weak bases, 500; reaction with Yellow dye #5, chromatography of, umes and, 396–398; measurement strong acids, 522–523, 525 prob., 328–329 lab of, 789; relationship between vol- 525–526; reaction with weak Ytterbium, 107 ume and mass of a gas, 375 lab acids, 530 Yttrium, 294 Vulcanizing, 658 Weather balloons, 386, 387 Weather predictors, 166 lab Weight, 4, 42, 790–791 White light, spectrum of, 71 illus. Z W White phosphorus, 179, 274 Willow bark, salicylic acid from, 32 Zinc, 293; alloy of copper and zinc, Wastewater operator (Alice Wind energy, 729 25 lab; in carbon-zinc dry cells, Arellano), 448–449 Wire, manufacture of copper, 608–609; electron configuration, Water,5 illus., 126–127, 436–450. See 590–592 247; as essential element, 128; also Aqueous solutions; Ice; Wöhler, Friedrich, 669 oxidation-reduction (redox) Steam; bond angle distortion, 319; Wood, specific heat, 445 table reactions and, 555–558, 559 changes in state of, 35; condensa- Wootz steel, 288 Zinc electroplating, 593, 595 tion, 356, 446; density, 36 table, Word equations, 193, 200–201 prob. Zinc iodide, electrolysis and, 437, 440–441; dissolution of into Word Origin, acid, 485; actinide, 295; 136–137 lab hydrogen and oxygen, 41–42, aerobic, 694; allotrope, 175; atom, Zinc oxide, 555–558 711–712, 712 lab; distilled, 452 53; aurora, 73; barometer, 376; Zircon, 292 lab; electrolysis, 41 illus.;electron binary, 155; bioluminescent, 575; Zirconium, 292 sharing in, 138–139; evaporation, capillarity, 443; chlorophyll, 734; 446; formation of, 127 illus., 200 cis-, 631; colloid, 472; combus- prob., 218, 709 illus., 711 illus.; tion, 209, 713; corrosion, 595; dis- formula, 33 table, 809 table; tillation, 638; electronegative, 310; freeze-melting, 35 illus., 441 illus.; empirical, 428; energy, 711; fis- hard, 160, 452 lab; heat of fusion, sion, 762; fusion, 766; halogen, 361; heat of vaporization, 364; 278; heterogeneous, 23; homoge- hydrates, 165–166, 166 lab, 168; neous, 24; orbitals, 247; osmosis, hydrogen bonding in, 439, 440, 467; periodic, 99; petroleum, 637; 441, 444, 454; intermolecular photograph, 564; polymer, 649;

916 Index Photo Credits

Cover (l)Peter Steiner/The Stock Market, (r)William Westheimer/The 81 David McGlynn/FPG International; 84 Jerry Lodriguss/Photo Stock Market. Researchers; 85 (l)Richard Megna/Fundamental Photographs, (r)Matt Chemistry and Society Ken Fisher/Tony Stone Images. Meadows; 86 SuperStock; 87 Chip Clark; 88 Stamp from the collection of Prof. C.M. Lang, photograph by Gary Shulfer, University of WI Stevens vi (t)Don Mason/The Stock Market, (c)Bill Horsman/Stock Boston, Point; 89 (t)Charles D. Winters, (b)Matt Meadows; 90 Matt Meadows; 91 (b)Gary Yeowell/Tony Stone Images; vii (t)Phyllis Picardi/Stock Boston, Matt Meadows 94 Tim Courlas; 95 Doug Martin; 96 (l)Matt Meadows, (b)Tim Courlas; viii (t)Jean-Loup Charnet/Science Photo Library/Photo (r)Gianni Giansanti/Sygma; 98 Phyllis Picardi/Stock Boston; 101 Matt Researchers, (c)Zefa/The Stock Market, (b)Tony Freeman/PhotoEdit; ix Meadows; 102 Lawrence Berkeley Laboratories; 103 (l)Chris Bjornberg/ (t)Stephen Frisch/Stock Boston, (c)Matt Meadows, (b)Will Crocker/The Photo Researchers, (r)Nubar Alexanian/Stock Boston; 104 Jim Zipp/ Image Bank; x (t)David R. Frazier Photolibrary, (c)Pete Salautos/The Photo Researchers; 106 (tl)Matt Meadows, (tr)National Gallery of Art, Stock Market, (b)Mark Steinmetz; xi (tl)Matt Meadows, (tr)Bob Mul- Washington, D.C., (cl)KS Studios, (cr)Tom Pantages, (bl)Aaron Haupt, lenix, (b)Dennis Kunkel/PhotoTake NYC; xii (t)Kunio Owaki/The Stock (br)Richard Megna/Fundamental Photographs; 107 (tl)Charlie Wester- Market, (b)Mark Steinmetz; xiii (t)John Sims/Tony Stone Images, (b)Stan man/Gamma Liaison, (tc)Ed Wheeler/The Stock Market, (tr)Aaron Osolinski/FPG International; xiv (t)John Durhan/Science Photo Library/ Haupt, (cl)Paul Silverman/Fundamental Photographs, (c)Dennis O’Clair/ Photo Researchers, (b)Jean-Perrin/CNRI/Science Photo Library/Photo Tony Stone Images, (cr)Charles D. Winters, (b)courtesy Texas Instru- Researchers; xv Skip Comer; xvi Zefa/The Stock Market; xvii, xviii Matt ments Inc.; 108 (b)Tom Pantages, (others)Matt Meadows; 109 (t)Nitinol Meadows; xix (t)Al Francekevich/The Stock Market, (bl)David R. Frazier Medical Technologies, (b)Oaktree Automation, Inc.; 110 (l)Matt Mead- Photolibrary, (br)Doug Martin; xx (t)Somatogen, Inc., (b)Phillip Hayson/ ows, (r)Gregg Hadel/Tony Stone Images; 112 Mark Steinmetz; 113 Photo Researchers; xxi (clockwise from top)Jose Luis Banus-March/FPG (t)Uniphoto, (bl)The Bettmann Archive, (br)Jose L. Pelaez/The Stock International, Mark Tuschman, Phillip DeManczuk, Mark Tuschman, Market; 114 Stamp from the collection of Prof. C.M. Lang, photograph by Otis Hairston, Daniel Schaefer, Brian Buckley, Ted Corwin/Oman Studio, Gary Shulfer, University of WI Stevens Point; 117 Scala/Art Resource, NY; Mark Tuschman; xxii (t)Tom Stewart/The Stock Market, (c)Art Resource, 118-119 Tom Pantages; 119 (r)Matt Meadows; 120 Matt Meadows; 121 NY, (b)Scala/Art Resource, NY; 1 (t)NASA, (b)Kim Westerskov/Ford Sci- (tl)Co Rentmeester/The Image Bank, (c)Craig Newbauer/Peter Arnold, entific Films/Earth Scenes; 2 Nawrocki Stock Photo; 3 Space Telescope Inc., (others)Matt Meadows; 122 Dick Durrance II/The Stock Market; Science Institute/NASA/Science Photo Library/Photo Researchers; 4 123 (l)Richard Megna/Fundamental Photographs, (r)Chip Clark; 124 Geoff Butler; 5 (tl)Mark Steinmetz, (tc)Douglas Mesney/The Stock Mar- Matt Meadows; 125 (tl)Walter Kidde Company, (tr)R. Folwell/Science ket, (tr)Doug Martin, (c)Matt Meadows, (bl)Matt Meadows, (br)Matt Photo Library/Photo Researchers, (b)Dennis M. Gottlieb Studio Inc./The Meadows; 6 (tl)John Henley/The Stock Market, (tc)John Foster/Mastefile, Stock Market; 127 (t)Joyce Photographics/Photo Researchers, (b)Christo- (bl bc br)Chip Clark, (others)Matt Meadows; 7 Roger Ressmeyer/ pher Swann/Peter Arnold, Inc.; 128 Mark Steinmetz; 129 Charles D. Win- Corbis; 8 The Bettmann Archive; 9 Matt Meadows; 10 (tl)Philippe ters; 131 (t)Peter Steiner/The Stock Market, (b)Osborne Photographic Plailly/Science Photo Library/Photo Researchers, (tr)courtesy Digital Illustration; 134 Manfred Kage/Peter Arnold, Inc.; 135 (t)Matt Meadows, Instrument, Inc.; 11 (t)Dirck Halstead/Gamma Liaison, (b)Bill Horsman/ (b)John Gillmore/The Stock Market; 137, 140 Matt Meadows; 141 (t)The Stock Boston; 12 Mark Tuschman; 13 Mark Tuschman; 14 Doug Martin; Bettmann Archive, (b)NASA/Peter Arnold, Inc.; 143 Matt Meadows; 145 15 Mark Steinmetz; 16 Matt Meadows; 18 (t)Color /FPG International, (tl br)Matt Meadows, (tr)Spencer Swanger/Tom Stack & Associates, (cl)William S. Nawrocki/Nawrock Stock Photo, (cr)Cindy Charles/ (bl)Richard Megna/Fundamental Photographs; 146 Dr. Paul Alan Cox; PhotoEdit, (bl)Virginia Mason Medical/Custom Medical Stock Photo, 150 Matt Meadows; 152 Tony Stone Images; 153 Porterfield-Chickering/ (br)Geoff Butler; 19 Geoff Butler; 20 Matt Meadows; 21 (t)Matt Mead- Photo Researchers; 154 Mark Burnett; 157 Runk/Shoenberger from Grant ows, (bl)Mark Steinmetz, (br)Craig Kramer; 22 Matt Meadows; Heilman; 160 Matt Meadows; 162 (l, c)Matt Meadows, (r)David Aronson/ 23 (t c)Mark Steinmetz, (b)Matt Meadows; 24 (l)Don Mason/The Stock Stock Boston; 163 Art Resource, NY; 164 Matt Meadows; 165 Tim Market, (r)Tino Hammid; 25 (t)Matt Meadows, (bl)Charles D. Winters, Courlas; 166 Matt Meadows; 167 (l)Joseph Schuyler/Stock Boston, (br)Mark Steinmetz; 26 Tom Stewart/The Stock Market; 27 (t)Matt (r)Wendy Shattil & Bob Rozinski/Tom Stack & Associates; 168 Mark Bur- Meadows, (b)Comstock; 28-29 from “The Periodic Systems of the Ele- nett; 169 Matt Meadows; 170 (t)Mark Burnett, (b)Aaron Haupt; 171 Matt ments,” author P. Menzel. C. by Ernst Klett Schulbuch Verlag GmbH, Meadows/Peter Arnold, Inc.; 173 Matt Meadows; 174 (l)Irving Geis/Sci- Stuttgart, Germany. Charts available from Science Import, P.O. Box 465, ence Source/Photo Researchers, (r)Gerard Vandystadt/Photo Researchers; Sillery, Quebec, G1T 2R8; 30 (t)Mark Burnett, (bl)John Can- 175 Matt Meadows; 176 (t)Matt Meadows, (b)M. Kirk/Peter Arnold, Inc; calosi/Stock Boston, (br)Charles D. Winters; 31 (l)Matt Meadows, 177 (t)Phillip Hayson/Photo Researchers, (b)Mark Burnett; 178 Tony (r)Doug Martin; 32 Tom & Pat Leeson/Photo Researchers; 33 (t)Aaron Stone Images; 179 Tim Courlas; 180 Chip Clark; 182 Matt Meadows; 185 Haupt, (c b)Mark Steinmetz; 34 David R. Frazier Photolibrary; 35 Terr y D.L. Aubrey/The Stock Market; 188, 189 Matt Meadows; 190 (t)Unipho- Qing/FPG International; 36 Geoff Butler; 37 Matt Meadows; 38 (l)Mark to, (b)Matt Meadows; 191 (t cl)Matt Meadows, (cr)Aaron Haupt, Steinmetz, (r)Matt Meadows; 39 Mark Burnett; 40 Matt Meadows; 41 (b)Chad Slattery/Tony Stone Images; 192 (l)Diamond International, (tl)Matt Meadows, (tr)Richard Megna/Fundamental Photographs, (r)Bob Daemmrich/Uniphoto; 193, 194, 195 Matt Meadows; 196 Super- (bl)Stephen Frisch/Stock Boston, (br)Matt Meadows; 42 Ed Lallo/ Stock; 197 Matt Meadows; 198 (l)Chip Clark, (r)Jean-Loup Charmet/Sci- Gamma Liaison; 43 Matt Meadows; 44 Craig Hammell/The Stock Market; ence Photo Library/Photo Researchers; 199 Ray Massey/Tony Stone 46 Mark Steinmetz; 47 Mark Steinmetz; 50 Dave Nagel/Gamma Liaison; Images; 202 (t)Mark Steinmetz, (bl)Daniel J. Cox/Tony Stone Images, 51 Stephen Marks/The Image Bank; 52 Scala/Art Resource, NY; 53 (br)Pat O’Hara/Tony Stone Images; 203 NASA/Mark Marten/Photo (l)Charles D. Winter, (c r)Matt Meadows; 54 (l)Charles D. Winters, Researchers; 204 (t)Michael Cooper/Stock Boston, (b)Charles D. Winters; (r)John Cancalosi/Stock Boston; 56, 57 Matt Meadows; 58 file photo; 60 205 (b)E.R. Degginger/Color-Pic, (others)Matt Meadows; 207, 208 Matt (t)James L. Amos/Peter Arnold, Inc., (b)Skip Comer; 61 Skip Comer; 63 Meadows; 209 Ron Dorsey/Stock Boston; 210 (t)Mark Steinmetz, (b)Matt Matt Meadows; 67 Stephen Simpson/FPG International; 69 NASA/Sci- Meadows; 211 S.L. Alexander/Uniphoto; 212, 213 Ted Cor w in/Oman ence Photo Library/Photo Researchers; 71 (t)PhotoEdit, (b)Gary Yeowell/ Studio; 214 Matt Meadows; 215 (t)Comer/Gerard, (b)Matt Meadows; 216 Tony Stone Images; 72 Richard Megna/Fundamental Photographs; 73 (t)Science & Society Picture Library, (b)Tom Mareschal/The Image Bank; Pekka Parviainen/Science Photo Library/Photo Researchers; 74 Rich 217 Mitch Kezar/Tony Stone Images; 218 James H. Robinson; 219 (t)Matt Treptow/Photo Researchers; 76 (t)Peter Gridley/FPG International, Meadows, (b)Matt Meadows; 220 Matt Meadows; 221 U.S. Army Natick (b)Zambelli Internationale Fireworks; 77 Ted Rice; 78 Morton & White; Research & Development Center; 222 Matt Meadows; 223 Elaine Shay;

Photo Credits 917 Photo Credits

225 Robert Becker/Custom Medical Stock Photo; 228 Dan McCoy from Baglo/The Vancouver Sun; 391 Matt Meadows; 394 Vince Streano/Tony Rainbow; 229 Stephen Frisch/Stock Boston; 230 Ken Whitmore/Tony Stone Images; 397 Yoav Levy/PhotoTake NYC; 401 Bob Abraham/The Stone Images; 232 The Bettmann Archive; 234 Matt Meadows; 240 (t)The Stock Market; 402 Matt Meadows, (inset)Obremski/The Image Bank; 403 Kobal Collection, (c)IBM Research/Peter Arnold, Inc., (b)Michael Green- Matt Meadows; 404 John Urban/Stock Boston; 405 Matt Meadows; 406 lar; 241 (l)IBM Research, (r)IBM Research/Peter Arnold, Inc.; 243 Matt Mark Burnett; 407–410 Matt Meadows; 411 (t, c)courtesy Rosenthal Art Meadows; 246 Martha Cooper/Peter Arnold, Inc.; 248 (t)Bill Tronca/Tom Slides, (b)Lakeview Museum of Arts & Sciences, Richard K. Meyer Col- Stack & Associates, (bl)Zefa/The Stock Market, (br)Michael Dalton/Fun- lection; 414 Pete Salautos/The Stock Market; 417 Joe Caputo/Gamma damental Photographs; 249 Michael Dalton/Fundamental Photographs; Liaison; 419 Jim Cambon/Tony Stone Images; 420 Matt Meadows; 421 250 Bob Daemmrich/Stock Boston; 253 Tony Freeman/PhotoEdit; 254 Frank Cezus/Tony Stone Images; 422 Matt Meadows; 429 Richard Megna/ Matt Meadows; 256 George Hunter/Tony Stone Images; 257 (l)NASA, Fundamental Photos; 430 Mark Steinmetz; 434 Jeanne Drake/Tony Stone (lc)Al Francekevich/The Stock Market, (rc)Stefan Merken/Tony Stone Images; 435 Kevin Kelley/Tony Stone Images; 436 Tim Lynch/Stock Images, (r)Crown Studios; 258, 262 Matt Meadows; 264 (tl)Yoav Levy/ Boston; 437 (l)Ryan-Beyer/Tony Stone Images, (r)Eric Neurath/Stock PhotoTake NYC, (tr)Chip Clark, (b)Stephen Frisch/Stock Boston; 265 Boston; 441 (l)Matt Meadows, (r)Larry West/FPG International; 442 (tl)William Rivelli/The Image Bank, (tr)Charles Gupton/Stock Boston, NASA; 443 (t)Geoff Butler, (b)Custom Medical Stock Photo; 444 Richard (b)Matt Meadows; 267 Matt Meadows; 268 (t)Joe Towers/The Stock Mar- Megna/Fundamental Photographs; 445 (t)Aaron Haupt, (b)Robert Reiff/ ket, (c)Richard Megna/Fundamental Photographs, (b)Mark Burnett; 269 FPG International; 446 (t)E. Nagele/FPG International, (b)Bob Daemm- Will McIntyre/Photo Researchers; 270 (t)Glencoe photo, (c)David Park- rich/The Image Works; 448, 449 Daniel Schaefer; 450 Matt Meadows; 451 er/Science Photo Library/Photo Researchers, (b)Matt Meadows; 271 Geoff Butler; 452 Matt Meadows; 454 Matt Meadows; 455 Mark Stein- Scala/Art Resource, NY; 272 (t)H.P. Merten/The Stock Market, (c)Matt metz; 457 Matt Meadows; 458 Mark Steinmetz; 459 Geoff Butler; 460 Meadows, (b)Ron Chapple/FPG International; 273 Mark Steinmetz; 274 Mark Burnett; 461 Matt Meadows; 465 Richard Kavlin/Tony Stone (tl)Matt Meadows, (tr)Grant Heilman, (c)Tim Courlas, (b)GTE Labs/ Images; 466 StudiOhio; 469 (t)Stephen Frink/The Stock Market, (bl)Ken Peter Arnold, Inc.; 275 (t)Matt Meadows, (b)Matt Meadows; 276 Farrell Frick, (br)Vince McGuire; 470 (tl)David R. Frazier Photolibrary, (tr)Mark Grehan/Photo Researchers; 277 (t)Yoav Levy/PhotoTake NYC, (cl)John Steinmetz, (bl)PhotoTake NYC, (br)Skip Comer; 471 (t)Peter Johansky/ Maher/The Stock Market, (cr)Matt Meadows, (b)SuperStock; 278 FPG International, (bl)Giraudon/Art Resource, NY, (br)KS Studios; 472 (l)Barry Slaven/Medical Images, Inc., (r)Matt Meadows; 279 (t)Skip Larry Hamill; 473 (l)Kip & Pat Peticolas/Fundamental Photographs, Comer, (cl)Yoav Levy/PhotoTake NYC, (cr)Gary Hansen/PhotoTake (r)George Disario/The Stock Market; 476 StudiOhio; 478 Animals Ani- NYC, (b)Matt Meadows; 280 Jerome Tisne/Tony Stone Images; 281 Glen- mals/Richard Shiell; 479 Richard Hutchings/PhotoEdit; 480 Mark Stein- coe photo; 282 (t)Matt Meadows, (b)Jim Cummins/FPG International; metz; 481, 482 Matt Meadows; 483 (tl)Matt Meadows, (tr)Matt Meadows, 283 (l)Stephen Frisch/Stock Boston, (r)Tom Pantages; 284 Matt Mead- (b)Martin Rogers/Stock Boston; 484 (t)Julie Houck/Stock Boston, ows; 285 Keith Ledbury/Uniphoto; 286 (t)Richard Megna/Fundamental (b)Chuck Holmes; 486 Tony Stone Images; 487 Charles Gupton/Stock Photographs, (c)Gerard Fritz/FPG International, (b)Dawson Jones, Inc./ Boston; 488, 489 Matt Meadows; 490, 491 Mark Tuschman; 492 Matt The Stock Market; 287 (t)Alan Schein/The Stock Market, (cl)H.P.Merten/ Meadows; 494 (t)Kent Knudson/Uniphoto, (b)Stephen R. Swinburne/ The Stock Market, (cr)David Joel/Tony Stone Images, (b)B. Roland/Image Stock Boston; 495 (t)Shaun Van Steyn/Uniphoto, (b)Ray Pfortner/Peter Works; 288 The Robert Elgood Collection, London; 289 (t)Terry Farmer/ Arnold, Inc.; 496 The Bettmann Archive; 497 Mark Burnett; 500 The Tony Stone Images, (bl)Robert Sherbow/Uniphoto, (br)Matt Meadows; Bettmann Archive; 501 Mark Steinmetz; 502 (l)Phil Degginger/Color-Pic, 290 (t)Matt Meadows, (b)Ken Kay/Fundamental Photographs; 291 (l)Jim (r)Matt Meadows; 503 (t)Mark Steinmetz, (bl)Glencoe photo, (br)Tony Pickerell/The Image Works, (r)Aaron Haupt; 293 (t)Matt Meadows, Freeman/PhotoEdit; 504 Matt Meadows; 507 Bob Daemmrich/Tony (b)Mark E. Gibson/The Stock Market; 294 Stephen Simpson/FPG Inter- Stone Images; 512 Mark Burnett; 514 Paul Silverman/Fundamental Pho- national; 300 Matt Meadows, (inset)IBM Research; 301 Matt Meadows; tographs; 515 Doug Martin; 516 (t)Mark Steinmetz, (b)Matt Meadows; 302 Steven L. Alexander/Uniphoto; 307 Joe McNally/Sygma; 310 Mark 517, 518 Matt Meadows; 520 Bob Daemmrich/Stock Boston; 522 Matt Steinmetz; 312 Matt Meadows; 313 (l)Matt Meadows, (r)Mark Burnett; Meadows; 524 Jeff Gnass/The Stock Market; 526 Matt Meadows; 528 315 Richard Pasley/Stock Boston; 316, 317 Brian Buckley; 318 Matt Charles D. Winters; 529, 530 Matt Meadows; 531 James Prince/Photo Meadows; 319–324 Matt Meadows; 325 (t)Matt Meadows, (bl)Frank Site- Researchers; 532 Mark Steinmetz; 533 Matt Meadows; 535 Mark Burnett; man/Stock Boston, (br)Matt Meadows; 326 (c)Matt Meadows, (bl)Mark 536 (t)CNRI/Science Photo Library/Photo Researchers, (b)Mark Stein- Steinmetz, (br)Sinclair Stammers/Science Photo Library/Photo metz; 537 Somatogen, Inc.; 538 Mark Steinmetz; 539–545 Matt Meadows; Researchers, (others)Matt Meadows; 327 Perkin-Elmer Corporation; 328 547 Dennis Kunkel/PhotoTake NYC; 548 Mark Steinmetz; 549 John Ter- Matt Meadows; 329 Matt Meadows; 330 (l)Stan Osolinski/Tony Stone ence Turner/FPG International; 550 Matt Meadows; 552 Charles Krebs/ Images, (r)Zefa-N.Y. Gold/The Stock Market; 331 Kristen Brochmann/ The Stock Market; 553 Hickson-Bender; 554 Kuhn, Inc./The Image Bank; Fundamental Photographs; 333 (tl)Matt Meadows, (tc)Matt Meadows, 555 (l)Mark Burnett, (r)Michael Dalton/Fundamental Photographs; 557 (tr)Matt Meadows, (b)Charles D. Winters; 338 SuperStock; 339 Bill Auth/ Mark Burnett; 558 (l)Ann Ronan Picture Library/Image Select, (r)Niko- Uniphoto; 340 (t)Peter Menzel/Stock Boston, (cl)Tino Hammid, (cr)Will lay Zurek/FPG International; 559, 560, 561 Matt Meadows; 563 Vulcain/ Crocker/The Image Bank, (b)James L. Amos; 341 (t)Mark Burnett, (bl, Explorer/Photo Researchers; 564 Gernsheim Collection, Harry Ransom br)Matt Meadows; 343, 344 Matt Meadows; 345 Doug Martin; 346 James Humanities Research Center, University of TX Austin; 565, (t)Mark Stein- L. Amos; 348 Uniphoto; 351 Matt Meadows; 353 Mark Steinmetz; 354 metz, (others)Geoff Butler; 566 NASA; 567 Bryan F. Peterson/The Stock Joseph Nettis/Stock Boston; 355 Doug Martin; 356, 357 Matt Meadows; Market; 568 (t)Matt Meadows, (b)C.J. Allen/Stock Boston; 569 (t)Stacy 359 Eric Leigh Simmons/The Image Bank; 360, 362 Matt Meadows; 365 Pick/Stock Boston, (b)Doug Martin; 570 (l)Kunio Owaki/The Stock Mar- (l)Doug Martin, (r)David R. Frazier; 367 Diane Schiumo/Fundamental ket, (r)Bill Bachman/Photo Researchers; 571 Zefa/The Stock Market; 572 Photographs; 368 Matt Meadows; 370 David R. Frazier Photolibrary; 371 Tim Courlas; 573 PhotoEdit; 574 (l)Telegraph Colour Library/FPG Inter- Mark Steinmetz; 372 Joseph A. Dichello Jr.; 373, 375 Matt Meadows; 376 national, (r)Hickson Associates; 575 (t)Leonard Lee Rue III/Earth Scenes, Michael Krasowitz/FPG International; 377 David R. Frazier Photolibrary; (bl)Matt Meadows, (br)Keith Kent/Science Photo Library/Photo 378 John Lemker/Earth Scenes; 381 (l)Matt Meadows, (r)Mark Burnett; Researchers; 576 Geoff Butler; 578 Matt Meadows; 579 Matt Meadows; 382 Matt Meadows; 384 Matt Meadows; 385 The Bettmann Archive; 386 581 Matt Meadows; 582 Stephen Dalton/Photo Researchers; 583 Van Myrleen Ferguson Cate/PhotoEdit; 387 Kim Westerskov/Ford Scientific Bucher/Photo Researchers; 584 Simon Fraser/Royal Victoria Infirmary, Films/Earth Scenes; 388 Bob Mullenix; 389 Mark Steinmetz; 390 Glenn Newcastle/Science Photo Library/Photo Researchers; 587 Mark Stein-

918 Photo Credits Photo Credits

metz; 588 ; 589 (l)ALCOA, (r)M.E. Warren/Photo Researchers; Doug Martin; 751 (tl)David R. Frazier Photolibrary, (tr)D.C. Lowe/FPG 590 (t)Rick Raymond/Nawrocki Stock Photo, (b)courtesy Kennecott International, (b)David R. Frazier Photolibrary; 752 Geoff Butler; 753 Utah Copper Corporation; 591 (t)John Zoiner/International Stock, Skip Comer; 754 (t)Paul Hanny/Gamma Liaison, (bl)Michael Collier/ (c)Donald L. Miller/International Stock, (b)Peter Arnold, Inc.; 592 Stock Boston, (br)James King-Holmes/Science Photo Library/Photo (t)Pasquale Caprile/International Stock, (bl)Tom Pantages, (br)Mark Researchers; 755 (t)James King-Holmes/Science Photo Library/Photo Steinmetz; 593 (t)SuperStock, (b)Rick Gayle/The Stock Market; 594 Dr. Researchers, (b)Smithsonian Institution; 757 (t)Scott Warren, (b)Oregon Jeremy Burgess/Science Photo Library/Photo Researchers; 595 Capital Historical Society, negative number OrHi 93073; 758 Luis Rosendo/FPG Features/The Image Works; 596, 597 Phillip DeManczuk; 598 Matt International; 759 Museum Boymans-van Beuningen, Rotterdam; 760 Meadows; 599 Jerry Wachter/Photo Researchers; 600 Matt Meadows; 602 (l)Stephen M. Awramik/University of California/Biological Photo Service, Otto Rogge/The Stock Market; 603, 604 Matt Meadows; 605 Mark Stein- (r)Institute of Human Origins; 761 E. Nagele/FPG International; 762 The metz; 609 StudiOhio; 610 Dept. of Clinical Radiology, Salisbury District Bettmann Archive; 763 Geoff Butler; 765 (t)Ted Clutter/Photo Hospital/Science Photo Library/Photo Researchers; 611 Coco McCoy Researchers, (b)Sipa Press; 767 General Atomics; 768 Motion Picture and from Rainbow; 612 StudiOhio; 613 Russell D. Curtis/Photo Researchers; Television Photo Archive; 769 (t)Michael Tamborrino/The Stock Market, 617 Richard Laird/FPG International; 620 Ed Taylor/FPG International; (c)Matt Meadows, (inset)Chris Priest/Science Photo Library/Photo 621 Mark Steinmetz; 622 Anne Sager/Photo Researchers; 627 Matt Mead- Researchers, (b)Howard Sochurek/Medichrome/Stock Shop; 770 (t)Jean- ows; 630 (t)Morton & White, (b)John Lund/PhotoTake NYC; 633 (l)Matt Perrin/CNRI/Science Photo Library/Photo Researchers, (c)Dr. Bill Meadows, (r)Matt Meadows; 634, 635 Mark Tuschman; 637 (l)Saussier- Hornof, School of Veterinary Medicine, UC Davis, (b)Yoav Levy/Photo- Vanderstockt/Gamma Liaison, (r)Mark A. Leman/Tony Stone Images; 639 Take NYC; 773 (t)Peticolas/Megna/Fundamental Photographs, (cl)Adam (l)Richard W. Brooks/Photo Researchers, (r)Mike Abrahams/Tony Stone Hart/Science Photo Library/Photo Researchers, (cr)DuPont Pharma, Images; 640 Susanne Buckler/Gamma Liaison; 641 (l)Bob Daemmrich/ (b)Science Research Labs, Inc.; 775 Mark Steinmetz; 776 J. Taposchaner/ Stock Boston, (r)Mark Steinmetz; 642 (t)Daniel A. Erickson, (c)Matt FPG International; 777 Geoff Butler; 778 (l)William Morris/Photo Meadows, (bl)Roger K. Burnard, (br)Matt Meadows; 643 Matt Meadows; Researchers, (r)Ted Rice; 779 US DOE; 781 Francois Gohier/Photo 644 (tl, c)Mark Steinmetz, (tr)The Bettmann Archive, (b)Matt Meadows; Researchers; 782 Richard Megna/Fundamental Photographs; 788 (t)Mark 645 (l)Owen Franken/Stock Boston, (r)John Sims/Tony Stone Images; Burnett, (b)Doug Martin; 789 Mark Burnett; 790 Matt Meadows; 791 646 Alvin E. Staffan; 647 Spencer Grant/Photo Researchers; 648 NASA; Mark Burnett; 800 Mark Steinmetz; 802 Glencoe photo; 804 Doug Mar- 649 (t)Stephen Frisch/Stock Boston, (b)Robert J. Hack/International tin; 811 Mary Van de Ven/Pacific Stock; 821, 822 Matt Meadows. Sports Photo Agency; 651 Matt Meadows; 653 (t)Matt Meadows, (bl)courtesy Amoco Fabric and Fibers Company, (br)Nuridsany et Peren- nou/Photo Researchers; 654 Glencoe photo; 655 Charles D. Winters/ Photo Researchers; 656 (l)Chris Springman/The Stock Market, (r)Mark Steinmetz; 657 Vince Streano/Tony Stone Images; 658 (l)Richard Choy/ Peter Arnold, Inc., (r)Doug Martin; 660 Matt Meadows; 663 Mak-1; 666 Giraudon/Art Resource, NY; 667 Michael P. Gadomski/Photo Researchers; 668 Craig Hammell/The Stock Market; 669 (l)Tom Stack & Associates, (r)Matt Meadows; 670 (l)Stan Osolinski/FPG International, (r)Zeva Delbaum/Peter Arnold, Inc.; 671 Matt Meadows; 673 (l)Peter Johanski/FPG International, (r)Stan Osolinski/FPG International; 674 Matt Meadows; 675 Mark Steinmetz; 676 Matt Meadows; 677 (l)Mark Burnett, (r)Matt Meadows; 678, 679 Otis Hairston; 680 David M. Dennis/ Tom Stack & Associates; 681 Matt Meadows; 682 (t)Robert Finken/Photo Researchers, (c)Doug Martin, (b)Sheryl McNee/FPG International; 684 (l)Hans Pfletschinger/Peter Arnold, Inc., (c)Lou Jones, (r)Matt Meadows; 685 J. Barry O’Rourke/The Stock Market; 686 (t)Victor Scocozza/FPG International, (b)Tony Craddock/Tony Stone Images; 687 Biophoto Asso- ciates/Science Source/Photo Researchers; 688 Matt Meadows; 690 Richard Megna/Fundamental Photos; 691 Art Wolfe/Tony Stone Images; 692 DiMaggio/Kalish/The Stock Market; 694 Walter Iooss/The Image Bank; 695 courtesy D.E. Nicholson, University of Leeds, U.K., and Sigma Chemical Co.; 698 David R. Frazier Photolibrary; 699 (t)Matt Meadows, (b)Kevin Schafer; 700 Bob Daemmrich/Stock Boston; 701 Mark Stein- metz; 702 Dr. Jeremy Burgess/Photo Researchers; 706 Doug Martin; 707 KS Studios; 708 Doug Martin; 710, 712, 713 Matt Meadows; 714 (t)Matt Meadows, (b)David Sailors/The Stock Market; 715 courtesy Corning Inc.; 716 (l)Roy Morsch/The Stock Market, (r)KS Studios; 719 Doug Martin; 721, 725 KS Studios; 726 Grant Heilman/Grant Heilman Photography, Inc.; 727 Newmont Metallurgical Services; 728 Tommaso Guicciardini/ Science Photo Library/Photo Researchers; 729 (t)Larry Lee/Westlight, (b)Telegraph Colour Library/FPG International; 730 Inga Spence/Tom Stack & Associates; 731 (l)Brownie Harris/The Stock Market, (r)Rich Brommer; 732 Jeremy Walker/Tony Stone Images; 733 (t)David R. Frazier Photolibrary/Photo Researchers, (b)John Durham/Science Photo Library/Photo Researchers; 737 AP/Wide World Photos; 740 Doug Mar- tin; 742 Eric Lessing/Art Resource, NY, (inset)Scala/Art Resource, NY; 743 Mark Steinmetz; 744 (t)The Bettmann Archive, (bl br)Mark Burnett; 748

Photo Credits 919