Epoxide Syntheses and Ring-Opening Reactions in Drug Development

Total Page:16

File Type:pdf, Size:1020Kb

Epoxide Syntheses and Ring-Opening Reactions in Drug Development catalysts Review Epoxide Syntheses and Ring-Opening Reactions in Drug Development Fotini Moschona, Ioanna Savvopoulou, Maria Tsitopoulou, Despoina Tataraki and Gerasimos Rassias * Department of Chemistry, University of Patras, 26504 Patra, Greece; [email protected] (F.M.); [email protected] (I.S.); [email protected] (M.T.); [email protected] (D.T.) * Correspondence: [email protected]; Tel.: +30-2610997912 Received: 23 August 2020; Accepted: 23 September 2020; Published: 27 September 2020 Abstract: This review concentrates on success stories from the synthesis of approved medicines and drug candidates using epoxide chemistry in the development of robust and efficient syntheses at large scale. The focus is on those parts of each synthesis related to the substrate-controlled/diastereoselective and catalytic asymmetric synthesis of epoxide intermediates and their subsequent ring-opening reactions with various nucleophiles. These are described in the form of case studies of high profile pharmaceuticals spanning a diverse range of indications and molecular scaffolds such as heterocycles, terpenes, steroids, peptidomimetics, alkaloids and main stream small molecules. Representative examples include, but are not limited to the antihypertensive diltiazem, the antidepressant reboxetine, the HIV protease inhibitors atazanavir and indinavir, efinaconazole and related triazole antifungals, tasimelteon for sleep disorders, the anticancer agent carfilzomib, the anticoagulant rivaroxaban the antibiotic linezolid and the antiviral oseltamivir. Emphasis is given on aspects of catalytic asymmetric epoxidation employing metals with chiral ligands particularly with the Sharpless and Jacobsen–Katsuki methods as well as organocatalysts such as the chiral ketones of Shi and Yang, Pages’s chiral iminium salts and typical chiral phase transfer agents. Keywords: epoxides; drug development; catalytic asymmetric epoxidation; organocatalysis; process development and manufacturing routes; Sharpless and Jacobsen–Katsuki asymmetric epoxidation; chiral ketones/dioxiranes; iminium/oxaziridinium salts; epoxide ring opening 1. Introduction Epoxides are versatile electrophiles that support the stereospecific formation of ring-opened products with a wide array of nucleophiles. The implications of this reactivity in the context of drug design and desired biologic action as well as manifestation of adverse effects has been reviewed previously [1–4] although these are best exemplified by the plethora of natural products and the 14 approved drugs containing the epoxide functionality [5,6]. In the context of organic synthesis, the ring strain-induced electrophilicity of epoxides renders them excellent reactive intermediates for constructing in stereoselective/specific manner key bonds in larger and more complex molecules. From an academic perspective, general aspects of epoxide synthesis and ring-opening reactions spanning various levels of organic chemistry research have been reviewed extensively [7–9]. What is lesser known is how pivotal has been the successful management of epoxide chemistry on scale leading to robust, cost-effective and safe manufacturing processes. Emphasis is also given in the way certain intermediates are handled due to safety, reactivity, inappropriate state (oils, low melting point solids) or physical properties (hygroscopicity, poor filtration characteristics) or even time constraints. For example, in several cases a “telescoped” process is implemented which is a process term to describe a reaction that despite work up, washes, filtration of unwanted materials (inorganics, charcoal), Catalysts 2020, 10, 1117; doi:10.3390/catal10101117 www.mdpi.com/journal/catalysts Catalysts 2020, 10, x FOR PEER REVIEW 2 of 69 Catalysts 2020, 10, x FOR PEER REVIEW 2 of 69 term to describe a reaction that despite work up, washes, filtration of unwanted materials (inorganics,term to describe charcoal), a reaction etc., avoids that any despite isolation work and up,a solution washes, of thefiltration intermediate of unwanted is carried materials forward Catalysts 2020, 10, 1117 2 of 65 in(inorganics, the next step, charcoal), not necessarily etc., avoids in any the isolationsame reactor. and a Thesolution more of common the intermediate term “one-pot” is carried implies forward no processing/workin the next step, notup andnecessarily the reagents in the for same the nextreactor. step The are addedmore common sequentially term in “one-pot” the same vessel.implies The no etc.,focusprocessing/work avoids of this any review isolationup and is thethe and reagentsimplementation a solution for the of next theof st intermediateepoxideep are addedchemistry is sequentially carried from forward a inprocess the insame thedevelopment vessel. next step, The notperspectivefocus necessarily of this and review in is the presented sameis the reactor. implementation through The morededicated common of epoxidediscussions term chemistry “one-pot” to high impliesfrom profile a no processapproved processing development drugs/work and up andclinicalperspective the candidates. reagents and foris presented the next step through are added dedicated sequentially discussions in thesame to high vessel. profile The focusapproved of this drugs review and is theclinical implementation candidates. of epoxide chemistry from a process development perspective and is presented through1.1. LY459477—Development dedicated discussions of a to Selective high profile Route approved via a Desymmetrization drugs and clinical Process candidates. of a Meso-Epoxide 1.1. LY459477—DevelopmentLY459477 (1) is a potent of a(EC Selective50 1 nm) Route orthosteric via a Desymmetrization agonist for rodent Process and of a humanMeso-Epoxide mGlu2 and 1.1. LY459477—Development of a Selective Route via a Desymmetrization Process of a Meso-Epoxide mGlu3LY459477 receptors. (1 )Development is a potent (EC of an50 1appropriate nm) orthosteric large-scale agonist synthesis for rodent of LY459477 and human was mGlu2required and to supportmGlu3LY459477 receptors. clinical (1 )trials isDevelopment a potent for schizophrenia, (EC 50of 1an nm) appropriate orthosteric generalized la agonistrge-scale anxiety for synthesis rodentdisorder and of and LY459477 human bipolar mGlu2 was disorders required and mGlu3 [10]. to receptors.Moreover,support clinical Developmentthe supply trials forroute of schizophrenia, an for appropriate LY459477 generalized large-scaleserved as synthesisan anxiety excellent disorder of LY459477platform and wasfor bipolar the required development disorders to support [10]. of clinicalsubsequentMoreover, trials the structurally for supply schizophrenia, route related for mGlu2/3 generalizedLY459477 agonists served anxiety as as drug disorderan excellent candidates and bipolarplatform for neuropsychiatric disorders for the development [10]. Moreover,disorders of the[11].subsequent supply routestructurally for LY459477 related servedmGlu2/3 as agonists an excellent as drug platform candidates for the for development neuropsychiatric of subsequent disorders structurally[11]. The chemotype related mGlu2 of LY459477/3 agonists was asbased drug on candidates a cyclopentene for neuropsychiatric scaffold first introduced disorders [by11 ].Hodgson and Thescientists chemotypechemotype at GlaxoSmithKline ofof LY459477 LY459477 was was (then based based Glaxo on on a cyclopentene aWe cyclopllcome)entene [12] sca scaffoldff whereold first firstthe introduced keyintroduced intermediate, by Hodgson by Hodgson chiral and scientistsalcoholand scientists 2,at was GlaxoSmithKline obtainedat GlaxoSmithKline from (thendesymmetrization Glaxo(then Wellcome)Glaxo ofWe thellcome) [12 meso] where [12]epoxide the where key 3 (Scheme intermediate,the key 1).intermediate, chiral alcohol chiral2, wasalcohol obtained 2, was from obtained desymmetrization from desymmetrization of the meso of epoxide the meso3 (Schemeepoxide 13). (Scheme 1). Scheme 1. Retrosynthesis of LY459477 into the key alcohol and epoxide intermediates. Scheme 1. Retrosynthesis of LY459477 into the key alcohol and epoxide intermediates. Scheme 1. Retrosynthesis of LY459477 into the key alcohol and epoxide intermediates. A team of process chemists from Eli Lilly developed the original synthesis further in order to A team of process chemists from Eli Lilly developed the original synthesis further in order to deliver deliverA teamcyclopentene of process precursor chemists 5 onfrom a multikilogram Eli Lilly developed scale (Scheme the original 2). The synthesis synthesis further comprises in order of six to cyclopentene precursor 5 on a multikilogram scale (Scheme2). The synthesis comprises of six discreet discreetdeliver cyclopentene steps but proceeds precursor through 5 on aseveral multikilogram telescoped scale stages (Scheme with 2).only The two synthesis isolable comprises intermediates; of six steps but proceeds through several telescoped stages with only two isolable intermediates; monoacid 4 monoaciddiscreet steps 4 and but proceedscyclopentene through 5. Peracid-mediated several telescoped epoxidation stages with ofonly 5 twodelivers isolable the intermediates;oxygen atom and cyclopentene 5. Peracid-mediated epoxidation of 5 delivers the oxygen atom preferentially on the preferentiallymonoacid 4 and on the cyclopentene same face of 5 the. Peracid-mediated cyclopentene as theepoxidation NHBoc subs of tituent5 delivers as result the ofoxygen a hydrogen atom same face of the cyclopentene as the NHBoc substituent as result of a hydrogen bonding interaction
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Cyclopropane Anaesthesia by JOHN BOYD, M.D., D.A
    Cyclopropane Anaesthesia By JOHN BOYD, M.D., D.A. TLHIS paper is based on my experience of one thousand cases of cyclopropane anaesthesia personally conducted by me since October, 1938, both in hospital and in private. But before discussing these it might be convenient for me to mention here something about the drug itself. HISTORY. Cyclopropane was first isolated in Germany in 1882 by Freund, who also demonstrated its chemical structure, C3H6. He did not, however, describe its anaesthetic properties. Following its discovery it seems to have been forgotten until 1928, when Henderson and Lucas of Toronto, in investigating contaminants of propylene, another anesthetic with undesirable side-effects, and itself'an isomer of cyclopropane, found that the supposed cause of the cardiac disturbances was in reality a better and less toxic anaesthetic. They demonstrated its anaesthetic properties first on animals, and then, before releasing it to the medical profession for clinical trial, they anaesthetised each other, and determined the quantities necessary for administration to man. In 1933 the first clinical trials of cyclopropane were made by Waters and his associates of the University of Wisconsin. In October of that year Waters presented a preliminary report on its anaesthetic properties in man,1 confirming the findings of Henderson and Lucas. Rowbotham introduced it to England first in 1935, and since then its use has spread rapidly throughout the country. PREPARATION. Cyclopropane is prepared commercially by the reduction of trimethylene bromide in the presence of metallic zinc in ethyl alcohol. It is also made commercially from propane in natural gas by progressive thermal chlorination.
    [Show full text]
  • The Oxidation of Secondary Alcohols by Dimethyldioxirane: Re-Examination of Kinetic Isotope Effects
    Heterocycl. Commun., Vol. 16(4-6), pp. 217–220, 2010 • Copyright © by Walter de Gruyter • Berlin • New York. DOI 10.1515/HC.2010.016 Preliminary Communication The oxidation of secondary alcohols by dimethyldioxirane: re-examination of kinetic isotope effects A lfons L. Baumstark *, P edro C. Vasquez, Mark 1991 ; Denmark and Wu , 1998 ; Frohn et al. , 1998 ) or in an Cunningham a and Pamela M. Leggett-Robinson b isolated solution (Murray and Jeyaraman , 1985 ; Baumstark and McCloskey , 1987 ). The epoxidation of alkenes and het- Department of Chemistry , Center for Biotech and Drug eroatom oxidation by isolated solutions of 1 in acetone have Design, Georgia State University, Atlanta, Georgia been extensively investigated (Murray and Jeyaraman , 1985 ; 30302-4098 , USA Baumstark and McCloskey , 1987 ; Baumstark and Vasquez , * Corresponding author 1988 ; Winkeljohn et al. , 2004 , 2007 ). Dioxiranes can also e-mail: [email protected] insert oxygen into unactivated CH bonds of alkanes (Murray et al. , 1986 ). However, this important reaction generally requires a dioxirane more reactive than dimethyldioxirane to Abstract be of utility (Kuck et al. , 1994 ; D ’ Accolti et al., 2003 ). The oxidation of secondary alcohols by dimethyldioxirane, 1 , to The kinetic isotope effects for the oxidation of a series of ketones can be achieved in high yield under mild conditions deuterated isopropanols and α -trideuteromethyl benzyl alco- and with convenient reaction times (Kovac and Baumstark , hol by dimethyldioxirane ( 1 ) to the corresponding ketones 1994 ; Cunningham et al. , 1998; Baumstark, 1999 ). Two were determined in dried acetone at 23 ° C. A primary kinetic mechanistic extremes have been proposed for secondary alco- isotope effect (PKIE) of 5.2 for the oxidation of isopropyl- hol oxidation by 1 : a) concerted insertion (Mello et al.
    [Show full text]
  • Comparative Evaluation of Isavuconazonium Sulfate
    Van Matre et al. Ann Clin Microbiol Antimicrob (2019) 18:13 https://doi.org/10.1186/s12941-019-0311-3 Annals of Clinical Microbiology and Antimicrobials RESEARCH Open Access Comparative evaluation of isavuconazonium sulfate, voriconazole, and posaconazole for the management of invasive fungal infections in an academic medical center Edward T. Van Matre1 , Shelby L. Evans2, Scott W. Mueller3, Robert MacLaren3, Douglas N. Fish3 and Tyree H. Kiser3,4* Abstract Background: Invasive fungal infections are a major cause of morbidity and mortality. Newer antifungals may provide similar efcacy with improved safety compared to older more established treatments. This study aimed to compare clinically relevant safety and efcacy outcomes in real world patients treated with isavuconazole, voriconazole, or posaconazole. Methods: This single center retrospective matched cohort study evaluated adults between January 2015 and Decem- ber 2017. The primary outcome was a composite safety analysis of antifungal related QTc prolongation, elevated liver function tests (> 5 times ULN), or any documented adverse drug event. Key secondary outcomes included: individual safety events, 30-day readmissions, magnitude of drug interactions with immunosuppressive therapy, and overall cost. Results: A total of 100 patients were included: 34 patients in the voriconazole group and 33 patients within each of the isavuconazole and posaconazole groups. The composite safety outcome occurred in 40% of the total cohort and was diferent between isavuconazole (24.2%), voriconazole (55.9%), and posaconazole (39.4%; p 0.028). Change in QTc (p < 0.01) and magnitude of immunosuppression dose reduction (p 0.029) were diferent between= the three groups. No diferences in mortality, length of stay, readmission, or infection= recurrence were observed between groups (p > 0.05 for all).
    [Show full text]
  • Unnamed Document
    Mutations M287L and Q266I in the Glycine Receptor ␣1 Subunit Change Sensitivity to Volatile Anesthetics in Oocytes and Neurons, but Not the Minimal Alveolar Concentration in Knockin Mice Cecilia M. Borghese, Ph.D.,* Wei Xiong, Ph.D.,† S. Irene Oh, B.S.,‡ Angel Ho, B.S.,§ S. John Mihic, Ph.D.,ʈ Li Zhang, M.D.,# David M. Lovinger, Ph.D.,** Gregg E. Homanics, Ph.D.,†† Edmond I. Eger 2nd, M.D.,‡‡ R. Adron Harris, Ph.D.§§ ABSTRACT What We Already Know about This Topic • Inhibitory spinal glycine receptor function is enhanced by vol- Background: Volatile anesthetics (VAs) alter the function of atile anesthetics, making this a leading candidate for their key central nervous system proteins but it is not clear which, immobilizing effect if any, of these targets mediates the immobility produced by • Point mutations in the ␣1 subunit of glycine receptors have been identified that increase or decrease receptor potentiation VAs in the face of noxious stimulation. A leading candidate is by volatile anesthetics the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal glycine receptors with strychnine af- fects the minimal alveolar concentration (an anesthetic What This Article Tells Us That Is New EC50) in proportion to the degree of enhancement. • Mice harboring specific mutations in their glycine receptors Methods: We produced single amino acid mutations into that increased or decreased potentiation by volatile anesthetic in vitro did not have significantly altered changes in anesthetic the glycine receptor ␣1 subunit that increased (M287L, third potency in vivo transmembrane region) or decreased (Q266I, second trans- • These findings indicate that this glycine receptor does not me- membrane region) sensitivity to isoflurane in recombinant diate anesthetic immobility, and that other targets must be receptors, and introduced such receptors into mice.
    [Show full text]
  • New Methods for the Synthesis of Heterocyclic Compounds*
    Pure Appl. Chem., Vol. 76, No. 3, pp. 603–613, 2004. © 2004 IUPAC New methods for the synthesis of heterocyclic compounds* Aldo Caiazzo1, Shadi Dalili1, Christine Picard2, Mikio Sasaki1, Tung Siu2, and Andrei K. Yudin1,‡ 1Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada; 2Ylektra, Inc., 100 University Ave., 10th Floor, South Tower, Toronto, Ontario M5J 1V6, Canada Abstract: Due to frequent occurrence of nitrogen-containing groups among the biologically active compounds, chemoselective functionalization of organic molecules with nitrogen-con- taining functional groups is an important area of organic synthesis. We have proposed and implemented a new strategy toward design of nitrogen-transfer reactions on inert electrode surfaces with a particular focus on the generation and trapping of highly reactive nitrogen- transfer agents. A wide range of structurally dissimilar olefins can be readily transformed into the corresponding aziridines. The resulting aziridines are precursors to a range of cata- lysts via nucleophilic ring-opening with diaryl- and dialkyl phosphines. Another strategy ex- plored in the context of oxidative nitrogen transfer is cycloamination of olefins using NH aziridines. INTRODUCTION The transformations of organic compounds belong to one of the following two broad categories: car- bon–carbon bond-forming reactions and redox processes. Over the years, remarkable progress has been achieved in design and applications of novel metal-based complexes in oxidation chemistry. The metal center of such a catalyst is surrounded by a ligand, which resembles and emulates the function of the enzyme active site. This strategy is known to adequately address the issues of regio-, chemo-, and stereoselectivity in a number of synthetic transformations.
    [Show full text]
  • Recent Advances in Titanium Radical Redox Catalysis
    JOCSynopsis Cite This: J. Org. Chem. 2019, 84, 14369−14380 pubs.acs.org/joc Recent Advances in Titanium Radical Redox Catalysis Terry McCallum, Xiangyu Wu, and Song Lin* Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States ABSTRACT: New catalytic strategies that leverage single-electron redox events have provided chemists with useful tools for solving synthetic problems. In this context, Ti offers opportunities that are complementary to late transition metals for reaction discovery. Following foundational work on epoxide reductive functionalization, recent methodological advances have significantly expanded the repertoire of Ti radical chemistry. This Synopsis summarizes recent developments in the burgeoning area of Ti radical catalysis with a focus on innovative catalytic strategies such as radical redox-relay and dual catalysis. 1. INTRODUCTION a green chemistry perspective, the abundance and low toxicity of Ti make its complexes highly attractive as reagents and Radical-based chemistry has long been a cornerstone of 5 1 catalysts in organic synthesis. synthetic organic chemistry. The high reactivity of organic IV/III radicals has made possible myriad new reactions that cannot be A classic example of Ti -mediated reactivity is the reductive ring opening of epoxides. This process preferentially readily achieved using two-electron chemistry. However, the − high reactivity of organic radicals is a double-edged sword, as cleaves and functionalizes the more substituted C O bond, the selectivity of these fleeting intermediates can be difficult to providing complementary regioselectivity to Lewis acid control in the presence of multiple chemotypes. In addition, promoted epoxide reactions. The synthetic value of Ti redox catalysis has been highlighted by their many uses in total catalyst-controlled regio- and stereoselective reactions involv- 6−10 ing free-radical intermediates remain limited,2 and the synthesis (Scheme 1).
    [Show full text]
  • (Schizotrypanum) Cruzi in Dog Hosts Paulo Marcos Da Matta Guedes,1 Julio A
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Nov. 2004, p. 4286–4292 Vol. 48, No. 11 0066-4804/04/$08.00ϩ0 DOI: 10.1128/AAC.48.11.4286–4292.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Activity of the New Triazole Derivative Albaconazole against Trypanosoma (Schizotrypanum) cruzi in Dog Hosts Paulo Marcos da Matta Guedes,1 Julio A. Urbina,2 Marta de Lana,3 Luis C. C. Afonso,1 Vanja M. Veloso,1 Washington L. Tafuri,1 George L. L. Machado-Coelho,4 Egler Chiari,5 and Maria Terezinha Bahia1* Departamento de Cieˆncias Biolo´gicas,1 Departamento de Ana´lises Clínicas,3 and Departamento de Farma´cia,4 Universidade Federal de Ouro Preto, Ouro Preto, and Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte,5 Minas Gerais, Brazil, and Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela2 Received 25 March 2004/Returned for modification 8 June 2004/Accepted 20 July 2004 Albaconazole is an experimental triazole derivative with potent and broad-spectrum antifungal activity and a remarkably long half-life in dogs, monkeys, and humans. In the present work, we investigated the in vivo activity of this compound against two strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi, the causative agent of Chagas’ disease, using dogs as hosts. The T. cruzi strains used in the study were previously characterized (murine model) as susceptible (strain Berenice-78) and partially resistant (strain Y) to the drugs currently in clinical use, nifurtimox and benznidazole. Our results demonstrated that albaconazole is very effective in suppressing the proliferation of the parasite and preventing the death of infected animals.
    [Show full text]
  • Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates
    Molecules 2008, 13, 1303-1311 manuscripts; DOI: 10.3390/molecules13061303 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.org/molecules Communication Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates Luis R. Domingo, Salvador Gil, Margarita Parra* and José Segura Department of Organic Chemistry, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain. Fax +34(9)63543831; E-mails: [email protected]; [email protected]; [email protected] * Author to whom correspondence should be addressed; E-mail: [email protected] Received: 29 May 2008; in revised form: 5 June 2008 / Accepted: 6 June 2008 / Published: 9 June 2008 Abstract: Addition of carboxylic acid dianions appears to be a potential alternative to the use of aluminium enolates for nucleophilic ring opening of epoxides. These conditions require the use of a sub-stoichiometric amount of amine (10% mol) for dianion generation and the previous activation of the epoxide with LiCl. Yields are good, with high regioselectivity, but the use of styrene oxide led, unexpectedly, to a mixture resulting from the attack on both the primary and secondary carbon atoms. Generally, a low diastereoselectivity is seen on attack at the primary center, however only one diastereoisomer was obtained from attack to the secondary carbon of the styrene oxide. Keywords: Lactones, lithium chloride, nucleophilic addition, regioselectivity, diastereoselectivity. Introduction Epoxides have been recognized among the most versatile compounds in organic synthesis, not only as final products [1] but as key intermediates for further manipulations. Accordingly, new synthetic developments are continuously being published [2]. Due to its high ring strain (around 27 Kcal/mol) its ring-opening, particularly with carbon-based nucleophiles, is a highly valuable synthetic strategy Molecules 2008, 13 1304 [3].
    [Show full text]
  • Reactions of Benzene & Its Derivatives
    Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of
    [Show full text]
  • Common Derm Conditions and Treatments
    4/10/17 Classes of Dermatologic Medications What is that?! Common Dermatologic Conditions and ● Topical Immune Suppressants ● Immune Suppressants How to Treat Them ● Vitamin D Derivatives ● Antibiotics, Antivirals, Antiparasitic Matthew Fox, MD ● Retinoids ● Antimalarials Assistant Professor, Division of Dermatology ● Biologic Agents Dell Medical School, University of Texas at Austin Director of Dermatologic Surgery, Seton Healthcare Family ● Chemotherapeutic agents Learning Objectives Approach to Dermatologic Conditions • Know the clinical subtypes of acne *Know the mechanism and recommended dosing of topical retinoids, oral antibiotics and oral retinoids in the management of acne Acne • Understand the clinical presentation cutaneous dermatophyte infection Infectious diseases of the Skin *Know the classes and recommended dosing of antifungal treatments • Recognize the clinical manifestations of dermatitis Eczema *Know the relative potencies, side effects and indications of topical steroids Psoriasis • Describe the classic clinical findings for psoriasis *Know the mechanism of action and side effects of systemic antipsoriatic medications Sun Damage / Actinic Keratoses • Know the pertinent history and physical exam findings associated with a diagnosis of skin cancer, including the ABCDEs of melanoma Fundamentals Words to the wise… • All medications have side effects If you advise the patients of side effects ahead of time, you are informing the • Always consider drug interactions, patient. including with food and supplements If you did not tell the patient about a known • Always consider pregnancy and lactation side effect until after they experience status that side effect, it is an excuse 1 4/10/17 Reference: Approach to Dermatologic Conditions • Wolverton SE, ed. Acne Comprehensive Infectious diseases of the Skin Dermatologic Drug Eczema nd Therapy, 2 Ed.
    [Show full text]
  • Therapeutic Class Overview Antifungals, Topical
    Therapeutic Class Overview Antifungals, Topical INTRODUCTION The topical antifungals are available in multiple dosage forms and are indicated for a number of fungal infections and related conditions. In general, these agents are Food and Drug Administration (FDA)-approved for the treatment of cutaneous candidiasis, onychomycosis, seborrheic dermatitis, tinea corporis, tinea cruris, tinea pedis, and tinea versicolor (Clinical Pharmacology 2018). The antifungals may be further classified into the following categories based upon their chemical structures: allylamines (naftifine, terbinafine [only available over the counter (OTC)]), azoles (clotrimazole, econazole, efinaconazole, ketoconazole, luliconazole, miconazole, oxiconazole, sertaconazole, sulconazole), benzylamines (butenafine), hydroxypyridones (ciclopirox), oxaborole (tavaborole), polyenes (nystatin), thiocarbamates (tolnaftate [no FDA-approved formulations]), and miscellaneous (undecylenic acid [no FDA-approved formulations]) (Micromedex 2018). The topical antifungals are available as single entity and/or combination products. Two combination products, nystatin/triamcinolone and Lotrisone (clotrimazole/betamethasone), contain an antifungal and a corticosteroid preparation. The corticosteroid helps to decrease inflammation and indirectly hasten healing time. The other combination product, Vusion (miconazole/zinc oxide/white petrolatum), contains an antifungal and zinc oxide. Zinc oxide acts as a skin protectant and mild astringent with weak antiseptic properties and helps to
    [Show full text]