Guideline for Using Cryptographic Standards in the Federal Government

Total Page:16

File Type:pdf, Size:1020Kb

Guideline for Using Cryptographic Standards in the Federal Government Withdrawn NIST Technical Series Publication Warning Notice The attached publication has been withdrawn (archived), and is provided solely for historical purposes. It may have been superseded by another publication (indicated below). Withdrawn Publication Series/Number NIST Special Publication 800-175B Title Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms Publication Date(s) August 2016 Withdrawal Date March 31, 2020 Withdrawal Note SP 800-175B is superseded in its entirety by the publication of SP 800-175B Revision 1. Superseding Publication(s) (if applicable) The attached publication has been superseded by the following publication(s): Series/Number NIST Special Publication 800-175B Revision 1 Title Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms Author(s) Elaine Barker Publication Date(s) March 2020 URL/DOI https://doi.org/10.6028/NIST.SP.800-175Br1 Additional Information (if applicable) Contact Computer Security Division (Information Technology Laboratory) Latest revision of the attached publication Related Information https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines https://csrc.nist.gov/publications/detail/sp/800-175B/rev-1/final Withdrawal Announcement Link Date updated: March 31, 2020 NIST Special Publication 800-175B Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms Elaine Barker This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-175B C O M P U T E R S E C U R I T Y NIST Special Publication 800-175B Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms Elaine Barker Computer Security Division Information Technology Laboratory This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-175B August 2016 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Willie May, Under Secretary of Commerce for Standards and Technology and Director Authority This publication has been developed by NIST in accordance with its statutory responsibilities under the Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law (P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including minimum requirements for federal information systems, but such standards and guidelines shall not apply to national security systems without the express approval of appropriate federal officials exercising policy authority over such systems. This guideline is consistent with the requirements of the Office of Management and Budget (OMB) Circular A-130. Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, Director of the OMB, or any other federal official. This publication may be used by nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, however, be appreciated by NIST. National Institute of Standards and Technology Special Publication 800-175B Natl. Inst. Stand. Technol. Spec. Publ. 800-175B, 73 pages (August 2016) CODEN: NSPUE2 This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.800-175B Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. There may be references in this publication to other publications currently under development by NIST in accordance with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For planning and transition purposes, federal agencies may wish to closely follow the development of these new publications by NIST. Organizations are encouraged to review all draft publications during public comment periods and provide feedback to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at http://csrc.nist.gov/publications. Comments on this publication may be submitted to: National Institute of Standards and Technology Attn: Computer Security Division, Information Technology Laboratory 100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 Email: [email protected] All comments are subject to release under the Freedom of Information Act (FOIA). NIST SP 800-175B GUIDELINE FOR USING CRYPTO STANDARDS: CRYPTOGRAPHIC MECHANISMS Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analyses to advance the development and productive use of information technology. ITL’s responsibilities include the development of management, administrative, technical, and physical standards and guidelines for the cost-effective security and privacy of other than national security-related information in federal This publication is available free of charge from: http://dx.doi.org/10.6028/ information systems. The Special Publication 800-series reports on ITL’s research, guidelines, and outreach efforts in information system security, and its collaborative activities with industry, government, and academic organizations. Abstract This document is intended to provide guidance to the Federal Government for using cryptography and NIST’s cryptographic standards to protect sensitive, but unclassified digitized information during transmission and while in storage. The cryptographic methods and services to be used are discussed. Keywords asymmetric-key algorithm; authentication; confidentiality; cryptography; digital signatures; encryption; integrity; key agreement; key derivation; key management; key transport; key wrapping; message authentication codes; non-repudiation; Public Key Infrastructure (PKI); random bit generation; symmetric-key algorithm. NIST.SP.800 - 175B ii NIST SP 800-175B GUIDELINE FOR USING CRYPTO STANDARDS: CRYPTOGRAPHIC MECHANISMS Acknowledgments The author wishes to thank the authors of SP 800-21 from which this document was derived, Annabelle Lee and William C. Barker, along with those colleagues that reviewed drafts of this document and contributed to its development: Lily Chen, Shu-jen Chang, and Kerry McKay. The author also gratefully acknowledges and appreciates the many comments from the public and private sectors whose thoughtful and constructive comments improved the quality and usefulness of this publication. This publication is available free of charge from: http://dx.doi.org/10.6028/ NIST.SP.800 - 175B iii NIST SP 800-175B GUIDELINE FOR USING CRYPTO STANDARDS: CRYPTOGRAPHIC MECHANISMS Table of Contents SECTION 1: INTRODUCTION .................................................................................... 1 1.1 Overview and Purpose ......................................................................................... 1 1.2 Audience .............................................................................................................. 2 1.3 Scope .................................................................................................................... 2 1.4 Background .......................................................................................................... 2 1.5 Terms and Definitions ......................................................................................... 3 1.6 Acronyms ............................................................................................................. 9 1.7 Content ............................................................................................................... 10 This publication is available free of charge from: http://dx.doi.org/10.6028/ SECTION 2: STANDARDS AND GUIDELINES ....................................................... 12 2.1 Benefits of Standards ......................................................................................... 12 2.2 Federal Information Processing Standards and Special Publications ................ 13 2.2.1 The Use of FIPS and SPs ..................................................................................... 13 2.2.2 FIPS Waivers ....................................................................................................... 14 2.3 Other Standards Organizations .......................................................................... 14 2.3.1 American National Standards Institute (ANSI) ................................................. 14 2.3.2 Institute of Electrical and Electronics Engineers (IEEE) Standards Association .......... 15 2.3.3 Internet Engineering Task Force (IETF)
Recommended publications
  • Efficient Implementation of Elliptic Curve Cryptography in Reconfigurable Hardware
    EFFICIENT IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOGRAPHY IN RECONFIGURABLE HARDWARE by E-JEN LIEN Submitted in partial fulfillment of the requirements for the degree of Master of Science Thesis Advisor: Dr. Swarup Bhunia Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY May, 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________E-Jen Lien candidate for the ______________________degreeMaster of Science *. Swarup Bhunia (signed)_______________________________________________ (chair of the committee) Christos Papachristou ________________________________________________ Frank Merat ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________03/19/2012 *We also certify that written approval has been obtained for any proprietary material contained therein. To my family ⋯ Contents List of Tables iii List of Figures v Acknowledgements vi List of Abbreviations vii Abstract viii 1 Introduction 1 1.1 Research objectives . .1 1.2 Thesis Outline . .3 1.3 Contributions . .4 2 Background and Motivation 6 2.1 MBC Architecture . .6 2.2 Application Mapping to MBC . .7 2.3 FPGA . .9 2.4 Mathematical Preliminary . 10 2.5 Elliptic Curve Cryptography . 10 2.6 Motivation . 16 i 3 Design Principles and Methodology 18 3.1 Curves over Prime Field . 18 3.2 Curves over Binary Field . 25 3.3 Software Code for ECC . 31 3.4 RTL code for FPGA design . 31 3.5 Input Data Flow Graph (DFG) for MBC . 31 4 Implementation of ECC 32 4.1 Software Implementation . 32 4.1.1 Prime Field . 33 4.1.2 Binary Field . 34 4.2 Implementation in FPGA . 35 4.2.1 Prime Field . 36 4.2.2 Binary Field .
    [Show full text]
  • The Data Encryption Standard (DES) – History
    Chair for Network Architectures and Services Department of Informatics TU München – Prof. Carle Network Security Chapter 2 Basics 2.1 Symmetric Cryptography • Overview of Cryptographic Algorithms • Attacking Cryptographic Algorithms • Historical Approaches • Foundations of Modern Cryptography • Modes of Encryption • Data Encryption Standard (DES) • Advanced Encryption Standard (AES) Cryptographic algorithms: outline Cryptographic Algorithms Symmetric Asymmetric Cryptographic Overview En- / Decryption En- / Decryption Hash Functions Modes of Cryptanalysis Background MDC’s / MACs Operation Properties DES RSA MD-5 AES Diffie-Hellman SHA-1 RC4 ElGamal CBC-MAC Network Security, WS 2010/11, Chapter 2.1 2 Basic Terms: Plaintext and Ciphertext Plaintext P The original readable content of a message (or data). P_netsec = „This is network security“ Ciphertext C The encrypted version of the plaintext. C_netsec = „Ff iThtIiDjlyHLPRFxvowf“ encrypt key k1 C P key k2 decrypt In case of symmetric cryptography, k1 = k2. Network Security, WS 2010/11, Chapter 2.1 3 Basic Terms: Block cipher and Stream cipher Block cipher A cipher that encrypts / decrypts inputs of length n to outputs of length n given the corresponding key k. • n is block length Most modern symmetric ciphers are block ciphers, e.g. AES, DES, Twofish, … Stream cipher A symmetric cipher that generats a random bitstream, called key stream, from the symmetric key k. Ciphertext = key stream XOR plaintext Network Security, WS 2010/11, Chapter 2.1 4 Cryptographic algorithms: overview
    [Show full text]
  • Block Ciphers and the Data Encryption Standard
    Lecture 3: Block Ciphers and the Data Encryption Standard Lecture Notes on “Computer and Network Security” by Avi Kak ([email protected]) January 26, 2021 3:43pm ©2021 Avinash Kak, Purdue University Goals: To introduce the notion of a block cipher in the modern context. To talk about the infeasibility of ideal block ciphers To introduce the notion of the Feistel Cipher Structure To go over DES, the Data Encryption Standard To illustrate important DES steps with Python and Perl code CONTENTS Section Title Page 3.1 Ideal Block Cipher 3 3.1.1 Size of the Encryption Key for the Ideal Block Cipher 6 3.2 The Feistel Structure for Block Ciphers 7 3.2.1 Mathematical Description of Each Round in the 10 Feistel Structure 3.2.2 Decryption in Ciphers Based on the Feistel Structure 12 3.3 DES: The Data Encryption Standard 16 3.3.1 One Round of Processing in DES 18 3.3.2 The S-Box for the Substitution Step in Each Round 22 3.3.3 The Substitution Tables 26 3.3.4 The P-Box Permutation in the Feistel Function 33 3.3.5 The DES Key Schedule: Generating the Round Keys 35 3.3.6 Initial Permutation of the Encryption Key 38 3.3.7 Contraction-Permutation that Generates the 48-Bit 42 Round Key from the 56-Bit Key 3.4 What Makes DES a Strong Cipher (to the 46 Extent It is a Strong Cipher) 3.5 Homework Problems 48 2 Computer and Network Security by Avi Kak Lecture 3 Back to TOC 3.1 IDEAL BLOCK CIPHER In a modern block cipher (but still using a classical encryption method), we replace a block of N bits from the plaintext with a block of N bits from the ciphertext.
    [Show full text]
  • A High-Speed Constant-Time Hardware Implementation of Ntruencrypt SVES
    A High-Speed Constant-Time Hardware Implementation of NTRUEncrypt SVES Farnoud Farahmand, Malik Umar Sharif, Kevin Briggs, Kris Gaj Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, U.S.A. fffarahma, msharif2, kbriggs2, [email protected] process a year later. Among the candidates, there are new, Abstract—In this paper, we present a high-speed constant- substantially modified versions of NTRUEncrypt. However, in time hardware implementation of NTRUEncrypt Short Vector an attempt to characterize an already standardized algorithm, Encryption Scheme (SVES), fully compliant with the IEEE 1363.1 Standard Specification for Public Key Cryptographic Techniques in this paper, we focus on the still unbroken version of the Based on Hard Problems over Lattices. Our implementation algorithm published in 2008. We are not aware of any previous follows an earlier proposed Post-Quantum Cryptography (PQC) high-speed hardware implementation of the entire NTRUEn- Hardware Application Programming Interface (API), which crypt SVES scheme reported in the scientific literature or facilitates its fair comparison with implementations of other available commercially. Our implementation is also unique in PQC schemes. The paper contains the detailed flow and block diagrams, timing analysis, as well as results in terms of latency (in that it is the first implementation of any PQC scheme following clock cycles), maximum clock frequency, and resource utilization our newly proposed PQC Hardware API [3]. As such, it in modern high-performance Field Programmable Gate Arrays provides a valuable reference for any future implementers of (FPGAs). Our design takes full advantage of the ability to paral- PQC schemes, which is very important in the context of the lelize the major operation of NTRU, polynomial multiplication, in ongoing NIST standard candidate evaluation process.
    [Show full text]
  • Development of the Advanced Encryption Standard
    Volume 126, Article No. 126024 (2021) https://doi.org/10.6028/jres.126.024 Journal of Research of the National Institute of Standards and Technology Development of the Advanced Encryption Standard Miles E. Smid Formerly: Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA [email protected] Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard’s development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and Technology, where he was responsible for the AES development. Key words: Advanced Encryption Standard (AES); consensus process; cryptography; Data Encryption Standard (DES); security requirements, SKIPJACK. Accepted: June 18, 2021 Published: August 16, 2021; Current Version: August 23, 2021 This article was sponsored by James Foti, Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology (NIST). The views expressed represent those of the author and not necessarily those of NIST. https://doi.org/10.6028/jres.126.024 1. Introduction In the late 1990s, the National Institute of Standards and Technology (NIST) was about to decide if it was going to specify a new cryptographic algorithm standard for the protection of U.S.
    [Show full text]
  • Chapter 3 – Block Ciphers and the Data Encryption Standard
    Symmetric Cryptography Chapter 6 Block vs Stream Ciphers • Block ciphers process messages into blocks, each of which is then en/decrypted – Like a substitution on very big characters • 64-bits or more • Stream ciphers process messages a bit or byte at a time when en/decrypting – Many current ciphers are block ciphers • Better analyzed. • Broader range of applications. Block vs Stream Ciphers Block Cipher Principles • Block ciphers look like an extremely large substitution • Would need table of 264 entries for a 64-bit block • Arbitrary reversible substitution cipher for a large block size is not practical – 64-bit general substitution block cipher, key size 264! • Most symmetric block ciphers are based on a Feistel Cipher Structure • Needed since must be able to decrypt ciphertext to recover messages efficiently Ideal Block Cipher Substitution-Permutation Ciphers • in 1949 Shannon introduced idea of substitution- permutation (S-P) networks – modern substitution-transposition product cipher • These form the basis of modern block ciphers • S-P networks are based on the two primitive cryptographic operations we have seen before: – substitution (S-box) – permutation (P-box) (transposition) • Provide confusion and diffusion of message Diffusion and Confusion • Introduced by Claude Shannon to thwart cryptanalysis based on statistical analysis – Assume the attacker has some knowledge of the statistical characteristics of the plaintext • Cipher needs to completely obscure statistical properties of original message • A one-time pad does this Diffusion
    [Show full text]
  • Key Derivation Functions and Their GPU Implementation
    MASARYK UNIVERSITY FACULTY}w¡¢£¤¥¦§¨ OF I !"#$%&'()+,-./012345<yA|NFORMATICS Key derivation functions and their GPU implementation BACHELOR’S THESIS Ondrej Mosnáˇcek Brno, Spring 2015 This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/ cbna ii Declaration Hereby I declare, that this paper is my original authorial work, which I have worked out by my own. All sources, references and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Ondrej Mosnáˇcek Advisor: Ing. Milan Brož iii Acknowledgement I would like to thank my supervisor for his guidance and support, and also for his extensive contributions to the Cryptsetup open- source project. Next, I would like to thank my family for their support and pa- tience and also to my friends who were falling behind schedule just like me and thus helped me not to panic. Last but not least, access to computing and storage facilities owned by parties and projects contributing to the National Grid In- frastructure MetaCentrum, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” (LM2010005), is also greatly appreciated. v Abstract Key derivation functions are a key element of many cryptographic applications. Password-based key derivation functions are designed specifically to derive cryptographic keys from low-entropy sources (such as passwords or passphrases) and to counter brute-force and dictionary attacks. However, the most widely adopted standard for password-based key derivation, PBKDF2, as implemented in most applications, is highly susceptible to attacks using Graphics Process- ing Units (GPUs).
    [Show full text]
  • FIDO Technical Glossary
    Client to Authenticator Protocol (CTAP) Implementation Draft, February 27, 2018 This version: https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-protocol-v2.0-id- 20180227.html Previous Versions: https://fidoalliance.org/specs/fido-v2.0-ps-20170927/ Issue Tracking: GitHub Editors: Christiaan Brand (Google) Alexei Czeskis (Google) Jakob Ehrensvärd (Yubico) Michael B. Jones (Microsoft) Akshay Kumar (Microsoft) Rolf Lindemann (Nok Nok Labs) Adam Powers (FIDO Alliance) Johan Verrept (VASCO Data Security) Former Editors: Matthieu Antoine (Gemalto) Vijay Bharadwaj (Microsoft) Mirko J. Ploch (SurePassID) Contributors: Jeff Hodges (PayPal) Copyright © 2018 FIDO Alliance. All Rights Reserved. Abstract This specification describes an application layer protocol for communication between a roaming authenticator and another client/platform, as well as bindings of this application protocol to a variety of transport protocols using different physical media. The application layer protocol defines requirements for such transport protocols. Each transport binding defines the details of how such transport layer connections should be set up, in a manner that meets the requirements of the application layer protocol. Table of Contents 1 Introduction 1.1 Relationship to Other Specifications 2 Conformance 3 Protocol Structure 4 Protocol Overview 5 Authenticator API 5.1 authenticatorMakeCredential (0x01) 5.2 authenticatorGetAssertion (0x02) 5.3 authenticatorGetNextAssertion (0x08) 5.3.1 Client Logic 5.4 authenticatorGetInfo (0x04)
    [Show full text]
  • Public Key Cryptography Public Key Cryptography
    Public Key Cryptography Public Key Cryptography • Symmetric Key: – Same key used for encryption and decrypiton – Same key used for message integrity and validation • Public-Key Cryptography – Use one key to encrypt or sign messages – Use another key to decrypt or validate messages • Keys – Public key known to the world and used to send you a message – Only your private key can decrypt the message Public Key Private Key Plaintext Ciphertext Plaintext Encryption Decryption ENTS 689i | Network Immunity | Fall 2008 Lecture 2 Public Key Cryptography • Motivations – In symmetric key cryptography, a key was needed between every pair of users wishing to securely communicate • O(n2) keys – Problem of establishing a key with remote person with whom you wish to communicate • Advantages to Public Key Cryptography – Key distribution much easier: everyone can known your public key as long as your private key remains secret – Fewer keys needed • O(n) keys • Disadvantages – Slow, often up to 1000x slower than symmetric-key cryptography ENTS 689i | Network Immunity | Fall 2008 Lecture 2 Cryptography and Complexity • Three classes of complexity: – P: solvable in polynomial time, O(nc) – NP: nondeterministic solutions in polynomial time, deterministic solutions in exponential time – EXP: exponential solutions, O(cn) • Cryptographic problems should be: increasing P – Encryption should be P difficult – Decryption should be P with key NP – Decryption should be NP for attacker EXP • Need problems where complexity of solution depends on knowledge of a key ENTS
    [Show full text]
  • The Long Road to the Advanced Encryption Standard
    The Long Road to the Advanced Encryption Standard Jean-Luc Cooke CertainKey Inc. [email protected], http://www.certainkey.com/˜jlcooke Abstract 1 Introduction This paper will start with a brief background of the Advanced Encryption Standard (AES) process, lessons learned from the Data Encryp- tion Standard (DES), other U.S. government Two decades ago the state-of-the-art in cryptographic publications and the fifteen first the private sector cryptography was—we round candidate algorithms. The focus of the know now—far behind the public sector. presentation will lie in presenting the general Don Coppersmith’s knowledge of the Data design of the five final candidate algorithms, Encryption Standard’s (DES) resilience to and the specifics of the AES and how it dif- the then unknown Differential Cryptanaly- fers from the Rijndael design. A presentation sis (DC), the design principles used in the on the AES modes of operation and Secure Secure Hash Algorithm (SHA) in Digital Hash Algorithm (SHA) family of algorithms Signature Standard (DSS) being case and will follow and will include discussion about point[NISTDSS][NISTDES][DC][NISTSHA1]. how it is directly implicated by AES develop- ments. The selection and design of the DES was shrouded in controversy and suspicion. This very controversy has lead to a fantastic acceler- Intended Audience ation in private sector cryptographic advance- ment. So intrigued by the NSA’s modifica- tions to the Lucifer algorithm, researchers— This paper was written as a supplement to a academic and industry alike—powerful tools presentation at the Ottawa International Linux in assessing block cipher strength were devel- Symposium.
    [Show full text]
  • A Proposed SAFER Plus Security Algorithm Using Fast Walsh Hadamard Transform for Bluetooth Technology D.Sharmila 1, R.Neelaveni 2
    International Journal of Wireless & Mobile Networks (IJWMN), Vol 1, No 2, November 2009 A Proposed SAFER Plus Security algorithm using Fast Walsh Hadamard transform for Bluetooth Technology D.Sharmila 1, R.Neelaveni 2 1(Research Scholar), Associate Professor, Bannari Amman Institute of Technology, Sathyamangalam. Tamil Nadu-638401. [email protected] 2 Asst.Prof. PSG College of Technology, Coimbatore.Tamil Nadu -638401. [email protected] ABSTRACT realtime two-way voice transfer providing data rates up to 3 Mb/s. It operates at 2.4 GHz frequency in the free ISM-band (Industrial, Scientific, and Medical) using frequency hopping In this paper, a modified SAFER plus algorithm is [18]. Bluetooth can be used to connect almost any kind of presented. Additionally, a comparison with various device to another device. Typical range of Bluetooth communication varies from 10 to 100 meters indoors. security algorithms like pipelined AES, Triple DES, Bluetooth technology and associated devices are susceptible Elliptic curve Diffie Hellman and the existing SAFER plus to general wireless networking threats, such as denial of service attacks, eavesdropping, man-in-the-middle attacks, are done. Performance of the algorithms is evaluated message modification, and resource misappropriation. They based on the data throughput, frequency and security are also threatened by more specific Bluetooth-related attacks that target known vulnerabilities in Bluetooth level. The results show that the modified SAFER plus implementations and specifications. Attacks against algorithm has enhanced security compared to the existing improperly secured Bluetooth implementations can provide attackers with unauthorized access to sensitive information algorithms. and unauthorized usage of Bluetooth devices and other Key words : Secure And Fast Encryption Routine, Triple Data systems or networks to which the devices are connected.
    [Show full text]
  • Chapter 2 the Data Encryption Standard (DES)
    Chapter 2 The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmet- ric or secret key cryptography and asymmetric or public key cryptography. Symmet- ric key cryptography is the oldest type whereas asymmetric cryptography is only being used publicly since the late 1970’s1. Asymmetric cryptography was a major milestone in the search for a perfect encryption scheme. Secret key cryptography goes back to at least Egyptian times and is of concern here. It involves the use of only one key which is used for both encryption and decryption (hence the use of the term symmetric). Figure 2.1 depicts this idea. It is necessary for security purposes that the secret key never be revealed. Secret Key (K) Secret Key (K) ? ? - - - - Plaintext (P ) E{P,K} Ciphertext (C) D{C,K} Plaintext (P ) Figure 2.1: Secret key encryption. To accomplish encryption, most secret key algorithms use two main techniques known as substitution and permutation. Substitution is simply a mapping of one value to another whereas permutation is a reordering of the bit positions for each of the inputs. These techniques are used a number of times in iterations called rounds. Generally, the more rounds there are, the more secure the algorithm. A non-linearity is also introduced into the encryption so that decryption will be computationally infeasible2 without the secret key. This is achieved with the use of S-boxes which are basically non-linear substitution tables where either the output is smaller than the input or vice versa. 1It is claimed by some that government agencies knew about asymmetric cryptography before this.
    [Show full text]