Dental Microwear in Crocodylomorphs: Implications for Diet

Total Page:16

File Type:pdf, Size:1020Kb

Dental Microwear in Crocodylomorphs: Implications for Diet The evolution of jaw mechanism and dental function in heterodont crocodyliforms ATTILA ŐSI1 1Hungarian Academy of Sciences – Eötvös Loránd University, Lendület Dinosaur Research Group, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary; e-mail: [email protected] ABSTRACT Heterodont dentition sometimes including multicuspid crowns appeared in numerous fossil forms through all main lineages of the Crocodyliformes. Teeth in these complex dentitions frequently bear wear facets that are exclusive indicators of tooth–tooth occlusion. Besides dental features, specializations of the jaw apparatus, jaw adductors and mandibular movement can be recognized, all reflecting a high variability of jaw mechanism and of intraoral food processing. Comparative study of these features revealed four main types of jaw mechanism some of which evolved independently in several lineages of Crocodyliformes. Isognathous orthal jaw closure (precise jaw joint, rough wear facets) is characteristic for heterodont protosuchians and all forms possessing crushing posterior teeth. Proal movement (protractive powerstroke) occured independently in Malawisuchus and Chimaerasuchus is supported by the antagonistic, vertically oriented carinae. Developed external adductors are the main indicators of palinal movement (retractive powerstroke) that evolved at least two times in various South American taxa. The fourth type (in Iharkutosuchus) is characterized by lateromedial mandibular rotation supported by extensive horizontal wear facets. This evolutionary scenario resembles that of the masticatory system of mammals and suggests that the ecological roles of some mammalian groups in North America and Asia were occupied in Western Gondwana by highly specialized crocodyliforms. INTRODUCTION Generally, the feeding apparatus and feeding mechanism of crocodyliforms is regarded as conservative because it does not show radical changes during the evolution of the group. Among the few hundred valid species from protosuchians to the 23 extant taxa, tooth and jaw morphology, jaw articulation and adductor muscle architecture did not change significantly in most species. Their dentition is formed usually of widely-spaced, conical, monocusped teeth (although with highly variable in tooth count), dominantly with unserrated mesiodistal carinae mesiodistally. Jaw articulation is precise with quadrate condyles separated by a marked intercondylar groove and the condyles nicely fit into the glenoid cavity of the articular. This is a key feature (along with the wide pterygoid flanges preventing lateromedial movement) to ensure precise orthal movement during opening and closure of the jaws. Of the jaw adductor musculature, the main muscle groups are the pterygoid muscles (MPT) and the external adductors (parts of the MAME). Their state of development and importance in the jaw closure, however, alternate depending on skull architecture and the mode of prey capture. For example, in longirostrine forms (thalattosuchians, dyrosaurs, gavial) being dominantly aquatic piscivorous predators, the bundles of the external adductors responsible for rapid jaw closure (like the temporalis muscles in mammals, Smith 1993) are highly developed and play an extremely important role in food capture. These muscles have short bundles and are responsible for a relatively fast jaw closure (Iordansky 1964, Mueller-Töwe 2006). In small bodied, brevirostrine forms (e.g. Bernissartia, Allognathosuchus, Brachychampsa, Iharkutosuchus) often possessing bulbous crushing teeth the pterygoid muscles responsible for relatively slow but effective jaw closure (like the masseter and pterygoid muscles in mammals, Smith 1993) are the dominant adductors (Ősi and Weishampel 2009, Figure 1). In the last decades, however, new discoveries, especially in former Gondwanan landmasses, provided evidence for diverse and abundant assemblages of highly specialized crocodyliforms (Figure 2) that possess heterodont, sometimes mammal-like dentition (Figure 3) (e.g. Clark et al. 1989, Carvalho 1994, Buckley et al. 2000, Pol 2003, Nobre and Carvalho 2006, Marinho and Carvalho 2009, O’Connor et al. 2010, Iori and Carvalho 2011). These forms are usually characterized by complex jaw mechanism complemented by dental occlusion that refers to efficient oral food processing (Ősi 2010). The appearence of these fundamental craniodental features among Cretaceous Gondwanan notosuchians suggests that these small bodied forms „probably filled niches and inhabited ecomorphospace that were otherwise occupied by mammals on northern continents” (O’ Connor et al. 2010:748). Nevertheless, crocodyliforms with mammal-like craniodental features were not restricted to the notosuchian clade and to the Cretaceous Gondwana but they also occured in the Early Jurassic of North America and in the Cretaceous of Europe and eastern Asia, where they were represented by both the protosuchian and modern, eusuchian clades (Young 1973, Li 1985, Clark and Fastovsky 1986, Sues et al. 1994, Wu et al. 1995, Pol et al. 2004, Ősi et al. 2007). In addition to these forms with multicusped teeth, the bulbous, crushing teeth in several lineages of the neosuchian crocodyliforms (e.g. Weitzel 1935, Buffetaut and Ford 1979, Buscalioni and Sanz 1990, Brinkmann 1992, Norell et al. 1994, Brochu 1999, Lucas and Estep 2000, Ősi 2010, Ősi and Barrett 2011) represent a further adaptation among the specialized feeding strategies of the group that, again, clearly emphasizes that feeding adaptations within the Crocodyliformes were much more diverse than previously thought. The aim of this work is to collect, review and compare all these specialized heterodont crocodyliforms in a functional perspective completed with the descripton and detailed illustration of the cranial material and craniodental features. Reconstruction of the main cranial adductors and analyses of dental wear patterns are fulfilled to understand the process of dental occlusion and movements of the lower jaw during food processing in each taxon. Putting the taxa in a phylogenetic context, the evolution of craniodental characters and jaw mechanisms is discussed. Results of these investigations offer new insights into the evolution of crocodyliform trophic adaptations and in the case of Gondwanan notosuchians they help to reconstruct possible scenarios of competition, dietary overlap and partitioning between small bodied, heterodont crocodyliforms and mammals. Institutional Abbreviations— ACAP Association Culturelle, Archéologique et Paléontologique de l’Ouest Biterrois, Cruzy, Hérault, France; BSM, Bayerische Staatssammlung für Paläontologie und Geologie, Münich, Germany; FMNH, The Field Museum, Chicago, USA; HLMD, Hessisches Landmuseum; Darmstadt, Germany; IPFUB, Institut für Paläontologie der Freien Universität, Berlin, Berlin, Germany; IRSNB, Institut Royal des Sciences Naturelles de Belgique, Bruxelles, Belgium; IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, People’s Republic of China; MACN, Museo Argentino de Ciencias Naturales, Buenos Aires, Argentina; MAL, Malawi Department of Antiqities, Malawi; MCSNT, Museo Civico di Storia Naturale di Trieste, Italy; MN, Museu Nacional, Rio de Janeiro, Brasil; MNHN, Musée National d'Histoire Naturelle, Paris, France; MPMA, Museu de Paleontologia de Monte de Alto, Monte Alto, Brasil; MTM, Hungarian Natural History Museum, Budapest, Hungary; MZSP-PV, Museu de Zoologia, Universidade de São Paulo, Brazil; NHM, Natural History Museum, London, England; UA, University of Antananarivo, Antananarivo, Madagascar; UCMP, Museum of Paleontology, University of California, Berkeley, USA; UFRJ, Universidad Federal do Rio de Janeiro, Brazil. Anatomical abbreviations used in the figures: a anterior icgr intercuspidate groove acav accessory cavities of the antorbital if incisive foramen fossa imf caudal intermandibular foramen acc accessory cusp j jugal adt anterior dentary tooth l lateral aexa attachment area of external la labial adductors lacr lacrimal agr apical groove lac labial cusp aMAMP attachment surface for lal last alveolus MAMP larc labial row of cusps aMPTV attachment surface for lawf labial wear facet MPTV lca lower caniniform tooth alv alveolus lco lateral cotyle amx1 first maxillary alveolus ler longitudinal enamel ridges an angular li lingual aof antorbital fenestra lic lingual cusp ap apical lirc lingual row of cusps ar articular liwf lingual wear facet awf apical wear facet ls laterosphenoid ba basal ltf lateral temporal fenestra bc broken crown m medial bit bicusped teeth MAMEM Musculus adductor bo basioccipital mandibulae externus c carina medialis ca caniniform tooth MAMEP Musculus adductor car cervical armour mandibulae externus ced distal carina of the central cusp profundus ch choana MAMES Musculus adductor ci cingulum mandibulae externus co coronoid superficialis coa conical apex MAMP Musculus adductor cr crest mandibulae posterior crc central row of cusps mc main cusp d dentale mcq medial condyle of the quadrate de dentine me mesial d1–10 first to tenth dentary teeth MI Musculus intramandibularis di distal mot molariform teeth do dorsal mpf maxilla–palatine foramen ec ectopterygoid MPSS Musculus pseudotemporalis edi enamel–dentine interface superficialis emf external mandibular fenestra MPTD Musculus pterygoideus ena external nares dorsalis en enamel MPTV Musculus pterygoideus fm foramen magnum ventralis fo foramen mri median ridge fr frontal mut multicusped tooth gl glenoid surface mx maxilla gr groove mx1–10 first to sixth maxillary teeth mxsh maxillary
Recommended publications
  • 8. Archosaur Phylogeny and the Relationships of the Crocodylia
    8. Archosaur phylogeny and the relationships of the Crocodylia MICHAEL J. BENTON Department of Geology, The Queen's University of Belfast, Belfast, UK JAMES M. CLARK* Department of Anatomy, University of Chicago, Chicago, Illinois, USA Abstract The Archosauria include the living crocodilians and birds, as well as the fossil dinosaurs, pterosaurs, and basal 'thecodontians'. Cladograms of the basal archosaurs and of the crocodylomorphs are given in this paper. There are three primitive archosaur groups, the Proterosuchidae, the Erythrosuchidae, and the Proterochampsidae, which fall outside the crown-group (crocodilian line plus bird line), and these have been defined as plesions to a restricted Archosauria by Gauthier. The Early Triassic Euparkeria may also fall outside this crown-group, or it may lie on the bird line. The crown-group of archosaurs divides into the Ornithosuchia (the 'bird line': Orn- ithosuchidae, Lagosuchidae, Pterosauria, Dinosauria) and the Croco- dylotarsi nov. (the 'crocodilian line': Phytosauridae, Crocodylo- morpha, Stagonolepididae, Rauisuchidae, and Poposauridae). The latter three families may form a clade (Pseudosuchia s.str.), or the Poposauridae may pair off with Crocodylomorpha. The Crocodylomorpha includes all crocodilians, as well as crocodi- lian-like Triassic and Jurassic terrestrial forms. The Crocodyliformes include the traditional 'Protosuchia', 'Mesosuchia', and Eusuchia, and they are defined by a large number of synapomorphies, particularly of the braincase and occipital regions. The 'protosuchians' (mainly Early *Present address: Department of Zoology, Storer Hall, University of California, Davis, Cali- fornia, USA. The Phylogeny and Classification of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds (ed. M.J. Benton), Systematics Association Special Volume 35A . pp. 295-338. Clarendon Press, Oxford, 1988.
    [Show full text]
  • Taxonomic Reappraisal of the Sphagesaurid Crocodyliform Sphagesaurus Montealtensis from the Late Cretaceous Adamantina Formation of São Paulo State, Brazil
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3686 (2): 183–200 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3686.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:9F87DAC0-E2BE-4282-A4F7-86258B0C8668 Taxonomic reappraisal of the sphagesaurid crocodyliform Sphagesaurus montealtensis from the Late Cretaceous Adamantina Formation of São Paulo State, Brazil FABIANO VIDOI IORI¹,², THIAGO DA SILVA MARINHO3, ISMAR DE SOUZA CARVALHO¹ & ANTONIO CELSO DE ARRUDA CAMPOS² 1UFRJ, Departamento de Geologia, CCMN/IGEO, Cidade Universitária – Ilha do Fundão, 21949-900. Rio de Janeiro, Brazil. E-mail: [email protected]; [email protected] 2Museu de Paleontologia “Prof. Antonio Celso de Arruda Campos”, Praça do Centenário s/n, Centro, 15910-000 – Monte Alto, Brazil 3Instituto de Ciências Exatas, Naturais e Educação (ICENE), Universidade Federal do Triângulo Mineiro (UFTM), Av. Dr. Randolfo Borges Jr. 1700 , Univerdecidade, 38064-200, Uberaba, Minas Gerais, Brasil. [email protected] Abstract Sphagesaurus montealtensis is a sphagesaurid whose original description was based on a comparison with Sphagesaurus huenei, the only species of the clade described to that date. Better preparation of the holotype and the discovery of a new specimen have allowed the review of some characteristics and the identification
    [Show full text]
  • Baixar Este Arquivo
    DOI 10.5935/0100-929X.20120007 Revista do Instituto Geológico, São Paulo, 33 (2), 13-29, 2012 DESCRIÇÃO DE UM ESPÉCIME JUVENIL DE BAURUSUCHIDAE (CROCODYLIFORMES: MESOEUCROCODYLIA) DO GRUPO BAURU (NEOCRETÁCEO): CONSIDERAÇÕES PRELIMINARES SOBRE ONTOGENIA Caio Fabricio Cezar GEROTO Reinaldo José BERTINI RESUMO Entre os táxons de Crocodyliformes do Grupo Bauru (Neocretáceo), grande quan- tidade de morfótipos, incluindo materiais cranianos e pós-cranianos, vem sendo des- crita em associação a Baurusuchus pachecoi. Porém, a falta de estudos ontogenéticos, como os realizados para Mariliasuchus amarali, levou à atribuição de novos gêneros e espécies aos poucos crânios completos encontrados. A presente contribuição traz a descrição de um espécime juvenil de Baurusuchidae depositado no acervo do Museu de Ciências da Terra no Rio de Janeiro sob o número MCT 1724 - R. Trata-se de um rostro e mandíbula associados e em oclusão, com o lado esquerdo melhor preservado que o direito, e dentição zifodonte extremamente reduzida. O fóssil possui 125,3 mm de comprimento preservado da porção anterior do pré-maxilar até a extremidade pos- terior do dentário; 117,5 mm de comprimento preservado do pré-maxilar aos palatinos e altura lateral de 51,4 mm. Entre as informações de caráter ontogenético identificadas destacam-se: ornamentação suave composta de estrias vermiformes muito espaçadas e largas, linha ventral do maxilar mais reta, dentário levemente inclinado dorsalmente na porção mediana e sínfise mandibular menos vertical que em outros baurussúqui- dos de tamanho maior. A maioria das características rostrais e dentárias, diagnósticas para Baurusuchus pachecoi, foi identificada no exemplar MCT 1724 - R: rostro alto e comprimido lateralmente, além de dentição zifodonte com forte redução dentária, que culmina em quatro dentes pré-maxilares e cinco maxilares.
    [Show full text]
  • Lower Cretaceous Avian-Dominated, Theropod
    Lower cretaceous avian-dominated, theropod, thyreophoran, pterosaur and turtle track assemblages from the Tugulu Group, Xinjiang, China: ichnotaxonomy and palaeoecology Lida Xing1,2, Martin G. Lockley3, Chengkai Jia4, Hendrik Klein5, Kecheng Niu6, Lijun Zhang7, Liqi Qi8, Chunyong Chou2, Anthony Romilio9, Donghao Wang2, Yu Zhang2, W Scott Persons10 and Miaoyan Wang2 1 State Key Laboratory of Biogeology and Environmental Geology, China University of Geoscience (Beijing), Beijing, China 2 School of the Earth Sciences and Resources, China University of Geoscience (Beijing), Beijing, China 3 Dinosaur Trackers Research Group, University of Colorado at Denver, Denver, United States 4 Research Institute of Experiment and Detection of Xinjiang Oil Company, PetroChina, Karamay, China 5 Saurierwelt Paläontologisches Museum, Neumarkt, Germany 6 Yingliang Stone Natural History Museum, Nan’an, China 7 Institute of Resources and Environment, Key Laboratory of Biogenic Traces & Sedimentary Minerals of Henan Province, Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Polytechnic University, Jiaozuo, China 8 Faculty of Petroleum, China University of Petroleum (Beijing) at Karamay, Karamay, China 9 School of Biological Sciences, The University of Queensland, Brisbane, Australia 10 Mace Brown Museum of Natural History, Department of Geology and Environmental Geosciences, College of Charleston, Charleston, United States ABSTRACT Rich tetrapod ichnofaunas, known for more than a decade, from the Huangyangquan Reservoir (Wuerhe District, Karamay City, Xinjiang) have been an abundant source Submitted 10 January 2021 of some of the largest Lower Cretaceous track collections from China. They originate Accepted 26 April 2021 from inland lacustrine clastic exposures of the 581–877 m thick Tugulu Group, 28 May 2021 Published variously divided into four formations and subgroups in the northwestern margin of Corresponding author the Junggar Basin.
    [Show full text]
  • Craniofacial Morphology of Simosuchus Clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar
    Society of Vertebrate Paleontology Memoir 10 Journal of Vertebrate Paleontology Volume 30, Supplement to Number 6: 13–98, November 2010 © 2010 by the Society of Vertebrate Paleontology CRANIOFACIAL MORPHOLOGY OF SIMOSUCHUS CLARKI (CROCODYLIFORMES: NOTOSUCHIA) FROM THE LATE CRETACEOUS OF MADAGASCAR NATHAN J. KLEY,*,1 JOSEPH J. W. SERTICH,1 ALAN H. TURNER,1 DAVID W. KRAUSE,1 PATRICK M. O’CONNOR,2 and JUSTIN A. GEORGI3 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794-8081, U.S.A., [email protected]; [email protected]; [email protected]; [email protected]; 2Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, U.S.A., [email protected]; 3Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, U.S.A., [email protected] ABSTRACT—Simosuchus clarki is a small, pug-nosed notosuchian crocodyliform from the Late Cretaceous of Madagascar. Originally described on the basis of a single specimen including a remarkably complete and well-preserved skull and lower jaw, S. clarki is now known from five additional specimens that preserve portions of the craniofacial skeleton. Collectively, these six specimens represent all elements of the head skeleton except the stapedes, thus making the craniofacial skeleton of S. clarki one of the best and most completely preserved among all known basal mesoeucrocodylians. In this report, we provide a detailed description of the entire head skeleton of S. clarki, including a portion of the hyobranchial apparatus. The two most complete and well-preserved specimens differ substantially in several size and shape variables (e.g., projections, angulations, and areas of ornamentation), suggestive of sexual dimorphism.
    [Show full text]
  • (Metasuchia, Crocodylomorpha), Do Cretáceo Superior Ao Mioceno / André Eduardo Piacentini Pinheiro
    Universidade Estadual Paulista Instituto de Geociências e Ciências Exatas Campus de Rio Claro REVISÃO CLADÍSTICA - FILOGENÉTICA E CONSIDERAÇÕES PALEOBIOGEOGRÁFICAS SOBRE SEBECOSUCHIA (METASUCHIA, CROCODYLOMORPHA), DO CRETÁCEO SUPERIOR AO MIOCENO André Eduardo Piacentini Pinheiro Orientador: Prof. Dr. Reinaldo José Bertini Dissertação de Mestrado elaborada junto ao Programa de Pós-Graduação em Geologia - Área de concentração em Geologia Regional, para a obtenção do título de Mestre em Geociências Rio Claro (SP) 2007 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. 560 Pinheiro, André Eduardo Piacentini P654r Revisão cladística-filogenética e considerações paleobiogeográficas sobre Sebecosuchia (Metasuchia, Crocodylomorpha), do cretáceo superior ao mioceno / André Eduardo Piacentini Pinheiro. – Rio Claro : [s.n.], 2007 267 f. : il., gráfs., tabs., quadros, fots. Dissertação (mestrado) – Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas Orientador: Reinaldo José Bertini 1. Paleontologia. 2. Filogenia. 3. Monofilia. 4. Análise cladística. 5. Dispersão. I. Título. Ficha Catalográfica elaborada pela STATI – Biblioteca da UNESP Campus de Rio Claro/SP O Tempo “O tempo corre, eternamente, rico de promessas, cavalo com sete rédeas e mil olhos. Neste cavalo montam cantores inspirados por Deus; as rodas que faz girar são todos os mundos. Trafega com sete rodas e sete cubos, seu eixo é a imortalidade. O tempo faz surgir todos os seres, é evasivo como divindade suprema. O tempo carrega um formoso jarro repleto, que vemos freqüentemente diante dos olhos. O tempo leva embora todos os seres, no alto dos céus lhe dão o nome de destino. O tempo criou o céu lá no alto, o tempo deu à luz a terra aqui embaixo.
    [Show full text]
  • Postcranial Skeleton of Mariliasuchus Amarali Carvalho and Bertini, 1999 (Mesoeucrocodylia) from the Bauru Basin, Upper Cretaceous of Brazil
    AMEGHINIANA - 2013 - Tomo 50 (1): 98 – 113 ISSN 0002-7014 POSTCRANIAL SKELETON OF MARILIASUCHUS AMARALI CARVALHO AND BERTINI, 1999 (MESOEUCROCODYLIA) FROM THE BAURU BASIN, UppER CRETACEOUS OF BRAZIL Pedro HenriQue NOBRE1 and Ismar de souZA carvaLho2 1Universidade Federal de Juiz de Fora, Departamento de Ciências Naturais - CA João XXIII, Rua Visconde de Mauá 300, Bairro Santa Helena, Juiz de Fora, 36015-260 MG, Brazil. [email protected] 2Universidade Federal do Rio de Janeiro. Departamento de Geologia, CCMN/IGEO, Cidade Universitária – Ilha do Fundão, Rio de Janeiro, 21.949-900 RJ, Brazil. [email protected] Abstract. Mariliasuchus amarali is a notosuchian crocodylomorph found in the Bauru Basin, São Paulo State, Brazil (Adamantina Forma- tion, Turonian–Santonian). The main trait of M. amarali is its robust construction, featuring short, laterally expanded bones. The centra of the vertebrae are amphicoelous. In the ilium, the postacetabular process is ventrally inclined and exceeds the limits of the roof of the acetabulum. M. amarali has postcranial morphological characteristics that are very similar to those of Notosuchus terrestris, though it also displays traits resembling those of eusuchian crocodyliforms (Crocodyliformes, Eusuchia). The similarity of the appendicular skeleton of M. amarali with the recent forms of Eusuchia, leads us to infer that M. amarali did not have an erect or semi-erect posture, as proposed for the notosuchian mesoeucrocodylians, but a sprawling type posture and, possibly, had amphibian habits (sharing this characteristic with the extant Eusuchia). Key words. Mariliasuchus amarali. Crocodyliformes. Notosuchia. Postcranial skeleton. Bauru Basin. Cretaceous. Resumen. ESQUELETO POSCRANEANO DE MARILIASUCHUS AMARALI CARVALHO Y BERTINI, 1999 (MESOEUCROCO- DYLIA), DE LA CUENCA DE BAURU, CRETÁCICO SUPERIOR DE BRASIL.
    [Show full text]
  • New Transitional Fossil from Late Jurassic of Chile Sheds Light on the Origin of Modern Crocodiles Fernando E
    www.nature.com/scientificreports OPEN New transitional fossil from late Jurassic of Chile sheds light on the origin of modern crocodiles Fernando E. Novas1,2, Federico L. Agnolin1,2,3*, Gabriel L. Lio1, Sebastián Rozadilla1,2, Manuel Suárez4, Rita de la Cruz5, Ismar de Souza Carvalho6,8, David Rubilar‑Rogers7 & Marcelo P. Isasi1,2 We describe the basal mesoeucrocodylian Burkesuchus mallingrandensis nov. gen. et sp., from the Upper Jurassic (Tithonian) Toqui Formation of southern Chile. The new taxon constitutes one of the few records of non‑pelagic Jurassic crocodyliforms for the entire South American continent. Burkesuchus was found on the same levels that yielded titanosauriform and diplodocoid sauropods and the herbivore theropod Chilesaurus diegosuarezi, thus expanding the taxonomic composition of currently poorly known Jurassic reptilian faunas from Patagonia. Burkesuchus was a small‑sized crocodyliform (estimated length 70 cm), with a cranium that is dorsoventrally depressed and transversely wide posteriorly and distinguished by a posteroventrally fexed wing‑like squamosal. A well‑defned longitudinal groove runs along the lateral edge of the postorbital and squamosal, indicative of a anteroposteriorly extensive upper earlid. Phylogenetic analysis supports Burkesuchus as a basal member of Mesoeucrocodylia. This new discovery expands the meagre record of non‑pelagic representatives of this clade for the Jurassic Period, and together with Batrachomimus, from Upper Jurassic beds of Brazil, supports the idea that South America represented a cradle for the evolution of derived crocodyliforms during the Late Jurassic. In contrast to the Cretaceous Period and Cenozoic Era, crocodyliforms from the Jurassic Period are predomi- nantly known from marine forms (e.g., thalattosuchians)1.
    [Show full text]
  • Razanandrongobe Sakalavae, a Gigantic Mesoeucrocodylian from the Middle Jurassic of Madagascar, Is the Oldest Known Notosuchian
    Razanandrongobe sakalavae, a gigantic mesoeucrocodylian from the Middle Jurassic of Madagascar, is the oldest known notosuchian peerj.com /articles/3481/ Introduction A decade ago, Maganuco, Dal Sasso & Pasini (2006) described the fragmentary remains of a very large predatory archosaur from the Middle Jurassic (Bathonian) of the Mahajanga Basin, Madagascar. The material included a fragmentary right maxilla bearing three teeth, and seven peculiar isolated teeth clearly belonging to the same taxon. In spite of the scanty remains, the presence of a unique combination of features, which included a well-developed bony palate on the maxilla, mesial and lateral teeth respectively U-shaped and sub-oval in cross-section, and very large tooth denticles (1 per mm) on the carinae, allowed the authors to erect the new taxon Razanandrongobe sakalavae Maganuco, Dal Sasso & Pasini, 2006. However, the systematic position of the new species remained uncertain: indeed, besides the autapomorphic denticle size, R. sakalavae shared a mix of potential autapomorphic, synapomorphic, and homoplasic features with crocodylomorphs and theropods. Therefore, the species was referred to Archosauria incertae sedis. Here we describe new cranial material referable to R. sakalavae and consisting of an almost complete right premaxilla, the rostral half of a left dentary, a maxillary fragment with diagnostic teeth, and a very large isolated tooth crown. In addition, we tentatively refer to the same taxon five cranial fragments that were likely collected at the same locality.
    [Show full text]
  • CROCODYLIFORMES, MESOEUCROCODYLIA) from the EARLY CRETACEOUS of NORTH-EAST BRAZIL by DANIEL C
    [Palaeontology, Vol. 52, Part 5, 2009, pp. 991–1007] A NEW NEOSUCHIAN CROCODYLOMORPH (CROCODYLIFORMES, MESOEUCROCODYLIA) FROM THE EARLY CRETACEOUS OF NORTH-EAST BRAZIL by DANIEL C. FORTIER and CESAR L. SCHULTZ Departamento de Paleontologia e Estratigrafia, UFRGS, Avenida Bento Gonc¸alves 9500, 91501-970 Porto Alegre, C.P. 15001 RS, Brazil; e-mails: [email protected]; [email protected] Typescript received 27 March 2008; accepted in revised form 3 November 2008 Abstract: A new neosuchian crocodylomorph, Susisuchus we recovered the family name Susisuchidae, but with a new jaguaribensis sp. nov., is described based on fragmentary but definition, being node-based group including the last com- diagnostic material. It was found in fluvial-braided sedi- mon ancestor of Susisuchus anatoceps and Susisuchus jagua- ments of the Lima Campos Basin, north-eastern Brazil, ribensis and all of its descendents. This new species 115 km from where Susisuchus anatoceps was found, in corroborates the idea that the origin of eusuchians was a rocks of the Crato Formation, Araripe Basin. S. jaguaribensis complex evolutionary event and that the fossil record is still and S. anatoceps share a squamosal–parietal contact in the very incomplete. posterior wall of the supratemporal fenestra. A phylogenetic analysis places the genus Susisuchus as the sister group to Key words: Crocodyliformes, Mesoeucrocodylia, Neosuchia, Eusuchia, confirming earlier studies. Because of its position, Susisuchus, new species, Early Cretaceous, north-east Brazil. B razilian crocodylomorphs form a very expressive Turonian–Maastrichtian of Bauru basin: Adamantinasu- record of Mesozoic vertebrates, with more than twenty chus navae (Nobre and Carvalho, 2006), Baurusuchus species described up to now.
    [Show full text]
  • From the Late Cretaceous of Minas Gerais, Brazil: New Insights on Sphagesaurid Anatomy and Taxonomy
    The first Caipirasuchus (Mesoeucrocodylia, Notosuchia) from the Late Cretaceous of Minas Gerais, Brazil: new insights on sphagesaurid anatomy and taxonomy Agustín G. Martinelli1,2,3, Thiago S. Marinho2,4, Fabiano V. Iori5 and Luiz Carlos B. Ribeiro2 1 Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil 2 Centro de Pesquisas Paleontológicas L. I. Price, Complexo Cultural e Científico Peirópolis, Pró-Reitoria de Extensão Universitária, Universidade Federal do Triangulo Mineiro, Uberaba, Minas Gerais, Brazil 3 CONICET-Sección Paleontologia de Vertebrados, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina 4 Departamento de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Instituto de Ciências Exatas, Naturais e Educação, Uberaba, Minas Gerais, Brazil 5 Museu de Paleontologia “Prof. Antonio Celso de Arruda Campos”, Monte Alto, Sao Paulo, Brazil ABSTRACT Field work conducted by the staff of the Centro de Pesquisas Paleontológicas Llewellyn Ivor Price of the Universidade Federal do Triângulo Mineiro since 2009 at Campina Verde municipality (MG) have resulted in the discovery of a diverse vertebrate fauna from the Adamantina Formation (Bauru Basin). The baurusuchid Campinasuchus dinizi was described in 2011 from Fazenda Três Antas site and after that, preliminary descriptions of a partial crocodyliform egg, abelisaurid teeth, and fish remains have been done. Recently, the fossil sample has been considerably increased including the discovery
    [Show full text]
  • Braincase Anatomy of Almadasuchus Figarii (Archosauria, Crocodylomorpha) and a Review of the Cranial Pneumaticity in the Origins of Crocodylomorpha
    Received: 30 September 2019 | Revised: 8 January 2020 | Accepted: 24 January 2020 DOI: 10.1111/joa.13171 ORIGINAL ARTICLE Braincase anatomy of Almadasuchus figarii (Archosauria, Crocodylomorpha) and a review of the cranial pneumaticity in the origins of Crocodylomorpha Juan Martín Leardi1,2 | Diego Pol2,3 | James Matthew Clark4 1Instituto de Estudios Andinos 'Don Pablo Groeber' (IDEAN), Departamento de Abstract Ciencias Geológicas, Facultad de Ciencias Almadasuchus figarii is a basal crocodylomorph recovered from the Upper Jurassic lev- Exactas y Naturales, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina els of the Cañadón Calcáreo Formation (Oxfordian–Tithonian) of Chubut, Argentina. 2Departamento de Biodiversidad y Biología This taxon is represented by cranial remains, which consist of partial snout and pala- Experimental, Facultad de Ciencias Exactas tal remains; an excellently preserved posterior region of the skull; and isolated post- y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina cranial remains. The skull of the only specimen of the monotypic Almadasuchus was 3Museo Paleontológico Egidio Feruglio, restudied using high-resolution computed micro tomography. Almadasuchus has an CONICET, Chubut, Argentina apomorphic condition in its skull shared with the closest relatives of crocodyliforms 4Department of Biological Sciences, George Washington University, Washington, DC, (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the USA otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several Correspondence cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal ca- Juan Martín Leardi, CONICET, Instituto rotids) on the occipital surface of the skull. The endocast is tubular, as previously de Estudios Andinos 'Don Pablo Groeber' (IDEAN), Facultad de Ciencias Exactas reported in thalattosuchians, but has a marked posterior step, and a strongly pro- y Naturales, Departamento de Ciencias jected floccular recess as in other basal crocodylomorphs.
    [Show full text]