Fibonacci's Liber Abaci

Total Page:16

File Type:pdf, Size:1020Kb

Fibonacci's Liber Abaci Fibonacci's Liber Abaci A Translation into Modern English of Leonardo Pisano's Book of Calculation Translated with Notes by Laurence Sigler Fibonacci (Leonardo of Pisa) - Liber abaci 2002 Springer Introduction 4 I. Introduction by Laurence Sigler Liber abaci is one of the most important books on mathematics of the or marble on which were engraved lines. On the lines were manipulated small Middle Ages. Its effect was enormous in disseminating the Hindu number sys­ counters of stone. Another form used dust or powder on the table on which tem and the methods of algebra throughout Europe. This is the first translation marks were made with the finger. During the seventeenth century both Blaise of the Latin manuscript of Liber abaci into a modern language. It is hoped Pascal and Gottfried Leibniz designed mechanical calculating machines. Today that its availability to historians, mathematicians, and the public in general will we have electronic calculators and elaborate computers to assist us with our make a contribution to their knowledge of this part of our cultural heritage. calculations. The inexpensive electronic hand calculator is the abacus of today. Mathematics and science are, after all, as much a part of our culture as litera­ The Hindus and Arabs utilized written numbers with a place system and ture, art, and music. It is as important for a person to know about the classics methods for the basic operations that did not require the abacus. Roman nu­ of mathematics and science as it is to know about the classics of literature and merals and other similar systems of writing numbers did not facilitate calcula­ art. tion. The calculations were done with the abacus and the answers were written Leonardo Pisano, known today to mathematicians and scientists over the down in Roman numerals. The Hindu numerals with the place system are ac­ world by the name Fibonacci, was a citizen of the maritime city-state of Pisa tually used both to make the calculation and to write down the result. These from 1170 until after 1240. This was the time of the Crusades, of strong political are the procedures that children are taught in school when they learn to do addition, multiplication, subtraction, and division with pencil and paper. In Fibonacci conflicts between the Emperor Frederick II of the Holy Roman Empire and the Papacy; it was also the time of the religious fervor of St. Francis of Assisi. the Middle Ages in Europe these new written procedures were called algorithms The Italian maritime states of Pisa, Genoa, Venice and Amalfi were locked in to differentiate them from calculating with the abacus. Leonardo teaches these intense trade rivalry throughout the Mediterranean world, including Byzantium procedures in this book Liber abaci. These written procedures of calculation, (Leonardo and the Muslim countries. algebra, and practical mathematics in general were known in Italy in the Middle Ages as abaca. Leonardo was instructed in mathematics as a youth in Bugia, a trading Liber abaci, or the Book of Calculation, appeared first in 1202, and then enclave established by the city of Pisa and located on the Barbary Coast of again in a second version in 1228. Leonardo's stated intention was to introduce Africa in the Western Muslim Empire. He continued to develop as a mathe­ the Hindu number system and its operations to the Italian people. However, of matician by traveling on business and studying in such places as Egypt, Syria, Pisa) Liber abaci is much more than merely an introduction to the Hindu number Provence, and Byzantium. He developed contacts with scientists throughout system and the algorithms for working with it. Liber abaci is an encyclope­ the Mediterranean world. He became proficient in Euclid's Elements, and the dic work treating much of the known mathematics of the thirteenth century on - Greek mathematical method of definition, theorem, and proof. He learned from Liber arithmetic, algebra, and problem solving. It is, moreover, a theoretical as well the Arabic scientists the Hindu numbers and their place system, and the al­ as practical work; the methods employed in Liber abaci Leonardo firmly estab­ gorithms for the arithmetic operations. He also learned the method of algebra abaci lishes with Euclidean geometric proofs. One must not be misled by the lack of principally found in the work of al-KhwarizmI [K]. Through his study and travel modern mathematical symbolism into thinking that this work is not excellent and learned disputations with world scientists, he became a very superior cre­ or rigorous mathematics. One does not judge the quality of mathematics by ative mathematician. He participated in the academic court of Frederick II who the symbolism with which it is written. Liber abaci was good mathematics sought out and recognized great scholars of the thirteenth century. Leonardo when it was written and it is good mathematics today. Liber abaci is a se­ with his scientific knowledge saw clearly the advantages of the useful mathe­ rious mathematical work written on arithmetic and applied mathematics by a matics known to the Muslim scientists, principally their Hindu numerals and superior creative mathematician. decimal place system, their calculating algorithms, and their algebra. Knowl­ One should here again make the point, that while derived from the word aba­ edge of the Hindu numerals began to reach Europe in the second half of the cus the word abaci refers in the thirteenth century paradoxically to calculation tenth century through the Arabs by way of Spain, however their usage was still without the abacus. Thus Liber abaci should not be translated as The Book not a general practice at Leonardo's time. Leonardo resolved to write his en­ of the Abacus. A maestro d'abbaca was a person who calculated directly with cyclopedic work, Liber abaci, to bring to the Italian people the world's best Hindu numerals without using the abacus, and abaca is the discipline of doing mathematics in a usable form. this. It was Leonardo's purpose to replace Roman numerals with the Hindu Calculation has been an activity of mankind since ancient times. It was numerals not only among scientists, but in commerce and among the common facilitated by various mechanical devices that by Greek and Roman times had people. He achieved this goal perhaps more than he ever dreamed. Italian mer­ developed into the abacus. The best known form consists of a wooden frame chants carried the new mathematics and its methods wherever they went in the strung with wires on which are mounted beads for counters. The efficiency of Mediterranean world. The new mathematics also spread into Germany where this abacus is attested to by its survival and use in some parts of the world even it was propagated by the cossists (a corruption of the Italian cosa, or thing, the today. There were also early forms of the abacus consisting of tables of wood unknown of algebra). 1. Introduction 5 6 1. Introduction For three centuries or so a curriculum based upon Leonardo's Liber abaci place counts only for itself, but the figure in the second place to the left counts as was taught in Tuscany in schools of abaco normally attended by boys intending so many tens. In sequence the third place from the right is valued in hundreds, to be merchants or by others desiring to learn mathematics. Other instructors the fourth in thousands, and so forth. The zero or zephir as Leonardo calls it and some very good mathematicians also wrote books of abaco for use in the counts for nothing and serves as a place holder. Large numbers are organized school. These books vary from primitive rule manuals up to mathematics books by triples to facilitate reading. Accustomed as we are to the use of our decimal of quality, but none was so comprehensive, theoretical, and excellent as the system and our algorithms for addition and the other operations, it is easy to Liber abaci of Leonardo Pisano. overlook that for Europe in the thirteenth century this book brought a new and Leonardo Pisano wrote other books on mathematics: Liber quadratorum revolutionary way to do arithmetic. (1225), Practica geometriae (1223), Flos and Epistola ad Magistrum Theodo­ Leonardo supplements the written numbers with a system of remembering rum (1225). It is his Liber quadratorum, or The Book of Squares lSi]' that numbers by using various finger positions in the hands. When Leonardo says offers best testimony to his power as a mathematician. This work can be said that a number is kept in the hand, he means it literally. This mediaeval memory to stand between the work of Diophantus and the work of Pierre Fermat in the system of keeping numbers in hand was widely used, but has fallen out of theory of numbers. It demonstrates Leonardo's power as a creative mathemati­ use today. This holding of numbers in the hands allowed one to perform the computational algorithms more efficiently and with less writing. Today we Fibonacci cian. Liber abaci is an impressive work on arithmetic, algebra, and applied math­ make small notations with pencil or pen of numbers to be carried or borrowed ematics based upon the theoretical foundation of Euclid's mathematics. Gen­ or we simply remember them as we perform the calculations. Addition and eral methods are established by using the geometric algebra found principally in multiplication of small numbers are presented with tables to be memorized by (Leonardo Book II of the Elements. Leonardo turns to Book X for a foundation of a theory the learner, just as children do today. of quadratic irrational numbers. Throughout Liber abaci proofs are given for In chapter 2 an algorithm for multiplication is given beginning with num­ old methods, methods acquired from the Arabic world, and for methods that are bers of two places by numbers of two places, and numbers of one place by those Leonardo's original contributions.
Recommended publications
  • On K-Fibonacci Numbers of Arithmetic Indexes
    Applied Mathematics and Computation 208 (2009) 180–185 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc On k-Fibonacci numbers of arithmetic indexes Sergio Falcon *, Angel Plaza Department of Mathematics, University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain article info abstract Keywords: In this paper, we study the sums of k-Fibonacci numbers with indexes in an arithmetic k-Fibonacci numbers sequence, say an þ r for fixed integers a and r. This enables us to give in a straightforward Sequences of partial sums way several formulas for the sums of such numbers. Ó 2008 Elsevier Inc. All rights reserved. 1. Introduction One of the more studied sequences is the Fibonacci sequence [1–3], and it has been generalized in many ways [4–10]. Here, we use the following one-parameter generalization of the Fibonacci sequence. Definition 1. For any integer number k P 1, the kth Fibonacci sequence, say fFk;ngn2N is defined recurrently by Fk;0 ¼ 0; Fk;1 ¼ 1; and Fk;nþ1 ¼ kFk;n þ Fk;nÀ1 for n P 1: Note that for k ¼ 1 the classical Fibonacci sequence is obtained while for k ¼ 2 we obtain the Pell sequence. Some of the properties that the k-Fibonacci numbers verify and that we will need later are summarized below [11–15]: pffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffi n n 2 2 r1Àr2 kþ k þ4 kÀ k þ4 [Binet’s formula] Fk;n ¼ r Àr , where r1 ¼ 2 and r2 ¼ 2 . These roots verify r1 þ r2 ¼ k, and r1 Á r2 ¼1 1 2 2 nþ1Àr 2 [Catalan’s identity] Fk;nÀrFk;nþr À Fk;n ¼ðÀ1Þ Fk;r 2 n [Simson’s identity] Fk;nÀ1Fk;nþ1 À Fk;n ¼ðÀ1Þ n [D’Ocagne’s identity] Fk;mFk;nþ1 À Fk;mþ1Fk;n ¼ðÀ1Þ Fk;mÀn [Convolution Product] Fk;nþm ¼ Fk;nþ1Fk;m þ Fk;nFk;mÀ1 In this paper, we study different sums of k-Fibonacci numbers.
    [Show full text]
  • On the Prime Number Subset of the Fibonacci Numbers
    Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach On the Prime Number Subset of the Fibonacci Numbers Lacey Fish1 Brandon Reid2 Argen West3 1Department of Mathematics Louisiana State University Baton Rouge, LA 2Department of Mathematics University of Alabama Tuscaloosa, AL 3Department of Mathematics University of Louisiana Lafayette Lafayette, LA Lacey Fish, Brandon Reid, Argen West SMILE Presentations, 2010 LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions What is a sieve? What is a sieve? A sieve is a method to count or estimate the size of “sifted sets” of integers. Well, what is a sifted set? A sifted set is made of the remaining numbers after filtering. Lacey Fish, Brandon Reid, Argen West LSU, UA, ULL Sieve Theory Introduction to Sieves Fibonacci Numbers Fibonacci sequence mod a prime Probability of Fibonacci Primes Matrix Approach Basic Definitions History Two Famous and Useful Sieves Sieve of Eratosthenes Brun’s Sieve Lacey Fish, Brandon Reid, Argen West
    [Show full text]
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • Fibonacci Number
    Fibonacci number From Wikipedia, the free encyclopedia • Have questions? Find out how to ask questions and get answers. • • Learn more about citing Wikipedia • Jump to: navigation, search A tiling with squares whose sides are successive Fibonacci numbers in length A Fibonacci spiral, created by drawing arcs connecting the opposite corners of squares in the Fibonacci tiling shown above – see golden spiral In mathematics, the Fibonacci numbers form a sequence defined by the following recurrence relation: That is, after two starting values, each number is the sum of the two preceding numbers. The first Fibonacci numbers (sequence A000045 in OEIS), also denoted as Fn, for n = 0, 1, … , are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, ... (Sometimes this sequence is considered to start at F1 = 1, but in this article it is regarded as beginning with F0=0.) The Fibonacci numbers are named after Leonardo of Pisa, known as Fibonacci, although they had been described earlier in India. [1] [2] • [edit] Origins The Fibonacci numbers first appeared, under the name mātrāmeru (mountain of cadence), in the work of the Sanskrit grammarian Pingala (Chandah-shāstra, the Art of Prosody, 450 or 200 BC). Prosody was important in ancient Indian ritual because of an emphasis on the purity of utterance. The Indian mathematician Virahanka (6th century AD) showed how the Fibonacci sequence arose in the analysis of metres with long and short syllables. Subsequently, the Jain philosopher Hemachandra (c.1150) composed a well-known text on these.
    [Show full text]
  • The "Greatest European Mathematician of the Middle Ages"
    Who was Fibonacci? The "greatest European mathematician of the middle ages", his full name was Leonardo of Pisa, or Leonardo Pisano in Italian since he was born in Pisa (Italy), the city with the famous Leaning Tower, about 1175 AD. Pisa was an important commercial town in its day and had links with many Mediterranean ports. Leonardo's father, Guglielmo Bonacci, was a kind of customs officer in the North African town of Bugia now called Bougie where wax candles were exported to France. They are still called "bougies" in French, but the town is a ruin today says D E Smith (see below). So Leonardo grew up with a North African education under the Moors and later travelled extensively around the Mediterranean coast. He would have met with many merchants and learned of their systems of doing arithmetic. He soon realised the many advantages of the "Hindu-Arabic" system over all the others. D E Smith points out that another famous Italian - St Francis of Assisi (a nearby Italian town) - was also alive at the same time as Fibonacci: St Francis was born about 1182 (after Fibonacci's around 1175) and died in 1226 (before Fibonacci's death commonly assumed to be around 1250). By the way, don't confuse Leonardo of Pisa with Leonardo da Vinci! Vinci was just a few miles from Pisa on the way to Florence, but Leonardo da Vinci was born in Vinci in 1452, about 200 years after the death of Leonardo of Pisa (Fibonacci). His names Fibonacci Leonardo of Pisa is now known as Fibonacci [pronounced fib-on-arch-ee] short for filius Bonacci.
    [Show full text]
  • Twelve Simple Algorithms to Compute Fibonacci Numbers Arxiv
    Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA [email protected] April 16, 2018 Abstract The Fibonacci numbers are a sequence of integers in which every number after the first two, 0 and 1, is the sum of the two preceding numbers. These numbers are well known and algorithms to compute them are so easy that they are often used in introductory algorithms courses. In this paper, we present twelve of these well-known algo- rithms and some of their properties. These algorithms, though very simple, illustrate multiple concepts from the algorithms field, so we highlight them. We also present the results of a small-scale experi- mental comparison of their runtimes on a personal laptop. Finally, we provide a list of homework questions for the students. We hope that this paper can serve as a useful resource for the students learning the basics of algorithms. arXiv:1803.07199v2 [cs.DS] 13 Apr 2018 1 Introduction The Fibonacci numbers are a sequence Fn of integers in which every num- ber after the first two, 0 and 1, is the sum of the two preceding num- bers: 0; 1; 1; 2; 3; 5; 8; 13; 21; ::. More formally, they are defined by the re- currence relation Fn = Fn−1 + Fn−2, n ≥ 2 with the base values F0 = 0 and F1 = 1 [1, 5, 7, 8]. 1 The formal definition of this sequence directly maps to an algorithm to compute the nth Fibonacci number Fn. However, there are many other ways of computing the nth Fibonacci number.
    [Show full text]
  • On Popularization of Scientific Education in Italy Between 12Th and 16Th Century
    PROBLEMS OF EDUCATION IN THE 21st CENTURY Volume 57, 2013 90 ON POPULARIZATION OF SCIENTIFIC EDUCATION IN ITALY BETWEEN 12TH AND 16TH CENTURY Raffaele Pisano University of Lille1, France E–mail: [email protected] Paolo Bussotti University of West Bohemia, Czech Republic E–mail: [email protected] Abstract Mathematics education is also a social phenomenon because it is influenced both by the needs of the labour market and by the basic knowledge of mathematics necessary for every person to be able to face some operations indispensable in the social and economic daily life. Therefore the way in which mathe- matics education is framed changes according to modifications of the social environment and know–how. For example, until the end of the 20th century, in the Italian faculties of engineering the teaching of math- ematical analysis was profound: there were two complex examinations in which the theory was as impor- tant as the ability in solving exercises. Now the situation is different. In some universities there is only a proof of mathematical analysis; in others there are two proves, but they are sixth–month and not annual proves. The theoretical requirements have been drastically reduced and the exercises themselves are often far easier than those proposed in the recent past. With some modifications, the situation is similar for the teaching of other modern mathematical disciplines: many operations needing of calculations and math- ematical reasoning are developed by the computers or other intelligent machines and hence an engineer needs less theoretical mathematics than in the past. The problem has historical roots. In this research an analysis of the phenomenon of “scientific education” (teaching geometry, arithmetic, mathematics only) with respect the methods used from the late Middle Ages by “maestri d’abaco” to the Renaissance hu- manists, and with respect to mathematics education nowadays is discussed.
    [Show full text]
  • Fibonacci Is Not a Pizza Topping Bevel Cut April, 2020 Andrew Davis Last Month I Saw an Amazing Advertisement Appearing in Our Woodworking Universe
    Fibonacci is Not a Pizza Topping Bevel Cut April, 2020 Andrew Davis Last month I saw an amazing advertisement appearing in our woodworking universe. You might say that about all of the Woodpeckers advertisements – promoting good looking, even sexy tools and accessories for the woodworker who has money to burn or who does some odd task many times per day. I don’t fall into either category, though I often click on the ads to see the details and watch a video or two. These days I seem to have time to burn, if not money. Anyway, as someone who took too many math courses in my formative years, this ad absolutely caught my attention. I was left guessing two things: what is a Fibonacci and why would anyone need such a tool? Mr. Fibonacci and his Numbers Mathematician Leonardo Fibonacci was born in Pisa – now Italy – in 1170 and is credited with the first CNC machine and plunge router. Fibonacci popularized the Hindu–Arabic numeral system in the Western World (thereby replacing Roman numerals) primarily through his publication in 1202 called the Book of Calculation. Think how hard it would be to do any woodworking today if dimensions were called out as XVI by XXIV (16 x 24). But for this bevel cut article, the point is that he introduced Europe to the sequence of Fibonacci numbers. Fibonacci numbers are a sequence in which each number is the sum of the two preceding numbers. Here are the first Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418.
    [Show full text]
  • The History of the Primality of One—A Selection of Sources
    THE HISTORY OF THE PRIMALITY OF ONE|A SELECTION OF SOURCES ANGELA REDDICK, YENG XIONG, AND CHRIS K. CALDWELLy This document, in an altered and updated form, is available online: https:// cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.html. Please use that document instead. The table below is a selection of sources which address the question \is the number one a prime number?" Whether or not one is prime is simply a matter of definition, but definitions follow use, context and tradition. Modern usage dictates that the number one be called a unit and not a prime. We choose sources which made the author's view clear. This is often difficult because of language and typographical barriers (which, when possible, we tried to reproduce for the primary sources below so that the reader could better understand the context). It is also difficult because few addressed the question explicitly. For example, Gauss does not even define prime in his pivotal Disquisitiones Arithmeticae [45], but his statement of the fundamental theorem of arithmetic makes his stand clear. Some (see, for example, V. A. Lebesgue and G. H. Hardy below) seemed ambivalent (or allowed it to depend on the context?)1 The first column, titled `prime,' is yes when the author defined one to be prime. This is just a raw list of sources; for an evaluation of the history see our articles [17] and [110]. Any date before 1200 is an approximation. We would be glad to hear of significant additions or corrections to this list. Date: May 17, 2016. 2010 Mathematics Subject Classification.
    [Show full text]
  • Algorithms, Recursion and Induction: Euclid and Fibonacci 1 Introduction
    Algorithms, Recursion and Induction: Euclid and Fibonacci Desh Ranjan Department of Computer Science Old Dominion University, Norfolk, VA 23529 1 Introduction The central task in computing is designing of efficient computational meth- ods, or algorithms, for solving problems. An algorithm is a precise description of steps to be performed to accomplish a task or solve a problem. Recursion or recursive thinking is a key concept in solving problems and designing efficient algorithms to do so.Often when trying to solve a problem, one encounters a situation where the solution to a larger instance of the problem can be obtained if an appropriate smaller instance (or several smaller instances) of the same problem could be solved. Similarly, often one can define functions where values at “larger” arguments of the function are based on its own value at “smaller” argument values. In the same vein, sometimes it is possible to describe how to construct larger objects from smaller objects of similar type. However, the obvious question/difficulty here is how does one obtain so- lution to smaller instances. If one were to think as before (recursively!) this would require solving further smaller instances (sub-instances) of the same problem. Solving these sub-instances could lead to requiring solution of sub- sub-instances, etc. This could all become very confusing and the insight that the larger problem could have been solved using the solutions to the smaller problems would be useless if indeed one could not in some systematic way take advantage of it. Use of proper recursive definitions and notation allows us to avoid this confusion and harness the power of recursive thinking.
    [Show full text]
  • Eureka Issue 61
    Eureka 61 A Journal of The Archimedeans Cambridge University Mathematical Society Editors: Philipp Legner and Anja Komatar © The Archimedeans (see page 94 for details) Do not copy or reprint any parts without permission. October 2011 Editorial Eureka Reinvented… efore reading any part of this issue of Eureka, you will have noticed The Team two big changes we have made: Eureka is now published in full col- our, and printed on a larger paper size than usual. We felt that, with Philipp Legner Design and Bthe internet being an increasingly large resource for mathematical articles of Illustrations all kinds, it was necessary to offer something new and exciting to keep Eu- reka as successful as it has been in the past. We moved away from the classic Anja Komatar Submissions LATEX-look, which is so common in the scientific community, to a modern, more engaging, and more entertaining design, while being conscious not to Sean Moss lose any of the mathematical clarity and rigour. Corporate Ben Millwood To make full use of the new design possibilities, many of this issue’s articles Publicity are based around mathematical images: from fractal modelling in financial Lu Zou markets (page 14) to computer rendered pictures (page 38) and mathemati- Subscriptions cal origami (page 20). The Showroom (page 46) uncovers the fundamental role pictures have in mathematics, including patterns, graphs, functions and fractals. This issue includes a wide variety of mathematical articles, problems and puzzles, diagrams, movie and book reviews. Some are more entertaining, such as Bayesian Bets (page 10), some are more technical, such as Impossible Integrals (page 80), or more philosophical, such as How to teach Physics to Mathematicians (page 42).
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]