The Low-Mass Initial Mass Function of Dwarf Galaxy Ursa Minor

Total Page:16

File Type:pdf, Size:1020Kb

The Low-Mass Initial Mass Function of Dwarf Galaxy Ursa Minor Hubble Space Telescope Cycle 19 GO Proposal <ID> The Low-Mass Initial Mass Function of Dwarf Galaxy Ursa Minor Principal Investigator: Mr. Joel Leja Institution: Yale University Electronic Mail: [email protected] Scientific Category: RESOLVED STELLAR POPULATIONS Scientific Keywords: Dwarf Galaxies, Local Group Galaxies, Low-Mass And Cool Stars, Star Formation Instruments: ACS Proprietary Period: 6 Orbit Request Prime Parallel Cycle 19 11 0 Abstract IMF deviations are most likely present in extreme environments. The nearby dwarf galaxies are thus a natural laboratory for an IMF investigation. These galaxies are extremely dark-matter dominated (M/L~100) and metal- poor ([Fe/H]~-2), with total masses around 10^9 solar masses [Tolstoy et al., 2009]. Yet, unlike globular clusters, their relaxation timescale is greater than the present age of the universe, so their initial stellar population is preserved against mass segregation. Furthermore, while more extreme environments can be found farther away, dwarf galaxies are unique because they are close enough to resolve individual stars: for the closest few (75 kpc), stars are resolvable down to roughly 0.3 solar masses with Hubble Space Telescope data. This is crucial; the high-mass end of the IMF is well-characterized because bright stars are easy to measure, but the behavior of the low-mass end remains uncertain. These space-based data will allow direct measurement of the low-mass end of the IMF in Local Group dwarf galaxies, a unique and fruitful study that has not been successfully completed before now. Mr. Joel Leja : The Low-Mass Initial Mass Function of Dwarf Galaxy Ursa Minor Investigators: Investigator Institution Country PI Mr. Joel Leja Yale University USA/CT Number of investigators: 1 Target Summary: Target RA Dec Magnitude URSA MINOR 15 09 11.3400 +67 12 51.70 V~23.5, main sequence turn-off Observing Summary: Target Config Mode and Spectral Elements Flags Orbits URSA MINOR ACS/WFC Imaging F606W 5 URSA MINOR ACS/WFC Imaging F814W 6 Total prime orbits: 11 Scientific Justification All astronomical knowledge comes from the measurement of photons, and the primary source of these photons is stars. The theory of stellar evolution implies that most physical prop- erties of a star can be derived from its initial mass, which, for a single star, is usually an observable quantity. However, most extragalactic sources of interest are composed of unre- solvable stellar populations. In this situation, it becomes necessary to use an initial mass function (IMF) to parametrize the number of stars as a function of mass. An IMF must be assumed before any conclusions may be drawn regarding the composition of unresolved stellar populations. The importance of the IMF cannot be understated– most problems in extragalactic astrophysics can be ”solved” by an appropriate choice of IMF (Bastian et al., 2010). There are strong theoretical reasons to believe the IMF should be a function of the local environment (metallicity, dark matter fraction, magnetic fields), yet strangely, there has been no significant deviation measured since the initial study fifty-five years ago [Salpeter, 1955] until very recently; van Dokkum and Conroy (2011) definitively measured a bottom-heavy IMF in bright elliptical galaxies. This motivates a search in the corresponding direction, the nearby dark-matter dominated dwarf galaxies. The Perfect Target: There have been hints from ground-based data that the IMF in these dwarf galaxies is irregular. Early analysis of data from the ground-based 3.6m Canada- France-Hawaii Telescope (CFHT) data indicate that the IMF in the ultra-faint dwarf galaxy Coma Berenices differs decisively from the Salpeter IMF (see figure 2); deeper imaging is required to prove this conclusively. An HST proposal submitted by Prof. Marla Geha is exploring this possibility. To perform a parallel analysis of the regular dwarf galaxies, Ursa Minor is the natural target, as it is the closest at 75 kpc. This proximity is crucial to probing the lower mass limits. Past Attempts: The sole IMF study published on local dwarf galaxies of any type is Wyse et. al (2002), which compared the mass function of the dwarf galaxy Ursa Minor to two globular clusters using HST data and found no significant difference. There are several issues with this older study that have risen with reexamination. First, the IMF was mea- sured with WFPC2 data down to mF 814W =27.2; the ACS/WFC imaging will go considerably deeper. More importantly, authors assumed a distance of 65 kpc to Ursa Minor, whereas more recent studies of spectroscopic metallicity (Kirby et al., 2010) point towards a distance of 75 kpc. This is crucial because the study hinged on a K-S test between the populations of Ursa Minor and the globular clusters being compared, and the K-S test is highly sensitive to systematic errors in the distance. The authors noted if Ursa Minor was only slightly farther away, the results of this test would reverse- and indeed, this has turned out to be true. This also lowers the mass limit of the test to 0.4 M ,whichnolongerencompassesthelowmass ⊙ stars in question. This is strong motivation for another attempt at this study. What is Better: There are multiple reasons to believe a second study will have both 1 more accuracy and increased longevity. The measured mass function will not be just com- pared with existing mass functions, but indeed, with various theoretical models for the IMF. This will rule out the possibility of bias due to mass segregation in the globular clusters. Due to WFC3’s increased sensitivity, the imaging will also deeper by 1.5 magnitudes, which will probe below the 0.4 M limit in question. This represents a substantial improvement ⊙ over the original study. Since a different field of Ursa Minor can be probed with the new pointing, data from the original WFPC2 image can also be scaled and combined with the new pointing in order to enhance the M =0.4-0.7 data. ⊙ Accounting for Binaries: Alargefraction,perhapsamajority,ofstarsareinbinaries. The effect of unresolvable binary companions on the derived luminosity function becomes larger toward lower stellar masses- the range examined in this study- and can alter the de- rived IMF by a factor of two at the lowest masses. It is possible to mitigate the effect of binaries on one’s conclusion in several ways. First, comparison of results to IMFs derived in other environments without binary corrections, such as globular clusters, is possible, and will result in unbiased results.. Second, one can correct for the effects of binaries making standard assumptions for the binary fraction and mass ratio distribution (Kroupa 1993) in order to infer the true IMF. The standard assumptions are likely to be reasonable even in this extreme environment, as there is little evidence that binary fraction depends on metallicity. Larger Effect: Confirmed measurement of deviations in the IMF will have a substantial effect on the astronomical community. Outstanding problems in extragalactic astronomy re- quire an assumed IMF in order to even be defined; with a modified IMF, they might change or disappear entirely. For example, the quantity of dark matter inferred from dynamical studies depends upon the stellar mass-to-light ratio; one can ”hide” matter in low-mass stars. Ob- servational evidence for these deviations also open up all sorts of interesting questions in the theory of star formation. The physical origin of deviations will also need to be investigated, and this will reveal much about the physical processes involved in star formation itself. In addition, investigation of the IMF in ultra-faint dwarf galaxies will involve characterizing much about these objects that is currently unknown. Their star-formation history will be an ancillary outcome. Deeper imaging will help to constrain the mass, age, and metallicity of these tiny satellites, which in turn will lead to further confirmation of the existing ΛCDM cosmological model. References [1] N. Bastian, K. R. Covey, and M. R. Meyer. Looking for Systematic Variations in the Stellar Initial Mass Function. ArXiv e-prints, November 2010. [2] E. N. Kirby, P. Guhathakurta, J. D. Simon, M. C. Geha, C. M. Rockosi, C. Sneden, J. G. Cohen, S. T. Sohn, S. R. Majewski, and M. Siegel. Multi-element Abundance 2 Figure 1: A color-magnitude diagram of Ursa Minor in F606W and F814W. The main-sequence cutoffis difficult to discern, as many of the brighter stars have been excised; it is V 23.5. ∼ Measurements from Medium-resolution Spectra. II. Catalog of Stars in Milky Way Dwarf Satellite Galaxies. , 191:352–375, December 2010. [3] P. Kroupa, C. A. Tout, and G. Gilmore. The distribution of low-mass stars in the Galactic disc. , 262:545–587, June 1993. [4] E. E. Salpeter. The Luminosity Function and Stellar Evolution. , 121:161–+, January 1955. [5] P. van Dokkum and C. Conroy. Confirmation of Enhanced Dwarf-sensitive Absorption Features in the Spectra of Massive Elliptical Galaxies: Further Evidence for a Non- universal Initial Mass Function. ArXiv e-prints,February2011. [6] R. F. G. Wyse, G. Gilmore, M. L. Houdashelt, S. Feltzing, L. Hebb, J. S. Gallagher, III, and T. A. Smecker-Hane. Faint stars in the Ursa Minor dwarf spheroidal galaxy: implications for the low-mass stellar initial mass function at high redshift. , 7:395–433, October 2002. 3 Figure 2: Tantalizing 3.6m Canada-France-Hawaii Telescope (CFHT) data indicating a potential IMF deviation in Coma Berenices. However, deeper data are necessary to prove this conclusively. For reference, the Salpeter IMF is at α=-2.3 Description of the Observations Observations in two filters are required in order to filter out unresolved galaxies and fore- ground stars. F606W and F814W are selected as they bear a strong resemblance to the Johnson V and R bands, which facilitates comparison to other IMF studies.
Recommended publications
  • A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies J.S. Gallagher, G. J. Madsen, R. J. Reynolds Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706-1582; [email protected], [email protected], [email protected] E. K. Grebel Max-Planck Institute for Astronomy, K¨onigstuhl 17, D-69117 Heidelberg, Germany; [email protected] T. A. Smecker-Hane Department of Physics & Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575; [email protected] ABSTRACT The Wisconsin Hα Mapper has been used to set the first deep upper limits on the intensity of diffuse Hα emission from warm ionized gas in the Draco and Ursa Minor dwarf spheroidal 1 galaxies. Assuming a velocity dispersion of 15 km s− for the ionized gas, we set limits of IHα 0:024R and IHα 0:021R for the Draco and Ursa Minor dSphs, respectively, averaged ≤ ≤ over our 1◦ circular beam. Adopting a simple model for the ionized interstellar medium, these limits translate to upper bounds on the mass of ionized gas of .10% of the stellar mass, or 10 times the upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa Minor∼ dSphs could contain substantial amounts of interstellar gas, equivalent to all of the gas injected by dying stars since the end of their main star forming episodes &8 Gyr in the past, without violating these limits on the mass of ionized gas.
    [Show full text]
  • Does the Fornax Dwarf Spheroidal Have a Central Cusp Or Core?
    Research Collection Journal Article Does the Fornax dwarf spheroidal have a central cusp or core? Author(s): Goerdt, Tobias; Moore, Ben; Read, J.I.; Stadel, Joachim; Zemp, Marcel Publication Date: 2006-05 Permanent Link: https://doi.org/10.3929/ethz-b-000024289 Originally published in: Monthly Notices of the Royal Astronomical Society 368(3), http://doi.org/10.1111/ j.1365-2966.2006.10182.x Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Mon. Not. R. Astron. Soc. 368, 1073–1077 (2006) doi:10.1111/j.1365-2966.2006.10182.x Does the Fornax dwarf spheroidal have a central cusp or core? , Tobias Goerdt,1 Ben Moore,1 J. I. Read,1 Joachim Stadel1 and Marcel Zemp1 2 1Institute for Theoretical Physics, University of Zurich,¨ Winterthurerstrasse 190, CH-8057 Zurich,¨ Switzerland 2Institute of Astronomy, ETH Zurich,¨ ETH Honggerberg¨ HPF D6, CH-8093 Zurich,¨ Switzerland Accepted 2006 February 8. Received 2006 February 7; in original form 2005 December 21 ABSTRACT The dark matter dominated Fornax dwarf spheroidal has five globular clusters orbiting at ∼1 kpc from its centre. In a cuspy cold dark matter halo the globulars would sink to the centre from their current positions within a few Gyr, presenting a puzzle as to why they survive undigested at the present epoch. We show that a solution to this timing problem is to adopt a cored dark matter halo. We use numerical simulations and analytic calculations to show that, under these conditions, the sinking time becomes many Hubble times; the globulars effectively stall at the dark matter core radius.
    [Show full text]
  • National Optical Astronomy Observatories
    E NATIONAL OPTICAL ASTRONOMY OBSERVATORIES Preprint Series NOAO Preprint No. 834 WFPC2 OBSERVATIONS OF THE URSA MINOR DWARF SPHEROIDAL GALAXY KENNETH J. MIGHELL CHRISTOPHER J. BURKE To Appear In: The Astrophysical Journal March 1999 Operated for the National Science Foundation by the Association of Universities for Research in Astronomy, Inc. To appear in the Astronomical Journal (accepted 1999 March 1) WFPC2 OBSERVATIONS OF THE URSA MINOR DWARF SPHEROIDAL GALAXY 1 KENNETH J. _'IIGHELL 2 AND CHRISTOPHER J. BURKE 3'4 Kitt Peak National Observatory, National Optical Astronomy Observatories 5, P. O. Box 2673:2, Tucson, AZ 85726 mighell@noao, edu, chrislopt_ r. burk_ @yale.cdu 1Based on observations made with tile NASA/ESA Hubble Space Telescope, obtained fl'om the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555. 2Guest User, Canadian Astronomy Data Centre, which is operated by the Dominion Astrophysical Observatory for the National Research Council of Canada's Herzberg Institute of Astrophysics. ZBased on research conducted at. NOAO as part of the Research Experiences for Undergraduates program. 4 Current address: Department of Astronomy, Yale University, P. O. Box 208101, New ttaven, CT 06520-8101 SNOAO is operated by the Association of Universilies for I/esearch in Astronomy, Inc., under cooperative agreelnent with the National Science Foundation. _ ABSTRACT \Ve present our analysis of archival Hubble Space Telescope Wide Field Planetary Canlera 2 (WFPC2) observations in F555W (,-_V) and F814W (_I) of the central region of the Ursa Minor dwarf spheroidal galaxy.
    [Show full text]
  • Dark Matter Searches Targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope
    Doctoral Thesis in Physics Dark Matter searches targeting Dwarf Spheroidal Galaxies with the Fermi Large Area Telescope Maja Garde Lindholm Oskar Klein Centre for Cosmoparticle Physics and Cosmology, Particle Astrophysics and String Theory Department of Physics Stockholm University SE-106 91 Stockholm Stockholm, Sweden 2015 Cover image: Top left: Optical image of the Carina dwarf galaxy. Credit: ESO/G. Bono & CTIO. Top center: Optical image of the Fornax dwarf galaxy. Credit: ESO/Digitized Sky Survey 2. Top right: Optical image of the Sculptor dwarf galaxy. Credit:ESO/Digitized Sky Survey 2. Bottom images are corresponding count maps from the Fermi Large Area Tele- scope. Figures 1.1a, 1.2, 1.3, and 4.2 used with permission. ISBN 978-91-7649-224-6 (pp. i{xxii, 1{120) pp. i{xxii, 1{120 c Maja Garde Lindholm, 2015 Printed by Publit, Stockholm, Sweden, 2015. Typeset in pdfLATEX Abstract In this thesis I present our recent work on gamma-ray searches for dark matter with the Fermi Large Area Telescope (Fermi-LAT). We have tar- geted dwarf spheroidal galaxies since they are very dark matter dominated systems, and we have developed a novel joint likelihood method to com- bine the observations of a set of targets. In the first iteration of the joint likelihood analysis, 10 dwarf spheroidal galaxies are targeted and 2 years of Fermi-LAT data is analyzed. The re- sulting upper limits on the dark matter annihilation cross-section range 26 3 1 from about 10− cm s− for dark matter masses of 5 GeV to about 5 10 23 cm3 s 1 for dark matter masses of 1 TeV, depending on the × − − annihilation channel.
    [Show full text]
  • Constraints on the Parameters of Radiatively Decaying Dark Matter from the Dark Matter Halos of the Milky Way and Ursa Minor
    A&A 471, 51–57 (2007) Astronomy DOI: 10.1051/0004-6361:20066774 & c ESO 2007 Astrophysics Constraints on the parameters of radiatively decaying dark matter from the dark matter halos of the Milky Way and Ursa Minor A. Boyarsky1,2,3, J. Nevalainen4, and O. Ruchayskiy5,2 1 CERN, PH-TH, 1211 Geneve 23, Switzerland e-mail: [email protected] 2 École Polytechnique Fédérale de Lausanne, Institute of Theoretical Physics, FSB/ITP/LPPC, BSP 720, 1015 Lausanne, Switzerland 3 On leave of absence from Bogolyubov Institute of Theoretical Physics, Kyiv, Ukraine 4 Helsinki University Observatory, Finland e-mail: [email protected] 5 Institut des Hautes Études Scientifiques, 91440 Bures-sur-Yvette, France e-mail: [email protected] Received 20 November 2006 / Accepted 19 April 2007 ABSTRACT Aims. We improve the earlier restrictions on parameters of the warm dark matter (DM) in the form of a sterile neutrinos. Methods. The results were obtained from not observing the DM decay line in the X-ray spectrum of the Milky Way (using the recent XMM-Newton PN blank sky data). We also present a similar constraint coming from the recent XMM-Newton observation of Ursa Minor – dark, X-ray quiet dwarf spheroidal galaxy. Results. The new Milky way data improve on (by as much as the order of magnitude at masses ∼3.5 keV) existing constraints. Although the observation of Ursa Minor has relatively poor statistics, the constraints are comparable to those recently obtained using observations of the Large Magellanic Cloud or M 31. This confirms a recent proposal that dwarf satellites of the MW are very interesting candidates for the DM search and dedicated studies should be made to this purpose.
    [Show full text]
  • A Search for Ionized Gas in the Draco and Ursa Minor Dwarf Spheroidal Galaxies J
    The Astrophysical Journal, 588:326–330, 2003 May 1 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. A SEARCH FOR IONIZED GAS IN THE DRACO AND URSA MINOR DWARF SPHEROIDAL GALAXIES J. S. Gallagher, G. J. Madsen, and R. J. Reynolds Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706-1582; [email protected], [email protected], [email protected] E. K. Grebel Max-Planck-Institut fu¨r Astronomie, Ko¨nigstuhl 17, D-69117 Heidelberg, Germany; [email protected] and T. A. Smecker-Hane Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575; [email protected] Received 2002 December 6; accepted 2003 January 13 ABSTRACT The Wisconsin H Mapper has been used to set the first deep upper limits on the intensity of diffuse H emission from warm ionized gas in the Draco and Ursa Minor dwarf spheroidal galaxies (dSphs). Assuming À1 a velocity dispersion of 15 km s for the ionized gas, we set limits of IH 0:024 R and IH 0:021 R for the Draco and Ursa Minor dSphs, respectively, averaged over our 1 circular beam. Adopting a simple model for the ionized interstellar medium, these limits translate to upper bounds on the mass of ionized gas of d10% of the stellar mass, or 10 times the upper limits for the mass of neutral hydrogen. Note that the Draco and Ursa Minor dSphs could contain substantial amounts of interstellar gas, equivalent to all of the gas injected by dying stars since the end of their main star-forming episodes e8 Gyr in the past, without violating these limits on the mass of ionized gas.
    [Show full text]
  • Supernova-Driven Outflows and Chemical Evolution of Dwarf Spheroidal Galaxies
    Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies Yong-Zhong Qiana,1 and G. J. Wasserburgb,1 aSchool of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455; and bThe Lunatic Asylum, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Contributed by G. J. Wasserburg, January 30, 2012 (sent for review October 13, 2011) We present a general phenomenological model for the metallicity Recent observations (14) give results for eight dSphs with rather distribution (MD) in terms of ½Fe∕H for dwarf spheroidal galaxies detailed structure of their MDs and provide a basis for exploring (dSphs). These galaxies appear to have stopped accreting gas from models of their chemical evolution (e.g., ref. 15). Among the key the intergalactic medium and are fossilized systems with their stars issues that we try to address are MDs exhibited by stellar popula- undergoing slow internal evolution. For a wide variety of infall his- tions of dSphs. Our general approach follows that of Lynden-Bell tories of unprocessed baryonic matter to feed star formation, most described in his incisive and excellent article on “theories” of the of the observed MDs can be well described by our model. The key chemical evolution of galaxies (16). It will be shown that the me- requirement is that the fraction of the gas mass lost by supernova- tallicity at which the MD peaks is directly related to the efficiency driven outflows is close to unity. This model also predicts a relation- of SN-driven outflows and that the MD of a dSph and the rela- ship between the total stellar mass and the mean metallicity for tionship between the stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos.
    [Show full text]
  • Kinematics of the Dwarf Spheroidal Galaxies Draco and Ursa Minor
    University of Groningen Kapteyn Astronomical Institute Kinematics of the dwarf spheroidal galaxies Draco and Ursa Minor MSc Thesis in Astronomy by Johanna Hartke Groningen, August 14, 2015 Supervisors Second Reader Prof. Dr. Eline Tolstoy Prof. Dr. Scott Trager Dr. Shoko Jin Dr. Maarten Breddels Abstract The aim of this thesis is to study the kinematics of the Local Group dwarf spheroidal galaxies Ursa Minor and Draco. These two galaxies are an interesting pair to study, since they are similar in terms of mass, extent, and distance. However, while Draco appears to have a perfect, undisturbed stellar distribution, Ursa Minor shows signs of tidal disturbance. We use new optical spectroscopy of individual red gi- ant branch stars from the AF2-WYFFOS fiber spectrograph on the William Herschel Telescope. We observed several hundred stars in the CaII triplet region. The data have been pipeline-processed at CASU in Cambridge using prototype WEAVE pro- cessing. We combine our dataset of Draco with data published by Walker, Olszewski & Mateo (2015) and apply orbit-based Schwarzschild modeling to the velocity data in order to constrain the dwarf spheroidal's (dark) matter distribution. We are able to determine the dark matter halo mass distribution for a NFW and a cored profile. Page 1 of 58 Contents 1 Introduction 4 1.1 Galaxy Formation . .5 1.2 Local Group dSph galaxies . .6 1.2.1 Draco . .7 1.2.2 Ursa Minor . .8 1.3 Dynamical modeling . .8 1.3.1 Early attempts to model dSphs . .8 1.3.2 Jeans modeling . .9 1.3.3 Schwarzschild modeling .
    [Show full text]
  • The Milky Way the Milky Way's Neighbourhood
    The Milky Way What Is The Milky Way Galaxy? The.Milky.Way.is.the.galaxy.we.live.in..It.contains.the.Sun.and.at.least.one.hundred.billion.other.stars..Some.modern. measurements.suggest.there.may.be.up.to.500.billion.stars.in.the.galaxy..The.Milky.Way.also.contains.more.than.a.billion. solar.masses’.worth.of.free-floating.clouds.of.interstellar.gas.sprinkled.with.dust,.and.several.hundred.star.clusters.that. contain.anywhere.from.a.few.hundred.to.a.few.million.stars.each. What Kind Of Galaxy Is The Milky Way? Figuring.out.the.shape.of.the.Milky.Way.is,.for.us,.somewhat.like.a.fish.trying.to.figure.out.the.shape.of.the.ocean.. Based.on.careful.observations.and.calculations,.though,.it.appears.that.the.Milky.Way.is.a.barred.spiral.galaxy,.probably. classified.as.a.SBb.or.SBc.on.the.Hubble.tuning.fork.diagram. Where Is The Milky Way In Our Universe’! The.Milky.Way.sits.on.the.outskirts.of.the.Virgo.supercluster..(The.centre.of.the.Virgo.cluster,.the.largest.concentrated. collection.of.matter.in.the.supercluster,.is.about.50.million.light-years.away.).In.a.larger.sense,.the.Milky.Way.is.at.the. centre.of.the.observable.universe..This.is.of.course.nothing.special,.since,.on.the.largest.size.scales,.every.point.in.space. is.expanding.away.from.every.other.point;.every.object.in.the.cosmos.is.at.the.centre.of.its.own.observable.universe.. Within The Milky Way Galaxy, Where Is Earth Located’? Earth.orbits.the.Sun,.which.is.situated.in.the.Orion.Arm,.one.of.the.Milky.Way’s.66.spiral.arms..(Even.though.the.spiral.
    [Show full text]
  • CONSTELLATION URSA MINOR, the LITTLE BEAR Ursa Minor
    CONSTELLATION URSA MINOR, THE LITTLE BEAR Ursa Minor (Latin: "Smaller She-Bear", to contrast with Ursa Major), also known as the Little Bear, is a constellation in the northern sky. Like the Great Bear, the tail of the Little Bear may also be seen as the handle of a ladle, hence the North American name, Little Dipper. It has seven main stars with four in its bowl, like its partner the Big Dipper. It was one of the 48 constellations listed by the 2nd-century astronomer Ptolemy, and remains one of the 88 modern constellations. Ursa Minor has traditionally been important for navigation, particularly by mariners, because of Polaris (at the end of the tail) being the North Star. Alpha Ursae Minoris, better known as Polaris, is the brightest star in the constellation, is a yellow-white supergiant and the brightest Cepheid variable star in the night sky, ranging from an apparent magnitude of 1.97 to 2.00. Beta Ursae Minoris, also known as Kochab, is an aging star that has swollen and cooled to become an orange giant with an apparent magnitude of 2.08, only slightly fainter than Polaris. Gamma Ursae Minoris, magnitude 3 and Kochab have been called the "guardians of the pole star". Planets have been detected orbiting four of the stars, including Kochab. The constellation also contains an isolated neutron star—Calvera—and H1504+65, the hottest white dwarf yet discovered, with a surface temperature of 200,000 K. HISTORY AND MYTHOLOGY In the Babylonian star catalogues, Ursa Minor was known as the Wagon of Heaven, Damkianna.
    [Show full text]
  • Early Gas Stripping As the Origin of the Darkest Galaxies in the Universe
    Early gas stripping as the origin of the darkest galaxies in the Universe L. Mayer1,2, S. Kazantzidis3,4, C. Mastropietro5, & J. Wadsley6 1Institut f¨ur Astronomie, ETH Z¨urich, Wolfgang-Pauli-Strasse 16 , CH-8093 Z¨urich, Switzerland. 2Institute for Theoretical Physics, University of Zurich, Winterthurestrasse 190, CH-8057 Z¨urich. 3Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, P.O. Box 20450, MS 29, Stanford, CA 94309 USA. 4Kavli Institute for Cosmological Physics, Department of Astronomy & Astrophysics, The University of Chicago, Chicago, IL 60637 USA. 5Universit¨ats Sternwarte M¨unchen, Scheinerstrasse 1, D-81679 M¨unchen , Germany. 6Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada. The known galaxies most dominated by dark matter (Draco, Ursa Minor and Andromeda IX) are satellites of the Milky Way and the Andromeda galaxies1−4. They are members of a class of faint galaxies, devoid of gas, known as dwarf spheroidals3−5, and have by far the highest ratio of dark to luminous matter3,6. None of the models proposed to unravel their origin7−10 can simultaneously explain their exceptional dark matter content and their proximity to a much larger galaxy. Here we report simulations showing that the progenitors of these galaxies were probably gas-dominated dwarf galaxies that became satellites of a larger galaxy earlier than the other dwarf spheroidals. We find that a arXiv:astro-ph/0702495v1 20 Feb 2007 combination of tidal shocks and ram pressure swept away the entire gas content of such progenitors about ten billion years ago because heating by the cosmic ultraviolet background kept the gas loosely bound: a tiny stellar component embedded in a relatively massive dark halo survived until today.
    [Show full text]
  • FY1996 Q1 Oct-Dec NO
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES QUARTERLY REPORT OCTOBER - DECEMBER 1995 July 16,1996 TABLE OF CONTENTS I. INTRODUCTION 1 II. SCIENTIFIC HIGHLIGHTS 1 A. Cerro Tololo Inter-American Observatory 1 1. The Faintest Known White Dwarf 1 2. Evidence for a Black Hole in the X-ray Nova GRO J1655-40 2 3. The Stellar Metallicity Distribution in Omega Centauri 3 B. Kitt Peak National Observatory 3 1. Infrared Colors and Pre-Main-Sequence Evolution 3 2. Bargain Redshifts for Faint Galaxies 4 3. Weighing the Dwarf Spheroidal Companions to the Milky Way 5 C. National Solar Observatory 6 1. Fine Dark Threads and the Temperature of the Solar Corona 6 2. An Objective Test of Magnetic Shear as a Flare Predictor 7 3. Solar Particle Dynamics 7 D. US Gemini Program 8 m. PERSONNEL AND BUDGET STATISTICS, NOAO 9 A. Visiting Scientists 9 B. Hired 9 C. Completed Employment 9 D. Changed Status 9 E. Gemini 8-mTelescopes Project 10 F. Chilean Economic Statistics 10 G. NSFForeign Travel Fund 10 Appendices Appendix A: Telescope Usage Statistics Appendix B: Observational Programs Appendix C: US Sites Safety Report I. INTRODUCTION This document covers scientific highlights and personnel changes for the period 1 October - 31 December 1995. Highlights emphasize concluded projects rather than work in progress. The March 1996 NOAO Newsletter Number 45 contains information on major projects, new instrumentation, and operations. The appendices to this report summarize telescope usagestatistics and observational programs. II. SCIENTIFIC HIGHLIGHTS A. Cerro Tololo Inter-American Observatory 1. The Faintest Known White Dwarf The white dwarf luminosity function incorporates information on the age and star formation history of the Galactic disk which is independent of other techniques.
    [Show full text]