Optimal Algorithm for Profiling Dynamic Arrays with Finite Values Dingcheng Yang, Wenjian Yu, Junhui Deng Shenghua Liu Bnrist, Dept
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 11: Heapsort & Its Analysis
Lecture 11: Heapsort & Its Analysis Agenda: • Heap recall: – Heap: definition, property – Max-Heapify – Build-Max-Heap • Heapsort algorithm • Running time analysis Reading: • Textbook pages 127 – 138 1 Lecture 11: Heapsort (Binary-)Heap data structure (recall): • An array A[1..n] of n comparable keys either ‘≥’ or ‘≤’ • An implicit binary tree, where – A[2j] is the left child of A[j] – A[2j + 1] is the right child of A[j] j – A[b2c] is the parent of A[j] j • Keys satisfy the max-heap property: A[b2c] ≥ A[j] • There are max-heap and min-heap. We use max-heap. • A[1] is the maximum among the n keys. • Viewing heap as a binary tree, height of the tree is h = blg nc. Call the height of the heap. [— the number of edges on the longest root-to-leaf path] • A heap of height k can hold 2k —— 2k+1 − 1 keys. Why ??? Since lg n − 1 < k ≤ lg n ⇐⇒ n < 2k+1 and 2k ≤ n ⇐⇒ 2k ≤ n < 2k+1 2 Lecture 11: Heapsort Max-Heapify (recall): • It makes an almost-heap into a heap. • Pseudocode: procedure Max-Heapify(A, i) **p 130 **turn almost-heap into a heap **pre-condition: tree rooted at A[i] is almost-heap **post-condition: tree rooted at A[i] is a heap lc ← leftchild(i) rc ← rightchild(i) if lc ≤ heapsize(A) and A[lc] > A[i] then largest ← lc else largest ← i if rc ≤ heapsize(A) and A[rc] > A[largest] then largest ← rc if largest 6= i then exchange A[i] ↔ A[largest] Max-Heapify(A, largest) • WC running time: lg n. -
Yikes! Why Is My Systemverilog Still So Slooooow?
DVCon-2019 San Jose, CA Voted Best Paper 1st Place World Class SystemVerilog & UVM Training Yikes! Why is My SystemVerilog Still So Slooooow? Cliff Cummings John Rose Adam Sherer Sunburst Design, Inc. Cadence Design Systems, Inc. Cadence Design System, Inc. [email protected] [email protected] [email protected] www.sunburst-design.com www.cadence.com www.cadence.com ABSTRACT This paper describes a few notable SystemVerilog coding styles and their impact on simulation performance. Benchmarks were run using the three major SystemVerilog simulation tools and those benchmarks are reported in the paper. Some of the most important coding styles discussed in this paper include UVM string processing and SystemVerilog randomization constraints. Some coding styles showed little or no impact on performance for some tools while the same coding styles showed large simulation performance impact. This paper is an update to a paper originally presented by Adam Sherer and his co-authors at DVCon in 2012. The benchmarking described in this paper is only for coding styles and not for performance differences between vendor tools. DVCon 2019 Table of Contents I. Introduction 4 Benchmarking Different Coding Styles 4 II. UVM is Software 5 III. SystemVerilog Semantics Support Syntax Skills 10 IV. Memory and Garbage Collection – Neither are Free 12 V. It is Best to Leave Sleeping Processes to Lie 14 VI. UVM Best Practices 17 VII. Verification Best Practices 21 VIII. Acknowledgment 25 References 25 Author & Contact Information 25 Page 2 Yikes! Why is -
Quick Sort Algorithm Song Qin Dept
Quick Sort Algorithm Song Qin Dept. of Computer Sciences Florida Institute of Technology Melbourne, FL 32901 ABSTRACT each iteration. Repeat this on the rest of the unsorted region Given an array with n elements, we want to rearrange them in without the first element. ascending order. In this paper, we introduce Quick Sort, a Bubble sort works as follows: keep passing through the list, divide-and-conquer algorithm to sort an N element array. We exchanging adjacent element, if the list is out of order; when no evaluate the O(NlogN) time complexity in best case and O(N2) exchanges are required on some pass, the list is sorted. in worst case theoretically. We also introduce a way to approach the best case. Merge sort [4] has a O(NlogN) time complexity. It divides the 1. INTRODUCTION array into two subarrays each with N/2 items. Conquer each Search engine relies on sorting algorithm very much. When you subarray by sorting it. Unless the array is sufficiently small(one search some key word online, the feedback information is element left), use recursion to do this. Combine the solutions to brought to you sorted by the importance of the web page. the subarrays by merging them into single sorted array. 2 Bubble, Selection and Insertion Sort, they all have an O(N2) time In Bubble sort, Selection sort and Insertion sort, the O(N ) time complexity that limits its usefulness to small number of element complexity limits the performance when N gets very big. no more than a few thousand data points. -
Lecture 2: Data Structures: a Short Background
Lecture 2: Data structures: A short background Storing data It turns out that depending on what we wish to do with data, the way we store it can have a signifcant impact on the running time. So in particular, storing data in certain "structured" way can allow for fast implementation. This is the motivation behind the feld of data structures, which is an extensive area of study. In this lecture, we will give a very short introduction, by illustrating a few common data structures, with some motivating problems. In the last lecture, we mentioned that there are two ways of representing graphs (adjacency list and adjacency matrix), each of which has its own advantages and disadvantages. The former is compact (size is proportional to the number of edges + number of vertices), and is faster for enumerating the neighbors of a vertex (which is what one needs for procedures like Breadth-First-Search). The adjacency matrix is great if one wishes to quickly tell if two vertices and have an edge between them. Let us now consider a diferent problem. Example 1: Scrabble problem Suppose we have a "dictionary" of strings whose average length is , and suppose we have a query string . How can we quickly tell if ? Brute force. Note that the naive solution is to iterate over the strings and check if for some . This takes time . If we only care about answering the query for one , this is not bad, as is the amount of time needed to "read the input". But of course, if we have a fxed dictionary and if we wish to check if for multiple , then this is extremely inefcient. -
Binary Search
UNIT 5B Binary Search 15110 Principles of Computing, 1 Carnegie Mellon University - CORTINA Course Announcements • Sunday’s review sessions at 5‐7pm and 7‐9 pm moved to GHC 4307 • Sample exam available at the SCHEDULE & EXAMS page http://www.cs.cmu.edu/~15110‐f12/schedule.html 15110 Principles of Computing, 2 Carnegie Mellon University - CORTINA 1 This Lecture • A new search technique for arrays called binary search • Application of recursion to binary search • Logarithmic worst‐case complexity 15110 Principles of Computing, 3 Carnegie Mellon University - CORTINA Binary Search • Input: Array A of n unique elements. – The elements are sorted in increasing order. • Result: The index of a specific element called the key or nil if the key is not found. • Algorithm uses two variables lower and upper to indicate the range in the array where the search is being performed. – lower is always one less than the start of the range – upper is always one more than the end of the range 15110 Principles of Computing, 4 Carnegie Mellon University - CORTINA 2 Algorithm 1. Set lower = ‐1. 2. Set upper = the length of the array a 3. Return BinarySearch(list, key, lower, upper). BinSearch(list, key, lower, upper): 1. Return nil if the range is empty. 2. Set mid = the midpoint between lower and upper 3. Return mid if a[mid] is the key you’re looking for. 4. If the key is less than a[mid], return BinarySearch(list,key,lower,mid) Otherwise, return BinarySearch(list,key,mid,upper). 15110 Principles of Computing, 5 Carnegie Mellon University - CORTINA Example -
COSC 311: ALGORITHMS HW1: SORTING Due Friday, September 22, 12Pm
COSC 311: ALGORITHMS HW1: SORTING Due Friday, September 22, 12pm In this assignment you will implement several sorting algorithms and compare their relative per- formance. The sorting algorithms you will consider are: 1. Insertion sort 2. Selection sort 3. Heapsort 4. Mergesort 5. Quicksort We will discuss all of these algorithms in class. You should run your experiments on the department servers, remus/romulus (if you would like to write your code on another machine that is fine, but make sure you run the actual tim- ing experiments on remus/romulus). Instructions for how to access the servers can be found on the CS department web page under “Computing Resources.” If you are a Five College stu- dent who has previously taken an Amherst CS course or who enrolled during preregistration last spring, you should have an account already set up (you may need to change your password; go to https://www.amherst.edu/help/passwords). If you don’t already have an account, you can request one at https://sysaccount.amherst.edu/sysaccount/CoursePetition.asp. It will take a day to create the new account, so please do this right away. Please type up your responses to the questions below. I recommend using LATEX, which is a type- setting language that makes it easy to make math look good. If you’re not already familiar with it, I encourage you to practice! Your tasks: 1) Theoretical predictions. Rank the five sorting algorithms in order of how you expect their run- times to compare (fastest to slowest). Your ranking should be based on the asymptotic analysis of the algorithms. -
FORSCHUNGSZENTRUM JÜLICH Gmbh Programming in C++ Part II
FORSCHUNGSZENTRUM JÜLICH GmbH Jülich Supercomputing Centre D-52425 Jülich, Tel. (02461) 61-6402 Ausbildung von Mathematisch-Technischen Software-Entwicklern Programming in C++ Part II Bernd Mohr FZJ-JSC-BHB-0155 1. Auflage (letzte Änderung: 19.09.2003) Copyright-Notiz °c Copyright 2008 by Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre (JSC). Alle Rechte vorbehalten. Kein Teil dieses Werkes darf in irgendeiner Form ohne schriftliche Genehmigung des JSC reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Publikationen des JSC stehen in druckbaren Formaten (PDF auf dem WWW-Server des Forschungszentrums unter der URL: <http://www.fz-juelich.de/jsc/files/docs/> zur Ver- fügung. Eine Übersicht über alle Publikationen des JSC erhalten Sie unter der URL: <http://www.fz-juelich.de/jsc/docs> . Beratung Tel: +49 2461 61 -nnnn Auskunft, Nutzer-Management (Dispatch) Das Dispatch befindet sich am Haupteingang des JSC, Gebäude 16.4, und ist telefonisch erreich- bar von Montag bis Donnerstag 8.00 - 17.00 Uhr Freitag 8.00 - 16.00 Uhr Tel.5642oder6400, Fax2810, E-Mail: [email protected] Supercomputer-Beratung Tel. 2828, E-Mail: [email protected] Netzwerk-Beratung, IT-Sicherheit Tel. 6440, E-Mail: [email protected] Rufbereitschaft Außerhalb der Arbeitszeiten (montags bis donnerstags: 17.00 - 24.00 Uhr, freitags: 16.00 - 24.00 Uhr, samstags: 8.00 - 17.00 Uhr) können Sie dringende Probleme der Rufbereitschaft melden: Rufbereitschaft Rechnerbetrieb: Tel. 6400 Rufbereitschaft Netzwerke: Tel. 6440 An Sonn- und Feiertagen gibt es keine Rufbereitschaft. Fachberater Tel. +49 2461 61 -nnnn Fachgebiet Berater Telefon E-Mail Auskunft, Nutzer-Management, E. -
Chapter 10: Efficient Collections (Skip Lists, Trees)
Chapter 10: Efficient Collections (skip lists, trees) If you performed the analysis exercises in Chapter 9, you discovered that selecting a bag- like container required a detailed understanding of the tasks the container will be expected to perform. Consider the following chart: Dynamic array Linked list Ordered array add O(1)+ O(1) O(n) contains O(n) O(n) O(log n) remove O(n) O(n) O(n) If we are simply considering the cost to insert a new value into the collection, then nothing can beat the constant time performance of a simple dynamic array or linked list. But if searching or removals are common, then the O(log n) cost of searching an ordered list may more than make up for the slower cost to perform an insertion. Imagine, for example, an on-line telephone directory. There might be several million search requests before it becomes necessary to add or remove an entry. The benefit of being able to perform a binary search more than makes up for the cost of a slow insertion or removal. What if all three bag operations are more-or-less equal? Are there techniques that can be used to speed up all three operations? Are arrays and linked lists the only ways of organizing a data for a bag? Indeed, they are not. In this chapter we will examine two very different implementation techniques for the Bag data structure. In the end they both have the same effect, which is providing O(log n) execution time for all three bag operations. -
Dynamic Allocation
Eric Roberts Handout #22 CS 106B February 2, 2015 Dynamic Allocation The Allocation of Memory to Variables • When you declare a variable in a program, C++ allocates space for that variable from one of several memory regions. Dynamic Allocation 0000 • One region of memory is reserved for variables that static persist throughout the lifetime of the program, such data as constants. This information is called static data. • Each time you call a method, C++ allocates a new block of memory called a stack frame to hold its heap local variables. These stack frames come from a Eric Roberts region of memory called the stack. CS 106B • It is also possible to allocate memory dynamically, as described in Chapter 12. This space comes from February 2, 2015 a pool of memory called the heap. stack • In classical architectures, the stack and heap grow toward each other to maximize the available space. FFFF Dynamic Allocation Exercise: Dynamic Arrays • C++ uses the new operator to allocate memory on the heap. • Write a method createIndexArray(n) that returns an integer array of size n in which each element is initialized to its index. • You can allocate a single value (as opposed to an array) by As an example, calling writing new followed by the type name. Thus, to allocate space for a int on the heap, you would write int *digits = createIndexArray(10); Point *ip = new int; should result in the following configuration: • You can allocate an array of values using the following form: digits new type[size] Thus, to allocate an array of 10000 integers, you would write: 0 1 2 3 4 5 6 7 8 9 int *array = new int[10000]; 0 1 2 3 4 5 6 7 8 9 • The delete operator frees memory previously allocated. -
A Fully-Functional Static and Dynamic Succinct Trees
A Fully-Functional Static and Dynamic Succinct Trees GONZALO NAVARRO, University of Chile, Chile KUNIHIKO SADAKANE, National Institute of Informatics, Japan We propose new succinct representations of ordinal trees, and match various space/time lower bounds. It is known that any n-node static tree can be represented in 2n + o(n) bits so that a number of operations on the tree can be supported in constant time under the word-RAM model. However, the data structures are complicated and difficult to dynamize. We propose a simple and flexible data structure, called the range min-max tree, that reduces the large number of relevant tree operations considered in the literature to a few primitives that are carried out in constant time on polylog-sized trees. The result is extended to trees of arbitrary size, retaining constant time and reaching 2n + O(n=polylog(n)) bits of space. This space is optimal for a core subset of the operations supported, and significantly lower than in any previous proposal. For the dynamic case, where insertion/deletion (indels) of nodes is allowed, the existing data structures support a very limited set of operations. Our data structure builds on the range min-max tree to achieve 2n + O(n= log n) bits of space and O(log n) time for all the operations supported in the static scenario, plus indels. We also propose an improved data structure using 2n + O(n log log n= log n) bits and improving the time to the optimal O(log n= log log n) for most operations. We extend our support to forests, where whole subtrees can be attached to or detached from others, in time O(log1+ n) for any > 0. -
Polynomial Division Using Dynamic Arrays, Heaps, and Packed Exponent Vectors ?
Polynomial Division using Dynamic Arrays, Heaps, and Packed Exponent Vectors ? Michael Monagan and Roman Pearce Department of Mathematics, Simon Fraser University Burnaby, B.C. V5A 1S6, CANADA. [email protected] and [email protected] Abstract. A common way of implementing multivariate polynomial multiplication and division is to represent polynomials as linked lists of terms sorted in a term ordering and to use repeated merging. This results in poor performance on large sparse polynomials. In this paper we use an auxiliary heap of pointers to reduce the number of monomial comparisons in the worst case while keeping the overall storage linear. We give two variations. In the first, the size of the heap is bounded by the number of terms in the quotient(s). In the second, which is new, the size is bounded by the number of terms in the divisor(s). We use dynamic arrays of terms rather than linked lists to reduce storage allocations and indirect memory references. We pack monomials in the array to reduce storage and to speed up monomial comparisons. We give a new packing for the graded reverse lexicographical ordering. We have implemented the heap algorithms in C with an interface to Maple. For comparison we have also implemented Yan’s “geobuckets” data structure. Our timings demonstrate that heaps of pointers are com- parable in speed with geobuckets but use significantly less storage. 1 Introduction In this paper we present and compare algorithms and data structures for poly- nomial division in the ring P = F [x1, x2, ..., xn] where F is a field. -
Will Dynamic Arrays Finally Change the Way Models Are Built?
Will Dynamic Arrays finally change the way Models are built? Peter Bartholomew MDAO Technologies Ltd [email protected] ABSTRACT Spreadsheets offer a supremely successful and intuitive means of processing and exchanging numerical content. Its intuitive ad-hoc nature makes it hugely popular for use in diverse areas including business and engineering, yet these very same characteristics make it extraordinarily error-prone; many would question whether it is suitable for serious analysis or modelling tasks. A previous EuSpRIG paper examined the role of Names in increasing solution transparency and providing a readable notation to forge links with the problem domain. Extensive use was made of CSE array formulas, but it is acknowledged that their use makes spreadsheet development a distinctly cumbersome task. Since that time, the new dynamic arrays have been introduced and array calculation is now the default mode of operation for Excel. This paper examines the thesis that their adoption within a more professional development environment could replace traditional techniques where solution integrity is important. A major advantage of fully dynamic models is that they require less manual intervention to keep them updated and so have the potential to reduce the attendant errors and risk. 1 INTRODUCTION This paper starts by reviewing the decisions made at the time electronic spreadsheet was invented and looks at the impact of those original decisions. Dan Bricklin required a means for recording the parameters used in a formula which is both usable for the calculation and intelligible for the user. Dan was well aware of the “programmer’s way” of achieving this through the use of named variables but instead plumped for a strategy that was more action-led and intuitive.