Common Sense Data Acquisition for Indoor Mobile Robots

Total Page:16

File Type:pdf, Size:1020Kb

Common Sense Data Acquisition for Indoor Mobile Robots Common Sense Data Acquisition for Indoor Mobile Robots Mykel J. Kochenderfer Rakesh Gupta Honda Research Institute USA, Inc. Honda Research Institute USA, Inc. 800 California St., Suite 300 800 California St., Suite 300 Mountain View, CA 94041 Mountain View, CA 94041 [email protected] [email protected] ABSTRACT as those associated with the Open Mind Initiative[7], The objective of this research is to enhance the intel- have been quite popular. The Open Mind Common ligence of mobile robots that work in home and o±ce Sense project, led by Push Singh at the MIT Media Lab, environments with common sense. Since indoor com- has accumulated a corpus of 600,000 pieces of knowl- mon sense knowledge is extremely vast, it may be col- edge from 11,500 users (as of August 2003) over the lected in a similar fashion to the Open Mind family of past three years1. Other projects such as Open Mind distributed knowledge capture projects over the Inter- Word Expert2 and Open Mind 1001 Questions3, have net. This paper describes the collection of data through also been successful. the Open Mind Indoor Common Sense (OMICS) web- site. The knowledge was collected through sentence This paper describes the Open Mind Indoor Common templates that were dynamically generated based on Sense (OMICS) project that became publicly available user input. This was converted into relations and saved at the beginning of August 20034. We report on our into a database. We discuss the results of this online results and experiences with working with online con- collaborative e®ort and mention various applications of tributors. The ¯nal section of the paper discusses how the collected data. we will use the data we collected. Categories and Subject Descriptors 2. METHODS I.2.4 [Arti¯cial Intelligence]: Knowledge Represen- In this section we ¯rst describe the framework of the tation Formalisms and Methods|Frames and scripts; knowledge base and the relations necessary to capture I.2.6 [Arti¯cial Intelligence]: Learning|Knowledge those types of common sense most useful to an indoor acquisition robot. We then describe how we built a website to cap- ture this data in a way that is friendly to non-expert users and how we converted the data into machine- 1. INTRODUCTION understandable relations. To accomplish more than extremely narrow tasks in a home or o±ce environment, a mobile robot must posses some amount of common sense. Such common sense 2.1 Knowledge Base Framework includes knowledge about human desires, objects and The framework of this project is object-centric. It is their locations, and causality. Although our domain is assumed that the desires of the users and the actions restricted to indoor home and o±ce environments, the taken by the robot are grounded in the properties of amount of knowledge required for a robot to function objects in the world. The robot is useful to humans is still quite vast. Since common sense does not require because it can perform operations on objects in such a expert knowledge, the data may be collected as part of way that a desired e®ect is achieved. a public online collaborative e®ort over the Internet. The robot can observe properties of objects in its vicin- Distributed online knowledge acquisition projects, such ity and it can perform actions that change the proper- ties of objects. In this system, a statement is a pair Á = (o; p) where o is some object and p is an ad- jective describing the property. Statements may be thought of as assertions about the property of an ob- ject in the world or actions to be taken on an object to 1http://commonsense.media.mit.edu 2http://www.teach-computers.org/word-expert.html 3http://www.teach-computers.org/learner.html 4http://openmind.hri-us.com Image labelling can link multiple labels to the same ob- ject (e.g. the labels \sofa" and \couch" might be both associated with \h0141.gif"). The images themselves can be used for training the object recognition system of the robot. When the website became public, the database initially contained a set of over 400 images of indoor objects selected by hand from a collection of stock photography. Figure 1: A template sentence. Statements In the `statements' activity, the user is prompted with a question such as, \You often want a fan to be blank." achieve a particular e®ect. For example, the statement This activity pairs objects with properties in the knowl- (cup-of-co®ee; hot) can mean \a cup of co®ee is hot" or edge base. The objects that appear in these sentence represent the action \make a cup of co®ee hot." templates come from the objects entered by users in the other activities, such as the `objects' activity. Since we want our robot to understand the consequences of its actions, we wish to capture such common sense knowledge as: (o1; p1) causes (o2; p2). For example, the Uses statement (fan; on) causes (room; cool). We also wish This activity associates objects with their uses. For to capture knowledge such as (o1; p1), which would in- example, the user might be prompted with the form, dicate that you would want (o2; p2). For example, the \A hanger is used to ." Again the objects come statement (cup-of-co®ee; cold) would make you want the from user input. statement (cup-of-co®ee; hot) ful¯lled. Causes At any given point in time, the robot observes a set This activity captures causality. For example, a form of statements that are true and the robot is able to might ask, \A computer is o® when a is ." execute a set of statements. The general problem is to If the user enters a new object or a new object-property decide which statements to execute in order to achieve pair, it will be entered into the object or statement ta- perceived goals. ble. The object and property that makes up the ¯rst part of the sentence is formed dynamically by selecting It is important that the robot knows where objects are a random object from the knowledge base. generally located (e.g. a pillow may be found in the bedroom). The robot should also know what various objects are used for (e.g. a microwave is used to heat Desires food). This activity helps the robot determine what needs to be done in various situations. A template form might ask, \You might want a fan to be blowing if you notice 2.2 Sentence Templates that your has become ." We need some way to convert the common sense in the minds of non-expert users into relations in a knowledge base. Following the style of the Open Mind Common Locations Sense website, we decided to use sentence templates. This activity associates objects with the rooms where Users are prompted to ¯ll in the blanks of sentences they are typically found. For example, the user might with words, as shown in Fig. 1. be prompted with, \A room where you generally ¯nd a dinner table is the ." Di®erent activities capture di®erent types of knowledge. Below is a summary of some of the activities: Proximity This activity associates objects with each other based Objects on proximity. A sample form would be, \You generally ¯nd a frying pan in the same room as a ." In this activity, the user is asked to identify the types of objects commonly found in a home or o±ce. The user may be prompted to type in an object name that Senses comes to mind or simply label an image of an object. This activity disambiguates the intended sense of var- It is important to allow a user to simply type in any ious objects entered into the database by other users. indoor object that comes to mind because we want to Fig. 2 shows a sample form. The objects to disam- include all relevant objects in the database even if we biguate are selected from previous user entries and the do not have their picture. senses are from WordNet [3]. Figure 2: A word sense disambiguation form. Freeform This activity allows users to type in any form of com- mon sense knowledge that might not be captured by any of the other activities. Although it is quite di±- cult to convert freeform sentences into useful relations, it provides us with a sense of the types of knowledge the general public would like an indoor robot to under- stand. Analysis of freeform sentences will later lead to the creation of new activities. 2.3 Data Collection Figure 3: The review form used for administra- Once a user logs on with their account, they are pre- tors to approve of user entries. Administrators sented with a random activity. After a random number may either commit, uncommit, or reject entries. of entries for a particular activity, the system prompts them with a new activity. Users may also manually 17,000 of them accepted. We had a weekly contest (last- switch between the activities. ing four weeks) where the top contributor was awarded an Open Mind t-shirt. Other Open Mind projects have 2.4 Data Quality Review used similar contests to help motivate submissions. Win- The completed sentence templates are stored in the ners had their names and hometowns listed on the title database as raw sentences. These sentences are not page of the site. parsed into relations until after an administrator \ap- proves" of them (see Fig. 3). It is important that there 3.1 Observations be some way of ensuring data quality since the data The OMICS site was publicly announced on August 5th (such as names of objects and their properties) are used and the ¯rst t-shirt prize was awarded August 6th.
Recommended publications
  • Extracting Common Sense Knowledge from Text for Robot Planning
    Extracting Common Sense Knowledge from Text for Robot Planning Peter Kaiser1 Mike Lewis2 Ronald P. A. Petrick2 Tamim Asfour1 Mark Steedman2 Abstract— Autonomous robots often require domain knowl- edge to act intelligently in their environment. This is particu- larly true for robots that use automated planning techniques, which require symbolic representations of the operating en- vironment and the robot’s capabilities. However, the task of specifying domain knowledge by hand is tedious and prone to error. As a result, we aim to automate the process of acquiring general common sense knowledge of objects, relations, and actions, by extracting such information from large amounts of natural language text, written by humans for human readers. We present two methods for knowledge acquisition, requiring Fig. 1: The humanoid robots ARMAR-IIIa (left) and only limited human input, which focus on the inference of ARMAR-IIIb working in a kitchen environment ([5], [6]). spatial relations from text. Although our approach is applicable to a range of domains and information, we only consider one type of knowledge here, namely object locations in a kitchen environment. As a proof of concept, we test our approach using domain knowledge based on information gathered from an automated planner and show how the addition of common natural language texts. These methods will provide the set sense knowledge can improve the quality of the generated plans. of object and action types for the domain, as well as certain I. INTRODUCTION AND RELATED WORK relations between entities of these types, of the kind that are commonly used in planning. As an evaluation, we build Autonomous robots that use automated planning to make a domain for a robot working in a kitchen environment decisions about how to act in the world require symbolic (see Fig.
    [Show full text]
  • Open Mind Common Sense: Knowledge Acquisition from the General Public
    Open Mind Common Sense: Knowledge Acquisition from the General Public Push Singh, Grace Lim, Thomas Lin, Erik T. Mueller Travell Perkins, Mark Tompkins, Wan Li Zhu MIT Media Laboratory 20 Ames Street Cambridge, MA 02139 USA {push, glim, tlin, markt, wlz}@mit.edu, [email protected], [email protected] Abstract underpinnings for commonsense reasoning (Shanahan Open Mind Common Sense is a knowledge acquisition 1997), there has been far less work on finding ways to system designed to acquire commonsense knowledge from accumulate the knowledge to do so in practice. The most the general public over the web. We describe and evaluate well-known attempt has been the Cyc project (Lenat 1995) our first fielded system, which enabled the construction of which contains 1.5 million assertions built over 15 years a 400,000 assertion commonsense knowledge base. We at the cost of several tens of millions of dollars. then discuss how our second-generation system addresses Knowledge bases this large require a tremendous effort to weaknesses discovered in the first. The new system engineer. With the exception of Cyc, this problem of scale acquires facts, descriptions, and stories by allowing has made efforts to study and build commonsense participants to construct and fill in natural language knowledge bases nearly non-existent within the artificial templates. It employs word-sense disambiguation and intelligence community. methods of clarifying entered knowledge, analogical inference to provide feedback, and allows participants to validate knowledge and in turn each other. Turning to the general public 1 In this paper we explore a possible solution to this Introduction problem of scale, based on one critical observation: Every We would like to build software agents that can engage in ordinary person has common sense of the kind we want to commonsense reasoning about ordinary human affairs.
    [Show full text]
  • Commonsense Knowledge Base Completion with Structural and Semantic Context
    Commonsense Knowledge Base Completion with Structural and Semantic Context Chaitanya Malaviya}, Chandra Bhagavatula}, Antoine Bosselut}|, Yejin Choi}| }Allen Institute for Artificial Intelligence |University of Washington fchaitanyam,[email protected], fantoineb,[email protected] Abstract MotivatedByGoal prevent go to tooth Automatic KB completion for commonsense knowledge dentist decay eat graphs (e.g., ATOMIC and ConceptNet) poses unique chal- candy lenges compared to the much studied conventional knowl- HasPrerequisite edge bases (e.g., Freebase). Commonsense knowledge graphs Causes brush use free-form text to represent nodes, resulting in orders of your tooth HasFirstSubevent Causes magnitude more nodes compared to conventional KBs ( ∼18x tooth bacteria decay more nodes in ATOMIC compared to Freebase (FB15K- pick 237)). Importantly, this implies significantly sparser graph up your toothbrush structures — a major challenge for existing KB completion ReceivesAction methods that assume densely connected graphs over a rela- HasPrerequisite tively smaller set of nodes. good Causes breath NotDesires In this paper, we present novel KB completion models that treat by can address these challenges by exploiting the structural and dentist infection semantic context of nodes. Specifically, we investigate two person in cut key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densifi- cation and (2) transfer learning from pre-trained language Figure 1: Subgraph from ConceptNet illustrating semantic models to knowledge graphs for enhanced contextual rep- diversity of nodes. Dashed blue lines represent potential resentation of knowledge. We describe our method to in- edges to be added to the graph. corporate information from both these sources in a joint model and provide the first empirical results for KB com- pletion on ATOMIC and evaluation with ranking metrics on ConceptNet.
    [Show full text]
  • Common Sense Reasoning with the Semantic Web
    Common Sense Reasoning with the Semantic Web Christopher C. Johnson and Push Singh MIT Summer Research Program Massachusetts Institute of Technology, Cambridge, MA 02139 [email protected], [email protected] http://groups.csail.mit.edu/dig/2005/08/Johnson-CommonSense.pdf Abstract Current HTML content on the World Wide Web has no real meaning to the computers that display the content. Rather, the content is just fodder for the human eye. This is unfortunate as in fact Web documents describe real objects and concepts, and give particular relationships between them. The goal of the World Wide Web Consortium’s (W3C) Semantic Web initiative is to formalize web content into Resource Description Framework (RDF) ontologies so that computers may reason and make decisions about content across the Web. Current W3C work has so far been concerned with creating languages in which to express formal Web ontologies and tools, but has overlooked the value and importance of implementing common sense reasoning within the Semantic Web. As Web blogging and news postings become more prominent across the Web, there will be a vast source of natural language text not represented as RDF metadata. Common sense reasoning will be needed to take full advantage of this content. In this paper we will first describe our work in converting the common sense knowledge base, ConceptNet, to RDF format and running N3 rules through the forward chaining reasoner, CWM, to further produce new concepts in ConceptNet. We will then describe an example in using ConceptNet to recommend gift ideas by analyzing the contents of a weblog.
    [Show full text]
  • Conceptnet 5.5: an Open Multilingual Graph of General Knowledge
    Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) ConceptNet 5.5: An Open Multilingual Graph of General Knowledge Robyn Speer Joshua Chin Catherine Havasi Luminoso Technologies, Inc. Union College Luminoso Technologies, Inc. 675 Massachusetts Avenue 807 Union St. 675 Massachusetts Avenue Cambridge, MA 02139 Schenectady, NY 12308 Cambridge, MA 02139 Abstract In this paper, we will concisely represent assertions such Machine learning about language can be improved by sup- as the above as triples of their start node, relation label, and plying it with specific knowledge and sources of external in- end node: the assertion that “a dog has a tail” can be repre- formation. We present here a new version of the linked open sented as (dog, HasA, tail). data resource ConceptNet that is particularly well suited to ConceptNet also represents links between knowledge re- be used with modern NLP techniques such as word embed- sources. In addition to its own knowledge about the English dings. term astronomy, for example, ConceptNet contains links to ConceptNet is a knowledge graph that connects words and URLs that define astronomy in WordNet, Wiktionary, Open- phrases of natural language with labeled edges. Its knowl- Cyc, and DBPedia. edge is collected from many sources that include expert- The graph-structured knowledge in ConceptNet can be created resources, crowd-sourcing, and games with a pur- particularly useful to NLP learning algorithms, particularly pose. It is designed to represent the general knowledge in- those based on word embeddings, such as (Mikolov et al. volved in understanding language, improving natural lan- 2013). We can use ConceptNet to build semantic spaces that guage applications by allowing the application to better un- are more effective than distributional semantics alone.
    [Show full text]
  • Analogyspace: Reducing the Dimensionality of Common Sense
    Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) AnalogySpace: Reducing the Dimensionality of Common Sense Knowledge Robyn Speer Catherine Havasi Henry Lieberman CSAIL Laboratory for Linguistics and Computation Software Agents Group Massachusetts Institute of Technology Brandeis University MIT Media Lab Cambridge, MA 02139, USA Waltham, MA 02454, USA Cambridge, MA 02139, USA [email protected] [email protected] [email protected] Abstract to reduce the dimensionality of that matrix. This results in computing principal components which represent the most We are interested in the problem of reasoning over very large salient aspects of the knowledge, which can then be used to common sense knowledge bases. When such a knowledge base contains noisy and subjective data, it is important to organize it along the most semantically meaningful dimen- have a method for making rough conclusions based on simi- sions. The key idea is that semantic similarity can be deter- larities and tendencies, rather than absolute truth. We present mined using linear operations over the resulting vectors. AnalogySpace, which accomplishes this by forming the ana- logical closure of a semantic network through dimensionality What AnalogySpace Can Do reduction. It self-organizes concepts around dimensions that can be seen as making distinctions such as “good vs. bad” AnalogySpace provides a computationally efficient way to or “easy vs. hard”, and generalizes its knowledge by judging calculate a wide variety of semantically meaningful opera- where concepts lie along these dimensions. An evaluation tions: demonstrates that users often agree with the predicted knowl- AnalogySpace can generalize from sparsely-collected edge, and that its accuracy is an improvement over previous knowledge.
    [Show full text]
  • Arxiv:2005.11787V2 [Cs.CL] 11 Oct 2020 ( ( Hw Estl ...Tetpso Knowledge of Types the W.R.T
    Common Sense or World Knowledge? Investigating Adapter-Based Knowledge Injection into Pretrained Transformers Anne Lauscher♣ Olga Majewska♠ Leonardo F. R. Ribeiro♦ Iryna Gurevych♦ Nikolai Rozanov♠ Goran Glavasˇ♣ ♣Data and Web Science Group, University of Mannheim, Germany ♠Wluper, London, United Kingdom ♦Ubiquitous Knowledge Processing (UKP) Lab, TU Darmstadt, Germany {anne,goran}@informatik.uni-mannheim.de {olga,nikolai}@wluper.com www.ukp.tu-darmstadt.de Abstract (Mikolov et al., 2013; Pennington et al., 2014) – neural LMs still only “consume” the distributional Following the major success of neural lan- information from large corpora. Yet, a number of guage models (LMs) such as BERT or GPT-2 structured knowledge sources exist – knowledge on a variety of language understanding tasks, bases (KBs) (Suchanek et al., 2007; Auer et al., recent work focused on injecting (structured) knowledge from external resources into 2007) and lexico-semantic networks (Miller, these models. While on the one hand, joint 1995; Liu and Singh, 2004; Navigli and Ponzetto, pre-training (i.e., training from scratch, adding 2010) – encoding many types of knowledge that objectives based on external knowledge to the are underrepresented in text corpora. primary LM objective) may be prohibitively Starting from this observation, most recent computationally expensive, post-hoc fine- efforts focused on injecting factual (Zhang et al., tuning on external knowledge, on the other 2019; Liu et al., 2019a; Peters et al., 2019) and hand, may lead to the catastrophic forgetting of distributional knowledge. In this work, linguistic knowledge (Lauscher et al., 2019; we investigate models for complementing Peters et al., 2019) into pretrained LMs and the distributional knowledge of BERT with demonstrated the usefulness of such knowledge conceptual knowledge from ConceptNet in language understanding tasks (Wang et al., and its corresponding Open Mind Common 2018, 2019).
    [Show full text]
  • Improving User Experience in Information Retrieval Using Semantic Web and Other Technologies Erfan Najmi Wayne State University
    Wayne State University Wayne State University Dissertations 1-1-2016 Improving User Experience In Information Retrieval Using Semantic Web And Other Technologies Erfan Najmi Wayne State University, Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations Part of the Computer Sciences Commons Recommended Citation Najmi, Erfan, "Improving User Experience In Information Retrieval Using Semantic Web And Other Technologies" (2016). Wayne State University Dissertations. 1654. https://digitalcommons.wayne.edu/oa_dissertations/1654 This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IMPROVING USER EXPERIENCE IN INFORMATION RETRIEVAL USING SEMANTIC WEB AND OTHER TECHNOLOGIES by ERFAN NAJMI DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2016 MAJOR: COMPUTER SCIENCE Approved By: Advisor Date ⃝c COPYRIGHT BY ERFAN NAJMI 2016 All Rights Reserved ACKNOWLEDGEMENTS I would like to express my heartfelt gratitude to my PhD advisor, Dr. Zaki Malik, for supporting me during these past years. I could not have asked for a better advisor and a friend, one that let me choose my path, help me along it and has always been there if I needed to talk to a friend. I really appreciate all the time he spent and all the patience he showed towards me. Secondly I would like to thank my committee members Dr. Fengwei Zhang, Dr. Alexander Kotov and Dr. Abdelmounaam Rezgui for the constructive feedback and help they provided.
    [Show full text]
  • Farsbase: the Persian Knowledge Graph
    Semantic Web 1 (0) 1–5 1 IOS Press 1 1 2 2 3 3 4 FarsBase: The Persian Knowledge Graph 4 5 5 a a a,* 6 Majid Asgari , Ali Hadian and Behrouz Minaei-Bidgoli 6 a 7 Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran 7 8 8 9 9 10 10 11 11 Abstract. Over the last decade, extensive research has been done on automatically constructing knowledge graphs from web 12 12 resources, resulting in a number of large-scale knowledge graphs such as YAGO, DBpedia, BabelNet, and Wikidata. Despite 13 13 that some of these knowledge graphs are multilingual, they contain few or no linked data in Persian, and do not support tools 14 for extracting Persian information sources. FarsBase is a multi-source knowledge graph especially designed for semantic search 14 15 engines in Persian language. FarsBase uses some hybrid and flexible techniques to extract and integrate knowledge from various 15 16 sources, such as Wikipedia, web tables and unstructured texts. It also supports an entity linking that allow integrating with 16 17 other knowledge bases. In order to maintain a high accuracy for triples, we adopt a low-cost mechanism for verifying candidate 17 18 knowledge by human experts, which are assisted by automated heuristics. FarsBase is being used as the semantic-search system 18 19 of a Persian search engine and efficiently answers hundreds of semantic queries per day. 19 20 20 Keywords: Semantic Web, Linked Date, Persian, Knowledge Graph 21 21 22 22 23 23 24 24 1.
    [Show full text]
  • Multi-Task Learning for Commonsense Reasoning (UNION)
    ANA∗ at SemEval-2020 Task 4: mUlti-task learNIng for cOmmonsense reasoNing (UNION) Anandh Perumal, Chenyang Huang, Amine Trabelsi, Osmar R. Za¨ıane Alberta Machine Intelligence Institute, University of Alberta fanandhpe, chenyangh, atrabels,[email protected] Abstract In this paper, we describe our mUlti-task learNIng for cOmmonsense reasoNing (UNION) system submitted for Task C of the SemEval2020 Task 4, which is to generate a reason explaining why a given false statement is non-sensical. However, we found in the early experiments that simple adaptations such as fine-tuning GPT2 often yield dull and non-informative generations (e.g. simple negations). In order to generate more meaningful explanations, we propose UNION, a unified end-to-end framework, to utilize several existing commonsense datasets so that it allows a model to learn more dynamics under the scope of commonsense reasoning. In order to perform model selection efficiently, accurately and promptly, we also propose a couple of auxiliary automatic evaluation metrics so that we can extensively compare the models from different perspectives. Our submitted system not only results in a good performance in the proposed metrics but also outperforms its competitors with the highest achieved score of 2.10 for human evaluation while remaining a BLEU score of 15.7. Our code is made publicly availabled 1. 1 Introduction Common sense reasoning is one of the long-standing problems in natural language understanding. Previous work on modeling common sense knowledge deals mainly with indirect tasks such as co- reference resolution (Sakaguchi et al., 2019), or selecting the plausible situation based on the given subject or scenario (Zellers et al., 2018).
    [Show full text]
  • Senticnet: a Publicly Available Semantic Resource for Opinion Mining
    Commonsense Knowledge: Papers from the AAAI Fall Symposium (FS-10-02) SenticNet: A Publicly Available Semantic Resource for Opinion Mining Erik Cambria Robyn Speer Catherine Havasi Amir Hussain University of Stirling MIT Media Lab MIT Media Lab University of Stirling Stirling, FK4 9LA UK Cambridge, 02139-4307 USA Cambridge, 02139-4307 USA Stirling, FK4 9LA UK [email protected] [email protected] [email protected] [email protected] Abstract opinions and attitudes in natural language texts. In particu- lar, given a textual resource containing a number of opinions Today millions of web-users express their opinions o about a number of topics, we would like to be able to as- about many topics through blogs, wikis, fora, chats p(o) ∈ [−1, 1] and social networks. For sectors such as e-commerce sign each opinion a polarity , representing and e-tourism, it is very useful to automatically ana- a range from generally unfavorable to generally favorable, lyze the huge amount of social information available on and to aggregate the polarities of opinions on various topics the Web, but the extremely unstructured nature of these to discover the general sentiment about those topics. contents makes it a difficult task. SenticNet is a publicly Existing approaches to automatic identification and ex- available resource for opinion mining built exploiting traction of opinions from text can be grouped into three main AI and Semantic Web techniques. It uses dimension- categories: keyword spotting, in which text is classified into ality reduction to infer the polarity of common sense categories based on the presence of fairly unambiguous af- concepts and hence provide a public resource for min- fect words (Ortony, Clore, and Collins 1998)(Wiebe, Wil- ing opinions from natural language text at a semantic, son, and Claire 2005), lexical affinity, which assigns ar- rather than just syntactic, level.
    [Show full text]
  • Conceptnet — a Practical Commonsense Reasoning Tool-Kit
    ConceptNet — a practical commonsense reasoning tool-kit H Liu and P Singh ConceptNet is a freely available commonsense knowledge base and natural-language-processing tool-kit which supports many practical textual-reasoning tasks over real-world documents including topic-gisting, analogy-making, and other context oriented inferences. The knowledge base is a semantic network presently consisting of over 1.6 million assertions of commonsense knowledge encompassing the spatial, physical, social, temporal, and psychological aspects of everyday life. ConceptNet is generated automatically from the 700 000 sentences of the Open Mind Common Sense Project — a World Wide Web based collaboration with over 14 000 authors. 1. Introduction unhappy with you. Commonsense knowledge, thus defined, In today’s digital age, text is the primary medium of spans a huge portion of human experience, encompassing representing and transmitting information, as evidenced by knowledge about the spatial, physical, social, temporal, and the pervasiveness of e-mails, instant messages, documents, psychological aspects of typical everyday life. Because it is weblogs, news articles, homepages, and printed materials. assumed that every person possesses commonsense, such Our lives are now saturated with textual information, and knowledge is typically omitted from social communications, there is an increasing urgency to develop technology to help such as text. A full understanding of any text then, requires a us manage and make sense of the resulting information surprising amount of commonsense, which currently only overload. While keyword-based and statistical approaches people possess. It is our purpose to find ways to provide such have enjoyed some success in assisting information retrieval, commonsense to machines.
    [Show full text]