3088467200SF Catecholamines.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

3088467200SF Catecholamines.Pdf Acta Anaesthesiol Scand 2008; 52: 487–492 r 2008 The Authors Printed in Singapore. All rights reserved Journal compilation r 2008 The Acta Anaesthesiologica Scandinavica Foundation ACTA ANAESTHESIOLOGICA SCANDINAVICA doi: 10.1111/j.1399-6576.2007.01551.x Perioperative concentrations of catecholamines in the cerebrospinal fluid and plasma during spinal anesthesia 1,2 3 4 5 2 2 M. J. OEHMKE ,T.PODRANSKI ,M.MANN ,N.FRICKEY ,D.F.M.KUHN and G. HEMPELMANN 1Department of Special Anaesthesia and Pain Control, Medical University of Vienna, Vienna, Austria, 2Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, University Hospital Giessen, Giessen, Germany, 3Outcomes Research Consortium, The Cleveland Clinic, Cleveland, OH, USA, 4Institute of Medical Informatics, Working Group Medical Statistics, University of Giessen, Giessen, Germany, 5Department of Anaesthesia, General Intensive Care, and Pain Control, Medical University of Vienna, Vienna, Austria Background: Catecholamine release is a physiological re- [249;422] to 556 [423;649] pmol/l and remained elevated sponse to stress. The extent to which perioperative stress 24 h after surgery (P 5 0.009). There was no association provokes the central release of catecholamines, which modu- between changes in CSF or plasma norepinephrine or late pain perception in the spinal cord, still remains unknown. epinephrine concentrations and changes in heart rate The perioperative course of catecholamine concentrations in (HR) or mean arterial pressure (MAP). the cerebrospinal fluid (CSF) and plasma was examined. Conclusion: During spinal anesthesia for elective hip joint Methods: Aprospectivestudywasperformedin25pa- replacement, norepinephrine concentrations were greater tients (ASA III, 60–84 years) undergoing elective hip joint in plasma than in CSF. CSF dopamine and epinephrine replacement in spinal catheter anesthesia. The concentra- concentrations were essentially undetectable. The changes tions of dopamine, epinephrine and norepinephrine in the in CSF-norepinephrine concentrations and the changes of CSF and plasma were measured before anesthesia, imme- plasma norepinephrine concentrations showed no associa- diately after surgery, and 6 and 24 h post-operatively. tion with each other; nor were there correlations between Results: In most patients, dopamine and epinephrine clinical stress parameters (HR, MAP) or visual analog scale were not detectable in CSF. CSF–norepinephrine concen- pain, and the changes in CSF norepinephrine concentra- trations decreased from median [interquartile-range] tions. 159 [124;216] pre-anesthesia to 116 [79;152] pmol/l imme- diately post-operatively and were slightly elevated 24 h post-operatively (180 [134;302] pmol/l) (P 5 0.05). Dopa- Accepted for publication 14 October 2007 mine plasma concentrations were not detectable or were Key words: Catecholamines; cerebrospinal fluid; plasma; barely above the detection threshold. Plasma epinephrine perioperative; epinephrine; norepinephrine; dopamine; increased from 61 [28;77] pmol/l pre-anesthesia to 112 concentration. [69;138] pmol/l 6 h post-operatively and returned to base- line 24 h post-operatively (P 5 0.001). Plasma norepinephr- r 2008 The Authors ine concentrations increased intra-operatively from 298 Journal compilation r 2008 The Acta Anaesthesiologica Scandinavica Foundation NTICIPATION of surgery, even with general an- response to surgical stress, the extent to which Aesthesia, triggers physical and psychological surgical stress provokes the central release of ca- stress in patients (1, 2). This results in an endocrine techolamines remains unknown. Because catecho- response mediated by the hypothalamic–pituitary– lamines modulate pain perception in the spinal adrenal and renin–angiotensin axes, along with cord (10–14), and differences in catecholamine sympathetic nervous system activation (3). levels may affect analgesia, we chose to investigate The most basic physiological response to stress, the catecholamine concentrations in the cerebrosp- including that resulting from surgical tissue injury, inal fluid (CSF). is release of catecholamines (4–7). The major cate- Therefore, this study determined the periopera- cholamines, dopamine, epinephrine, and norepi- tive changes of catecholamine concentrations in the nephrine are released both peripherally and CSF and plasma in elderly patients undergoing centrally (8, 9). major hip surgery. Possible correlations between While it is well established that peripheral cate- CSF and plasma catecholamine concentrations, cholamine concentrations increase markedly in heart rate (HR), mean arterial pressure (MAP), 487 M. J. Oehmke et al. and the visual analog scale (VAS) pain score were Germany), an indirect sympathomimetic agent, analyzed. and the study was discontinued. During anesthesia, patients received midazolam as required in steps of 1 mg i.v. up to a maximum Methods of 6 mg. Patients also received 3 l/min O2 via a nasal tube, volume substitution, and monitoring With the approval of the local Ethics Committee of SaO2. Post-operatively, patients received single and written informed patient consent, 25 patients dosages of 2 mg morphine i.v., as requested, if were enrolled in this prospective study. Inclusion pain was rated 43 on a 10-cm-long VAS with criteria were an age of 60 years or above with ASA each centimeter marked and numbered 0–10, Physical Status III undergoing elective total hip where 0 cm indicates no pain and 10 cm the worst joint replacement with spinal-catheter anesthesia. possible pain. The surgeon used cemented MS-30 stems and All values recorded for statistical analysis (HR, polyethylene screw-in cups (Biomet Deutschland MAP, VAS, and catecholamine concentrations) GmbH, Berlin, Germany). Exclusion criteria were were sampled at the measurement points immedi- decompensated cardiac or circulatory insufficiency, ately before administration of the local anesthetic severe renal or hepatic impairment, signs of clot- (pre-LA), immediately postoperative (0 h post-OP), ting disorders, neuromuscular dysfunction, dis- 6 h post-operatively (6 h post-OP), and 24 h post- eases of endocrine organs (diabetes, pancreatitis, operatively (24 h post-OP). Five milliliters of CSF thyroid problems, hepatitis), known tumors/neo- from the spinal catheter and an equal volume of plasmas, alcohol or drug abuse, use of substances blood from a central-venous catheter were ob- acting on the central nervous system, and use of tained in pre-chilled tubes and placed on ice at all calcium antagonists, a2- and b-sympathomimetics, measurement points. For storage purposes, fluid or theophylline. samples were centrifuged (10 min, 4000 U/min, One hour before surgery, 3.75 mg oral midazo- 4 1C) within 15 min and the supernatant frozen lam (Dormicum, Hoffmann-La Roche AG, Basel, at À 20 1C. Switzerland) was administered. During the pre- The concentrations of dopamine, epinephrine, paration for anesthesia, a 16 G central venous and norepinephrine in the CSF and plasma were line (Cavafix Certodyn 375, B. Braun, Melsungen, determined in a single batch for each parameter Germany) was placed in the basilic vein and by means of high-performance liquid chromato- correct placement checked by ECG. A 20 G graphy (HPLC) with electrochemical detection arterial line (B.Braun) was inserted into the radial (Reagent Kit Catecholamines in Plasma, Chromsys- artery. tems Instruments & Chemicals GmbH, Mu¨ nchen, HR from the ECG and MAP were recorded at Germany) (15). The lower limits of detection were 5-min intervals until the end of surgery, and then 1, 20 pmol/l or less. The intra-assay coefficients of 3, 6, 12, and 24 h post-operatively. For anesthesia variation were 5.6% for dopamine, 4.9% for epi- and sampling, a 20 G spinal catheter (Perifix, B. nephrine, and 2.8% for norepinephrine. Glucose Braun) was placed at L2/3 or L3/4. Anesthesia was was measured by photometry (Test-Combination initiated with 2.5 ml of isobaric bupivacainhy- Glucoquant Glukose, Boehringer, Mannheim, Ger- drochloride 0.5% (Carbostesin 0.5%, Astra, Ham- many). pH, pCO2, and pO2 from venous blood burg, Germany). The level of spinal anesthesia was were evaluated by a blood gas analyzer (Ciba determined by checking sensibility in both direc- Corning 288, Ciba Corning Diagnostics AG, Dietli- tions (upwards and downwards) with a cold test kon, Switzerland). roll (No. 2090, Nizell, Rickenbach, Switzerland) temperated at 4 1C. Return/loss of cold discrimina- tion was defined as the level of the block and Statistical analysis recorded before incision (once the block was estab- Because the variability of the target parameter was lished and the patients hemodynamically stable) as unknown, sample size calculation was not possible. well as immediately post-operative (0 h post-OP). Nonetheless, 25 patients were included in the If blood pressure decreased by more than 20% as study, which seemed likely to be sufficient for compared with baseline values, the patient re- this sort of natural history study. Statistical ana- ceived 5 mg amezinium metilsulfate intravenously lysis was explorative. We calculated the minimum, s (i.v). (Supratonin ,Gru¨ nenthal GmbH, Aachen, maximum, median, arithmetic mean, interquartile 488 Catecholamines in the cerebrospinal fluid range, and standard deviation for each numeric resulting in a median pain score of VAS 3 [2;4] 6 h parameter. Results are presented as median [inter- post-OP, and VAS 2 [1;3] 24 h post-OP. quartile range]. In most patients, dopamine, and epinephrine Because most parameters were not normally
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Hormonal and Metabolic Response to Operative Stress in the Neonate
    Hormonal and Metabolic Response to Operative Stress in the Neonate DAVID J. SCHMELING, M.D. AND ARNOLD G. CORAN, M.D. From the Section of Pediatric Surgery, Mott Children’s Hospital and University of Michigan Medical School, Ann Arbor, Michigan ABSTRACT. It is evident from this review that newborns, primarily catabolic in nature because the combined hormonal even those born prematurely, are capable of mounting an changes include an increased release of catabolic hormones endocrine and metabolic response to operative stress. Unfor- such as catecholamines, glucagon, and corticosteroids coupled tunately, many of the areas for which a relatively well-charac- with a suppression of and peripheral resistance to the effects terized response exists in adults are poorly documented in of the primary anabolic hormone, insulin. (Journal of Paren- neonates. As is the case in adults, the response seems to be teral and Enteral Nutrition 15:215-238, 1991) It is apparent that adult patients demonstrate a cata- are subjected to greatly increased rates of complications bolic response to the stresses induced by operative or such as cardiac or pulmonary insufficiency, myocardial accidental trauma. It seems that the degree of this cata- infarction, impaired hepatic and/or renal function, gas- bolic response may be quantitatively related to the extent tric stress ulcers, and sepsis. Furthermore, evidence ex- of the trauma or the magnitude of associated complica- ists to suggest that this response may be life threatening tions such as infection. The host response to infection, if the induced catabolic activity remains excessive or traumatic injury, or major operative stress is character- unchecked for a prolonged period.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Comparison of Surgical Stress Responses During Spinal and General Anesthesia in Curettage Surgery
    Anesth Pain Med. 2014 August; 4(3): e20554. DOI: 10.5812/aapm.20554 Research Article Published online 2014 August 13. Comparison of Surgical Stress Responses During Spinal and General Anesthesia in Curettage Surgery 1,2 1,2 1,2 1,2 Fereshteh Amiri ; Ali Ghomeishi ; Seyed Mohammad Mehdi Aslani ; Sholeh Nesioonpour ; 1,3,* Sara Adarvishi 1Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 2Department of Anesthesiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran 3Student Research Committee, Nursing and Midwifery School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran *Corresponding author : Sara Adarvishi, Student Research Committee, Nursing and Midwifery School, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Azadegan Ave., Ahvaz, Iran. Tel: +98-6112220168, Fax: +98-6112220168, E-mail: [email protected] Received: ; Revised: ; Accepted: May 25, 2014 June 14, 2014 July 2, 2014 Background: Response to the surgical stress is an involuntary response to metabolic, autonomic as well as hormonal changes that leads to heart rate and blood pressure fluctuations. Objectives: This study aimed to investigate the effect of general versus spinal anesthesia on blood sugar level and hemodynamic changes in patients undergoing curettage surgery. Patients and Methods: In this randomized clinical trial, 50 patients who were candidate for elective curettage surgery were divided into two groups of general (n = 25) and spinal (n = 25) anesthesia. In both groups, blood glucose level was evaluated 10 minutes before, 20 and 60 minutes after initiation of anesthesia. Also, heart rate and mean arterial blood pressure were evaluated at 10 minutes before, 10, 20, 30, 40, 50 and 60 minutes after intiation of anesthesia.
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Stress Response to Surgery, Anesthetics Role and Impact On
    a & hesi C st lin e ic n a A l f R o e l s Journal of Anesthesia & Clinical e a a n r r c u h o Paola et al., J Anesth Clin Res 2015, 6:7 J ISSN: 2155-6148 Research DOI: 10.4172/2155-6148.1000539 Review Article Open Access Stress Response to Surgery, Anesthetics Role and Impact on Cognition Aceto Paola1*, Lai Carlo2, Dello Russo Cinzia3, Perilli Valter1, Navarra Pierluigi3 and Sollazzi Liliana1 1Department of Anesthesiology and Intensive Care, Agostino Gemelli Hospital, Rome, Italy 2Department of Dynamic and Clinical Psychology, University of Rome “Sapienza”, Rome, Italy 3Department of Pharmacology, Catholic University of Sacred Heart, Rome, Italy *Corresponding author: Paola Aceto, Department of Anaesthesiology and Intensive Care, Catholic University of Sacred Heart, Largo A. Gemelli, 8-00168, Rome, Italy, Tel: +39-06-30154507; Fax: +39-06-3013450; E-mail: [email protected], [email protected] Received date: June 08, 2015, Accepted date: July 08, 2015, Published date: July 13, 2015 Copyright: © 2015 Paola A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The stress response to surgery includes a number of hormonal changes initiated by neuronal activation of the Hypothalamo-Pituitary-Adrenal (HPA) axis. Surgery is one of the most potent activators of ACTH and cortisol secretion, and increased plasma concentrations of both hormones can be measured few minutes after the start of surgery.
    [Show full text]
  • Stress Dose Steroids: Myths and Perioperative Medicine
    Stress Dose Steroids: Myths and Perioperative Medicine Literature Review by Sina Moshiri Introduction Many patients presenting for surgery receive regular doses of glucocorticoids for treatment of systemic autoimmune inflammatory disease, asthma and chronic pulmonary disease, and post organ transplantation Traditionally, supplemental dosing of glucocorticoids prior to surgery was thought to be necessary in these patients to avoid hypotension and shock Alternative strategies were rarely considered, and patients still often receive preoperative steroids despite the known infectious, metabolic and would healing risks associated with glucocorticoids Recommendations for perioperative glucocorticoid management have remained unchallenged despite the relative frequency with which many patients use glucocorticoids, and the little evidence supporting this practice Rationale behind this practice was based on the positive feedback inhibition governing the hypothalamic-pituitary-adrenal (HPA) axis. It was thought that long-term, iatrogenic glucocorticoid administration would result in suppression of the HPA axis and increase risk of adrenal crisis in response to surgical stress. This paper seeks to review the perioperative mechanism and use of glucocorticoids, and review the literature and recommendations on which these practices are based. Adrenal Physiology The body consists of two adrenal glands situated on top of the kidneys. These glands help maintain homeostasis through production of two hormones, cortisol (glucocorticoids) and aldosterone (mineralocorticoid). Adrenal glands are involved in electrolyte and fluid balance, which is regulated by a feedback mechanism. Release of corticotropin releasing hormone (CRH) from hypothalamus, stimulates the release of adrenocorticotropic (ACTH) from the pituitary gland. ACTH triggers the production of cortisol by the adrenal glands. Cortisol is released in response to stress and low blood sugar, and has various metabolic effects on the body.
    [Show full text]
  • Cortisol and Antidiuretic Hormone Responses to Stress in Cardiac Surgical Patients
    CORTISOL AND ANTIDIURETIC HORMONE RESPONSES TO STRESS IN CARDIAC SURGICAL PATIENTS YASU OKA, SHIGEHARU WAKAYAMA, TSUTOMU OYAMA, Lou[s R. ORKIN, RONALD M. BECKER, M. DONALD BLAUFOX AND ROBERT W.M. FRATER ABSTRACT The hormonal responses to anaesthesia and cardiac surgery were studied in patients undergoing valve or coronary bypass surgery. Marked increases in antidiuretic hormone levels as a result of surgical stress were seen, and were of approximately equal magnitude in both groups. Although both groups also showed marked increases in plasma cortisol levels in response to operations, this response appeared to be relatively bhmted in valve surgery patients, especially at the end of operation and in the intensive care unit. This blunted cortisol response may be a manifestation of exhaustion of adrenocortical reserves in valvular surgical patients whose sympathoadrenal system has already been chronically stimulatcd by a low output state. The important role of the neuroendocrine system in maintaining homeostasis postopera- tively has long been recognized; this relative cortisol deficiency may be aetiologically related to poor postoperative recovery in critically ill valvular surgery patients. KEY WORDS: CARDIAC SURGERY, stress response. A NUMBER OF INVESTIGATORSI-6 have indicated The present study was undertaken to evaluate that the function of the cardiovascular autonomic whether cortisol and antidiuretic hormone re- nervous system is altered in patients with val- sponses to stress are different in patients with vular heart disease. The loss of sympathetic coronary artery disease and valvular disease, as nervous system control associated with depletion we have previously found in regard to sympathe- of cardiac norepinephrine, when coupled with tic response.
    [Show full text]
  • Stress Hormone Levels in Awake Craniotomy and Craniotomy Under
    ogy & N ol eu ur e ro N p h f y o s l Shinoura, et al., J Neurol Neurophysiol 2014, 5:6 i o a l n o r g u y o DOI: 10.4172/2155-9562.1000256 J Journal of Neurology & Neurophysiology ISSN: 2155-9562 Research Article Open Access Stress Hormone Levels in Awake Craniotomy and Craniotomy under General Anesthesia Nobusada Shinoura1*, Ryoji Yamada1, Kaoru Hatori2, Hiroshi Sato2, and Kohei Kimura2 1Department of Neurosurgery, Komagome Metropolitan Hospital, Hon-komagome, Bunkyo-ku, Tokyo, Japan 2Department of Anesthesiology, Komagome Metropolitan Hospital, Hon-komagome, Bunkyo-ku, Tokyo, Japan *Corresponding author: Nobusada Shinoura, Department of Neurosurgery, Komagome Metropolitan Hospital 3-18-22 Hon-komagome, Bunkyo-ku, Tokyo 113-8677, Japan, Tel: +81-3-3823-2101, Fax: +81-3-3824-1552; E-mail: [email protected] Received date: Nov 19, 2014, Accepted date: Dec 16, 2014, Published date: Dec 20, 2014 Copyright: © 2014 Shinoura N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract To compare stress levels between awake craniotomy and craniotomy under general anesthesia, we analyzed plasma levels of adrenaline, cortisol, adrenocorticotropic hormone (ACTH), noradrenaline and dopamine in a large series of patients. Patients who underwent awake craniotomy in our hospital (n=110) were evaluated at 5 sample times: immediately after arterial line insertion (T1); immediately after head fixation in a head frame (T2); 1 h after start of incision (T3); immediately after relief of head fixation (T4); and immediately after arrival in the intensive care unit (T5).
    [Show full text]
  • Stress Or Metabolic Response to Surgery and Anesthesia
    Review Article http://doi.org/10.18231/j.ijca.2019.031 Stress or metabolic response to surgery and anesthesia Bhavna Gupta1*, Anish Gupta2, Lalit Gupta3 1-3Assistant Professor, 1,3Dept. of Anaesthesia and Critical Care, 2Dept. of CTVS, 1,2All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 3MAMC and Lok Nayak, Hospital, New Delhi, India *Corresponding Author: Bhavna Gupta Email: [email protected] Received: 18th December, 2018 Accepted: 6th March, 2019 Abstract The stress response to surgery, trauma, burns, and critical illness is a well-known entity and encompasses derangements in metabolic and physiological pathways which leads to inflammatory, acute phase, hormonal and genomic responses. There is a state of hyper catabolism and hyper metabolism, which results in impaired wound healing, impaired immune functions and muscle wasting. The stress response to surgery is similar to that induced as a result of traumatic injuries, however it depends on the duration and severity of surgical or traumatic injury. Body responds to such stimuli which may range from minor to massive insults and response is characterized by local or generalized responses. The generalized responses vary from endocrinal, metabolic and biochemical changes in the body and magnitude of the same vary dep/ending on the intensity, severity and duration of stimuli. Stress responses are known to be well tolerated in normal healthy adults, however in patients with known ailments and co-morbidities such as coronary heart disease, hypertension, diabetes, liver diseases, renal insufficiency, old age, changes may be detrimental and life threatening. Keywords: Stress, Metabolic Response, Surgery, Anesthesia. Introduction Hematological and Immunological Response Surgical Stress Response There is a state of fibrinolysis and hypercoagulability Surgery and trauma induce a complex hematological, because of effects of acute phase proteins and cytokines on hormonal, metabolic and immunological responses in the coagulation pathway.
    [Show full text]
  • The Stress Response to Trauma and Surgery
    British Journal of Anaesthesia 85 (1): 109±17 (2000) The stress response to trauma and surgery J. P. Desborough Department of Anaesthesia, Epsom General Hospital, Dorking Road, Epsom KT18 7EG, UK Br J Anaesth 2000; 85: 109±17 Keywords: surgery; hormones, cortisol; sympathetic nervous system, catecholamines; anaesthetic techniques, epidural The stress response is the name given to the hormonal and outcome are still under scrutiny. Over the past 10 yr, the role metabolic changes which follow injury or trauma. This is of cytokines in the response to surgery, and the interaction part of the systemic reaction to injury which encompasses a between the immunological and neuroendocrine systems, wide range of endocrinological, immunological and hae- has furthered interest in the subject. This review describes matological effects (Table 1). The responses to surgery have the endocrine and metabolic changes which occur during been of interest to scientists for many years. In 1932, surgery, and the effects of anaesthetic and analgesic Cuthbertson described in detail the metabolic responses of regimens upon the responses. four patients with lower limb injuries.10 He documented and quanti®ed the time course of the changes. The terms `ebb' and `¯ow' were introduced to describe an initial decrease and subsequent increase in metabolic activity. The descrip- The endocrine response to surgery tion of the `ebb' phase was based partly on work in The stress response to surgery is characterized by increased experimental animals and the estimations of increases in secretion of pituitary hormones and activation of the metabolic rate in the `¯ow' phase were exaggerated. These sympathetic nervous system.13 The changes in pituitary descriptions have been perpetuated and are still quoted, but secretion have secondary effects on hormone secretion from have been rede®ned29 and are perhaps not critical to an target organs (Table 2).
    [Show full text]