Molecular Asymmetry and Life Detection

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Asymmetry and Life Detection Astrobiology Science Conference 2010 sess503.pdf Thursday, April 29, 2010 ORIGINS OF MOLECULAR ASYMMETRY, HOMOCHIRALITY, AND LIFE DETECTION 8:00 a.m. Crystal Salon E This session will discuss the role of homochirality in life, theoretical models and experiments that elucidate potential mechanisms for chiral symmetry breaking and amplification, and current life detection strategies and instrumentation. Chairs: Daniel Glavin Henry Sun 8:00 a.m. Breslow R. * Filling the Gaps in the Likely Origin of Prebiotic Homochirality on Earth [#5660] Under credible prebiotic conditions, the small excesses of L alphamethyl amino acids in some meteorites can produce L excesses in normal amino acids, which can be amplified to near homochirality. Related results have also been demonstrated for the formation of D sugars. 8:15 a.m. Popa R. Cimpoiasu V. M. Scorei R. I. * The Origin of Homochirality in Amino Acids Through Weak Neutral Currents and Ortho:Para Disequilibrium in the Amino Group [#5359] We report finding chiral disruption in the amino acid Asparagine. Our model is based on weak neutral currents from the chiral center producing L-D-asymmetric organization of the amino group. This effect 17 1 is measurable by H2 O-TD- HNMR. 8:30 a.m. Glavin D. P. * Callahan M. P. Dworkin J. P. L-Amino Acid Enrichments in Carbonaceous Meteorites: Implications for the Origin of Biological Homochirality [#5004] Large left handed excesses of the amino acid isovaline ranging from 15% to 29% found in aqueous altered carbonaceous meteorites suggests that water played an important role in the amplification of amino acid asymmetry on the parent body. 8:45 a.m. Pizzarello S. * Wang H. Hydroxyacid Molecular and Isotopic Composition in CR and CM Chondrites: Similarities and Distinctions [#5088] The molecular, chiral and isotopic composition of chondritic hydroxy acids is described. New findings of molecular asymmetry in these compounds will be discussed. 9:00 a.m. Sun H. J. * Use of Alternative Enantiomers by Life on Earth [#5574] The chirality barrier in amino acids and lactic acid has been overcome on Earth by racemases. For the metabolism of sugars (glucose and xylose), the “mirror” is intact. These findings complicate chirality based approaches to life detection. 9:15 a.m. Davies P. C. W. * Mirror Life and a Shadow Biosphere [#5110] If life emerges readily in earthlike conditions then it should have started many times on our home planet, opening up the possibility that Earth hosts a “shadow biosphere” of alternative life that may still exist today. I discuss ways to seek evidence for this. 9:30 a.m. Levin G. V. * Can Chirality Give Proof of Extinct or Extant Life? [#5143] A new, unambigious method to detect living microorganisms through chiral preference of enantiomeric substrates and multiple controls is presented. Astrobiology Science Conference 2010 sess503.pdf 9:45 a.m. Thiemann W. H. P. * Bredehoeft J. H. Meierhenrich U. J. Goesmann F. Enantioselective Instruments Onboard Rosetta Lander (COSAC) and Mission ExoMars (MOMA) [#5076] Space missions so far never included enantioselective instruments to distinguish between chiral organic molecules. We will describe the first enantioselective gas chromatographic device COSAC and MOMA that we developed for Rosetta and ExoMars missions. 10:00 a.m. Bada J. L. * Aubrey A. D. Mathies R. A. Grunthaner F. J. “Follow the Nitrogen” Strategy for In Situ Astrobiological Investigations on Mars [#5535] Based on the ubiquitous occurrence of amino acids and other nitrogenous organic compounds in terrestrial biology, “Follow the Nitrogen” provides the central framework in strategies required for the search for life beyond Earth. 10:15 a.m. BREAK .
Recommended publications
  • Prebiological Evolution and the Metabolic Origins of Life
    Prebiological Evolution and the Andrew J. Pratt* Metabolic Origins of Life University of Canterbury Keywords Abiogenesis, origin of life, metabolism, hydrothermal, iron Abstract The chemoton model of cells posits three subsystems: metabolism, compartmentalization, and information. A specific model for the prebiological evolution of a reproducing system with rudimentary versions of these three interdependent subsystems is presented. This is based on the initial emergence and reproduction of autocatalytic networks in hydrothermal microcompartments containing iron sulfide. The driving force for life was catalysis of the dissipation of the intrinsic redox gradient of the planet. The codependence of life on iron and phosphate provides chemical constraints on the ordering of prebiological evolution. The initial protometabolism was based on positive feedback loops associated with in situ carbon fixation in which the initial protometabolites modified the catalytic capacity and mobility of metal-based catalysts, especially iron-sulfur centers. A number of selection mechanisms, including catalytic efficiency and specificity, hydrolytic stability, and selective solubilization, are proposed as key determinants for autocatalytic reproduction exploited in protometabolic evolution. This evolutionary process led from autocatalytic networks within preexisting compartments to discrete, reproducing, mobile vesicular protocells with the capacity to use soluble sugar phosphates and hence the opportunity to develop nucleic acids. Fidelity of information transfer in the reproduction of these increasingly complex autocatalytic networks is a key selection pressure in prebiological evolution that eventually leads to the selection of nucleic acids as a digital information subsystem and hence the emergence of fully functional chemotons capable of Darwinian evolution. 1 Introduction: Chemoton Subsystems and Evolutionary Pathways Living cells are autocatalytic entities that harness redox energy via the selective catalysis of biochemical transformations.
    [Show full text]
  • A Chemical Engineering Perspective on the Origins of Life
    Processes 2015, 3, 309-338; doi:10.3390/pr3020309 processesOPEN ACCESS ISSN 2227-9717 www.mdpi.com/journal/processes Article A Chemical Engineering Perspective on the Origins of Life Martha A. Grover *, Christine Y. He, Ming-Chien Hsieh and Sheng-Sheng Yu School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr. NW, Atlanta, GA 30032, USA; E-Mails: [email protected] (C.Y.H.); [email protected] (M.-C.H.); [email protected] (S.-S.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-404-894-2878 or +1-404-894-2866. Academic Editor: Michael Henson Received: 29 January 2015 / Accepted: 19 April 2015 / Published: 5 May 2015 Abstract: Atoms and molecules assemble into materials, with the material structure determining the properties and ultimate function. Human-made materials and systems have achieved great complexity, such as the integrated circuit and the modern airplane. However, they still do not rival the adaptivity and robustness of biological systems. Understanding the reaction and assembly of molecules on the early Earth is a scientific grand challenge, and also can elucidate the design principles underlying biological materials and systems. This research requires understanding of chemical reactions, thermodynamics, fluid mechanics, heat and mass transfer, optimization, and control. Thus, the discipline of chemical engineering can play a central role in advancing the field. In this paper, an overview of research in the origins field is given, with particular emphasis on the origin of biopolymers and the role of chemical engineering phenomena. A case study is presented to highlight the importance of the environment and its coupling to the chemistry.
    [Show full text]
  • Chemical Evolution Theory of Life's Origins the Lattimer, AST 248, Lecture 13 – P.2/20 Organics
    Chemical Evolution Theory of Life's Origins 1. the synthesis and accumulation of small organic molecules, or monomers, such as amino acids and nucleotides. • Production of glycine (an amino acid) energy 3HCN+2H2O −→ C2H5O2N+CN2H2. • Production of adenine (a base): 5 HCN → C5H5N5, • Production of ribose (a sugar): 5H2CO → C5H10O5. 2. the joining of these monomers into polymers, including proteins and nucleic acids. Bernal showed that clay-like materials could serve as sites for polymerization. 3. the concentration of these molecules into droplets, called protobionts, that had chemical characteristics different from their surroundings. This relies heavily on the formation of a semi-permeable membrane, one that allows only certain materials to flow one way or the other through it. Droplet formation requires a liquid with a large surface tension, such as water. Membrane formation naturally occurs if phospholipids are present. 4. The origin of heredity, or a means of relatively error-free reproduction. It is widely, but not universally, believed that RNA-like molecules were the first self-replicators — the RNA world hypothesis. They may have been preceded by inorganic self-replicators. Lattimer, AST 248, Lecture 13 – p.1/20 Acquisition of Organic Material and Water • In the standard model of the formatio of the solar system, volatile materials are concentrated in the outer solar system. Although there is as much carbon as nearly all other heavy elements combined in the Sun and the bulk of the solar nebula, the high temperatures in the inner solar system have lead to fractional amounts of C of 10−3 of the average.
    [Show full text]
  • MMM #278 Since December 1986 SEPTEMBER 2014 – P 1
    MMM #278 Since December 1986 SEPTEMBER 2014 – p 1 Two worlds of the Inner Solar System that present enormous challenges for human visitors, explorers, and settlers Feature Articles: 2 In Focus: Venus & Mercury: Why Limit Human Frontiers to Moon and Mars? 3 Venus: The Sources of Radical Transformation are already “on Location” 5 Mercury: Discovery of a hidden Settlement Sweet Spot; “Location, Location, Location” 7 Moon Base Costs: Dave Dietzler Below: Previous Articles about Venus have focused on “Aerostat stations” high above the surface, where air pressure and temperatures are human-friendly Above left: a Venus aerostat station - right: at an altitude where temperatures and pressures are benign For past articles, Visit http://www.moonsociety.org/publications/mmm_classics/ or /mmm_themes/ MMM #278 Since December 1986 SEPTEMBER 2014 – p 2 About Moon Miners’ Manifesto - “The Moon - it’s not Earth, but it’s Earth’s!” • MMM’s VISION: “expanding the human economy through of-planet resources”; early heavy reliance on Lunar materials; early use of Mars system and asteroid resources; and permanent settlements supporting this economy. • MMM’s MISSION: to encourage “spin-up” entrepreneurial development of the novel technologies needed and promote the economic-environmental rationale of space and lunar settlement. • Moon Miners’ Manifesto CLASSICS: The non-time-sensitive articles and editorials of MMM’s first twenty years plus have been re-edited, reillustrated, and republished in 23 PDF format volumes, for free downloading from this location: http://www.MoonSociety.org/publications/mmm_classics/ • MMM THEME Issues: 14 collections of articles according to themes: ..../publications/mmm_themes/ • MMM Glossary: new terms, old terms/new meanings: www.moonsociety.org/publications/m3glossary.html • MMM retains its editorial independence and serves many groups, each with its own philosophy, agenda, and programs.
    [Show full text]
  • First Life in Primordial-Planet Oceans: the Biological Big Bang Gibson/Wickramasinghe/Schild First Life in Primordial-Planet Oceans: the Biological Big Bang
    Journal of Cosmology First life in primordial-planet oceans: the biological big bang Gibson/Wickramasinghe/Schild First life in primordial-planet oceans: the biological big bang Carl H. Gibson 1,2 1 University of California San Diego, La Jolla, CA 92093-0411, USA [email protected], http://sdcc3.ucsd.edu/~ir118 N. Chandra Wickramasinghe3,4 3Cardiff Centre for Astrobiology, 24 Llwynypia Road, Lisvane, Cardiff CF14 0SY [email protected] Rudolph E. Schild5,6 5 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 [email protected] Abstract: A scenario is presented for the formation of first life in the universe based on hydro- gravitational-dynamics (HGD) cosmology. From HGD, the dark matter of galaxies is H-He gas dominated planets (primordial-fog-particle PFPs) in million solar mass clumps (protoglobularstar- cluster PGCs), which formed at the plasma to gas transition temperature 3000 K. Stars result from mergers of these hot-gas-planets. Over-accretion causes stars to explode as supernovae that scatter life-chemicals (C, N, O, P, S, Ca, Fe etc.) to other planets in PGC clumps and beyond. These chemicals were first collected gravitationally by merging PFPs to form H-saturated, high-pressure, dense oceans of critical-temperature 647 K water over iron-nickel cores at ~ 2 Myr. Stardust fertil- izes the formation of first life in a cosmic hot-ocean soup kitchen comprised of all planets and their moons in meteoric communication, > 10100 kg in total. Ocean freezing at 273 K slows this biologi- cal big bang at ~ 8 Myr. HGD cosmology confirms that the evolving seeds of life are scattered on intergalactic scales by Hoyle-Wickramasinghe cometary panspermia.
    [Show full text]
  • Amino Acid Racemization and Homochirality on Earth and Elsewhere
    Astrobiology Science Conference 2015 (2015) 7756.pdf Amino Acid Racemization and Homochirality on Earth and Elsewhere. Jeffrey L. Bada1 and H. J. Cleaves2, 1Scripps Insitution of Oceanography, University of California at San Diego, La Jolla, CA (2024-0212 jba- [email protected], 2 Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan; and Institute for Advanced Study, Princeton, NJ 08540 ture, and the chemical environment [3]. Racemi- Introduction: Did amino acid homochirality zation reactions are rapid on the terrestrial geo- originate before, during or after the origin of life logic time scale and even at deep ocean tempera- on Earth? Some researchers consider homochiral- tures (2°C), amino acids are totally racemized ity to be an inevitable consequence of universal (D/L = 1.0) in <5-10 million years [3]. This fundamental physical processes that took place should also be the case for any homochiral amino either in extraterrestrial environments or directly acids in the putative Europan Oceans. When bio- on the early Earth. Others consider that without genic amino acids are completely racemized, they molecular homochirality there could be no origin would be indistinguishable from a chirality point- of life. An alternative view is that biochemistry of-view from the racemic amino acids produced itself played a more important role than abiotic by abiotic organic synthesis or those derived from chemical or physical processes, and thus bio- exogenous sources. Small L-enantiomric excess- molecular homochirality is a consequence of life, es in α-dialkyl amino acids with a chiral center rather than a prerequisite for life [1].
    [Show full text]
  • Origins of Life: a Problem for Physics
    Origins of Life: A Problem for Physics Sara Imari Walker School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe AZ USA; Blue Marble Space Institute of Science, Seattle WA USA E-mail: [email protected] Abstract. The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins. arXiv:1705.08073v1 [q-bio.PE] 23 May 2017 CONTENTS 2 Contents 1 Introduction 2 2 Knowns and unknowns in solving the origin of life 4 2.1 One planet, one sample: The significance of anthropic bias . .5 2.2 Two paths to a solution .
    [Show full text]
  • Autocatalyzed Oxidation of Amino Acid, L-Citrulline by Diperiodatocuprate(III) Complex in Aqueous Alkaline Medium: a Kinetics and Mechanistic Approach
    J. Chem. Sci. Ó (2020) 132:17 Indian Academy of Sciences https://doi.org/10.1007/s12039-019-1718-2 Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) REGULAR ARTICLE Autocatalyzed oxidation of amino acid, L-Citrulline by diperiodatocuprate(III) complex in aqueous alkaline medium: a kinetics and mechanistic approach SANTOSH B KONNUR and SHARANAPPA T NANDIBEWOOR* P. G. Department of Studies in Chemistry, Karnatak University, Dharwad, Karnataka 580 003, India E-mail: [email protected] MS received 4 July 2019; revised 3 September 2019; accepted 6 September 2019 Abstract. Autocatalysed oxidation of important amino acid, L-Citrulline(L-Cit) by coordination complex, diperiodatocuprate(III) in aqueous alkaline medium at a constant ionic strength of 0.05 mol dm-3 was studied spectrophotometrically. Autocatalysis was observed by one of the products formed, i.e., Cu (II). 1:4 stoichiometry (L-Cit:DPC) exhibited between the reaction of L-Cit and DPC in aqueous alkaline medium. The path is of first-order in [DPC], less than unit order in [L-Cit] and independent in [OH-]. Periodate has a retarding effect on the rate of reaction. Ionic strength has a negligible effect on the reaction rate. The main reaction products were identified by spot tests and spectroscopic analysis. A composite mechanism involving uncatalysed and an autocatalysed reaction path (via free radical) was proposed. The activation parameters for the slow step of the mechanism and also the thermodynamic quantities for different steps of the mechanism were determined and discussed.
    [Show full text]
  • The Emergence of Nucleic Acids in an Iron-Sulphur World
    Cardiff University School of Earth, Ocean and Planetary Sciences THE EMERGENCE OF NUCLEIC ACIDS IN AN IRON-SULPHUR WORLD By Bryan Hatton Thesis submitted for the Degree of Philosophiae Doctor September 2007 UMI Number: U585139 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U585139 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree. Signed . { 3 3 ...................(candidate) Date STATEMENT 1 This U ^j^s^being submitted in partial fulfillment of the requirements for the degree of Signed (3. r. 3 3 3 ^ 3 ^ ..............(candidate) STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. Signed 33. (candidate) D a te <3? STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.
    [Show full text]
  • The Start of the Abiogenesis: Preservation of Homochirality In
    The start of the Abiogenesis: Preservation of homochirality in proteins as a necessary and sufficient condition for the establishment of the metabolism Søren Toxvaerd Department of Science and Environment, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark Abstract Biosystems contain an almost infinite amount of vital important details, which together ensure their life. There are, however, some common struc- tures and reactions in the systems: the homochirality of carbohydrates and proteins, the metabolism and the genetics. The Abiogenesis, or the origin of life, is probably not a result of a series of single events, but rather the result of a gradual process with increasing complexity of molecules and chemical reactions, and the prebiotic synthesis of molecules might not have left a trace of the establishment of structures and reactions at the beginning of the evo- lution. But alternatively, one might be able to determine some order in the formation of the chemical denominators in the Abiogenesis. Here we review experimental results and present a model of the start of the Abionenesis, where the spontaneous formation of homochirality in proteins is the precon- dition for the establishment of homochirality of carbohydrates and for the metabolism at the start of the Abiogenesis. Keywords: arXiv:1803.01560v1 [q-bio.BM] 5 Mar 2018 Abiogenesis Homochirality Metabolism 1. The preservation of homochiral structures in millions of years in a prebiotic aqueous environment. There have been many proposals to the establishment of homochirality of carbohydrates and amino acids in a prebiotic environment. It is, however, not the establishment, but rather the preservation of homochirality, which is the problem.
    [Show full text]
  • Primordial Planets, Comets and Moons Foster Life in the Cosmos
    Primordial planets, comets and moons foster life in the cosmos Carl H. Gibsona*, N. Chandra Wickramasingheb and Rudolph E. Schildc a UCSD, La Jolla, CA, 92093-0411, USA; b Cardiff Univ., Cardiff, UK; c Harvard, Cambridge, MA, USA ABSTRACT A key result of hydrogravitational dynamics cosmology relevant to astrobiology is the early formation of vast numbers of hot primordial-gas planets in million-solar-mass clumps as the dark matter of galaxies and the hosts of first life. Photon viscous forces in the expanding universe of the turbulent big bang prevent fragmentations of the plasma for mass scales smaller than protogalaxies. At the plasma to gas transition 300,000 years after the big bang, the 107 decrease in kinematic viscosity ν explains why ~3x107 planets are observed to exist per star in typical galaxies like the Milky Way, not eight or nine. Stars form by a binary accretional cascade from Earth-mass primordial planets to progressively larger masses that collect and recycle the stardust chemicals of life produced when stars overeat and explode. The astonishing complexity of molecular biology observed on Earth is possible to explain only if enormous numbers of primordial planets and their fragments have hosted the formation and wide scattering of the seeds of life virtually from the beginning of time. Geochemical and biological evidence suggests that life on Earth appears at the earliest moment it can survive, in highly evolved forms with complexity requiring a time scale in excess of the age of the galaxy. This is quite impossible within standard cold-dark-matter cosmology where planets are relatively recent, rare and cold, completely lacking mechanisms for intergalactic transport of life forms.
    [Show full text]
  • Role of Adatom Defects in the Adsorption of Polyaromatic Hydrocarbons on Metallic Substrates Dushanthi Dissanayake1, Yarra Hassa
    Role of adatom defects in the adsorption of polyaromatic hydrocarbons on metallic substrates Dushanthi Dissanayake1, Yarra Hassan2, Emilian Tuca3, and Irina Paci2* 1Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada 2Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada 3Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Okanagan, British Columbia, Canada Abstract The adsorption of polyaromatic hydrocarbons (PAHs) on metallic substrates has been of interest in the field of optoelectronics due to the possibility of designing complex materials with tunable properties through surface functionalization with organic molecules. Much of the modelling research in this field has focused on perfectly symmetrical (idealized) substrates. Limited research has investigated the effect of substrate irregularities, such as adatoms, on the binding of PAHs onto substrates. Here, we examine how the presence of substrate-bound adatoms affects the binding of coronene and hexahelicene monomers and dimers onto Au(111) and Cu(111) substrates using a density functional theory approach. We found that helicene monomers were more effectively able to adapt to the presence of the adatoms than coronene by coiling around the adatoms. Whereas upon adsorption on an ideal (111) surface, coronene can establish significantly stronger dispersive interactions than helicenes, adatom defects reverse the trend. For helicenes, the degree of flattening near
    [Show full text]