Ionizing Radiation As a Source of Oxidative Stress—The Protective Role of Melatonin and Vitamin D
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ganymede Science Questions and Future Exploration
Planetary Science Decadal Survey Community White Paper Ganymede science questions and future exploration Geoffrey C. Collins, Wheaton College, Norton, Massachusetts [email protected] Claudia J. Alexander, Jet Propulsion Laboratory Edward B. Bierhaus, Lockheed Martin Michael T. Bland, Washington University in St. Louis Veronica J. Bray, University of Arizona John F. Cooper, NASA Goddard Space Flight Center Frank Crary, Southwest Research Institute Andrew J. Dombard, University of Illinois at Chicago Olivier Grasset, University of Nantes Gary B. Hansen, University of Washington Charles A. Hibbitts, Johns Hopkins University Applied Physics Laboratory Terry A. Hurford, NASA Goddard Space Flight Center Hauke Hussmann, DLR, Berlin Krishan K. Khurana, University of California, Los Angeles Michelle R. Kirchoff, Southwest Research Institute Jean-Pierre Lebreton, European Space Agency Melissa A. McGrath, NASA Marshall Space Flight Center William B. McKinnon, Washington University in St. Louis Jeffrey M. Moore, NASA Ames Research Center Robert T. Pappalardo, Jet Propulsion Laboratory G. Wesley Patterson, Johns Hopkins University Applied Physics Laboratory Louise M. Prockter, Johns Hopkins University Applied Physics Laboratory Kurt Retherford, Southwest Research Institute James H. Roberts, Johns Hopkins University Applied Physics Laboratory Paul M. Schenk, Lunar and Planetary Institute David A. Senske, Jet Propulsion Laboratory Adam P. Showman, University of Arizona Katrin Stephan, DLR, Berlin Federico Tosi, Istituto Nazionale di Astrofisica, Rome Roland J. Wagner, DLR, Berlin Introduction Ganymede is a planet-sized (larger than Mercury) moon of Jupiter with unique characteristics, such as being the largest satellite in the solar system, the most centrally condensed solid body in the solar system, and the only solid body in the outer solar system known to posses an internally generated magnetic field. -
A Comparative View of Radiation, Xa9745787 Photo and Photocatalytically Induced Oxidation of Water Pollutants
A COMPARATIVE VIEW OF RADIATION, XA9745787 PHOTO AND PHOTOCATALYTICALLY INDUCED OXIDATION OF WATER POLLUTANTS N. GETOFF Institute for Theoretical Chemistry and Radiation Chemistry, University of Vienna, Vienna, Austria Abstract Water resources are presently overloaded with biologically resistant (refractory) pollutants. Several oxidation methods have been developed for their degradation, the most efficient of which is iradiation treatment, particularly that based on e-beam processing in the presence of Q/O3. The next-best method is photoinduced pollutant oxidation with VUV- and/or UV-light, using HjO2 or H2O2/O3 as an additional source of OH radicals. The photocatalytic method, using e.g. TiQ as a catalyst in combination with oxidation agents such as If Oj or H2O2/O3, is also recommended. The suitability of these three methods is illustrated by examples and they are briefly discussed and compared on the basis of theirenergy consumption and efficiency. Other methods, such as ozone treatment, the photo-Fenton process, ultrasonic and elctrochemical treatments, as well as the well known biological process and thermal oxidation of refractory pollutants, are briefly mentioned. 1. INTRODUCTION Current water resources are strongly overloaded with biologically resistant pollutants, as a result of global population growth and the development of certain industries in the past few decades. The disposal of chemical waste in rivers, seas and oceans has contributed to possibly-irrepairable destruction of marine life. The application of fertilizers, pesticides etc. in modern agriculture has exacerbated the situation. Hence, urgent measures are necessary for remediation of water resources. For the degradation of water pollutants, a number of oxidation methods, based on processes initiated by ionizing radiation, UV- and visible light, photocatalytic induced reactions, as well as combinations of these, have been developed. -
Investigations of Moon-Magnetosphere Interactions by the Europa Clipper Mission
EPSC Abstracts Vol. 13, EPSC-DPS2019-366-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Investigations of Moon-Magnetosphere Interactions by the Europa Clipper Mission Haje Korth (1), Robert T. Pappalardo (2), David A. Senske (2), Sascha Kempf (3), Margaret G. Kivelson (4,5), Kurt Retherford (6), J. Hunter Waite (6), Joseph H. Westlake (1), and the Europa Clipper Science Team (1) Johns Hopkins University Applied Physics Laboratory, Maryland, USA, (2) Jet Propulsion Laboratory, California, USA, (3) University of Colorado, Colorado, USA, (4) University of Michigan, Michigan, USA, (5) University of California, California, USA, (6) Southwest Research Institute, Texas, USA. ([email protected]) 1. Introduction magnetic fields inducing eddy currents in the ocean. By measuring the induced field response at multiple The influence of the Jovian space environment on frequencies, the ice shell thickness and the ocean Europa is multifaceted, and observations of moon- layer thickness and conductivity can be uniquely magnetosphere interaction by the Europa Clipper will determined. The ECM consists of four fluxgate provide an understanding of the satellite’s interior sensors mounted on a 5-m-long boom and a control structure and compositional makeup among others. electronics hosted in a vault shielding it from The variability of Jupiter’s magnetic field at Europa radiation damage. The use of four sensors allows for induces electric currents within the moon’s dynamic removal of higher-order spacecraft- conducting ocean layer, the magnitude of which generated magnetic fields on a boom that is short depends on the ocean’s location, extent, and compared with the spacecraft dimensions. -
Quantitative Estimation of Track Segment Yields of Water Radiolysis
www.nature.com/scientificreports OPEN Quantitative estimation of track segment yields of water radiolysis species under heavy ions around Bragg peak energies using Geant4‑DNA Kentaro Baba1, Tamon Kusumoto2, Shogo Okada3, Ryo Ogawara4, Satoshi Kodaira2, Quentin Rafy5, Rémi Barillon5, Nicolas Ludwig5, Catherine Galindo5, Philippe Peaupardin5 & Masayori Ishikawa1,6* − · We evaluate the track segment yield G′ of typical water radiolysis products (eaq , OH and H2O2) under heavy ions (He, C and Fe ions) using a Monte Carlo simulation code in the Geant4‑DNA. Furthermore, we reproduce experimental results of ·OH of He and C ions around the Bragg peak energies (< 6 MeV/u). In the relatively high energy region (e.g., > 10 MeV/u), the simulation results using Geant4‑DNA have agreed with experimental results. However, the G‑values of water radiolysis species have not been properly evaluated around the Bragg peak energies, at which high ionizing density can be expected. Around the Bragg peak energy, dense continuous secondary products are generated, so that it is necessary to simulate the radical–radical reaction more accurately. To do so, we added the role of secondary products formed by irradiation. Consequently, our simulation results are in good agreement with experimental results and previous simulations not only in the high‑energy region but also around the Bragg peak. Several future issues are also discussed regarding the roles of fragmentation and multi‑ionization to realize more realistic simulations. Cancer patients can nowadays select several modalities in radiotherapy such as conventional X-ray therapy and particle therapies (e.g., proton therapy, heavy ion therapy and boron neutron capture therapy). -
Ionizing Radiation: How Fungi Cope, Adapt, and Exploit with the Help of Melanin Ekaterina Dadachova1 and Arturo Casadevall2
Available online at www.sciencedirect.com Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin Ekaterina Dadachova1 and Arturo Casadevall2 Life on Earth has always existed in the flux of ionizing radiation. life forms. Large quantities of highly melanized fungal However, fungi seem to interact with the ionizing radiation spores have been found in early Cretaceous period depos- differently from other inhabitants of the Earth. Recent data its when many species of animals and plants died out. show that melanized fungal species like those from This period coincides with Earth’s crossing the ‘magnetic Chernobyl’s reactor respond to ionizing radiation with zero’ resulting in the loss of its ‘shield’ against cosmic enhanced growth. Fungi colonize space stations and adapt radiation [2]. Additionally, it has been suggested that morphologically to extreme conditions. Radiation exposure radiation from a putative passing star called Nemesis causes upregulation of many key genes, and an inducible might have contributed to extinction events [3]. Fungi microhomology-mediated recombination pathway could be a in general, and especially melanized ones, are highly potential mechanism of adaptive evolution in eukaryotes. The radioresistant when subjected to high doses of ionizing discovery of melanized organisms in high radiation radiation under experimental conditions [4–7]. Under- environments, the space stations, Antarctic mountains, and in standably, such unusual abilities of eukaryotes to survive the reactor cooling water combined with phenomenon of or maybe even benefit from exposure to ionizing radiation ‘radiotropism’ raises the tantalizing possibility that melanins are in contrast to the general view that radiation is have functions analogous to other energy harvesting pigments uniformly harmful to life. -
Radiolysis of H2O:CO2 Ices by Heavy Energetic Cosmic Ray Analogs
A&A 523, A77 (2010) Astronomy DOI: 10.1051/0004-6361/201015123 & c ESO 2010 Astrophysics Radiolysis of H2O:CO2 ices by heavy energetic cosmic ray analogs S. Pilling1, E. Seperuelo Duarte2, A. Domaracka3,H.Rothard3, P. Boduch3, and E. F. da Silveira4 1 IP&D/UNIVAP, Av. Shishima Hifumi, 2911, São Jose dos Campos, SP, Brazil e-mail: [email protected] 2 Grupo de Física e Astronomia, CEFET/Química de Nilópolis, Rua Lúcio Tavares, 1052, CEP 2653-060, Nilópolis, Brazil 3 Centre de Recherche sur les Ions, les Matériaux et la Photonique (CEA/CNRS/ENSICAEN/Université de Caen-Basse Normandie), CIMAP – CIRIL – GANIL, Boulevard Henri Becquerel, BP 5133, 14070 Caen Cedex 05, France 4 Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente 225, CEP 22453-900, Rio de Janeiro, Brazil Received 1 June 2010 / Accepted 3 August 2010 ABSTRACT 58 13+ An experimental study of the interaction of heavy, highly charged, and energetic ions (52 MeV Ni ) with pure H2O, pure CO2 and mixed H2O:CO2 astrophysical ice analogs is presented. This analysis aims to simulate the chemical and the physicochemical interactions induced by heavy cosmic rays inside dense and cold astrophysical environments, such as molecular clouds or protostellar clouds. The measurements were performed at the heavy ion accelerator GANIL (Grand Accélérateur National d’Ions Lourds in Caen, France). The gas samples were deposited onto a CsI substrate at 13 K. In-situ analysis was performed by a Fourier transform infrared (FTIR) spectrometer at different fluences. Radiolysis yields of the produced species were quantified. -
Origin and Temperature Dependence of Radiation Damage in Biological Samples at Cryogenic Temperatures
Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures Alke Meentsa,b,1,2, Sascha Gutmanna,1,3, Armin Wagnerc, and Clemens Schulze-Briesea aPaul Scherrer Institut, Swiss Light Source, CH-5232 Villigen, Switzerland bHamburger Synchrotronstrahlungslabor, Deutsches Elektronen Synchrotron, D-22607 Hamburg, Germany cDiamond Light Source, Harwell Science and Innovations Campus, Didcot, OX11 0DE, United Kingdom Edited by Venkatraman Ramakrishnan, Medical Research Council, Cambridge, United Kingdom, and approved November 23, 2009 (received for review May 20, 2009) Radiation damage is the major impediment for obtaining structural electrons with energies of a few up to severals tens of eV (4, 5). information from biological samples by using ionizing radiation Subsequent radiolytic reactions caused by products of primary such as x-rays or electrons. The knowledge of underlying processes damage are classified as secondary damage. Possible consequences especially at cryogenic temperatures is still fragmentary, and a con- of primary and secondary radiation damage reactions include sistent mechanism has not been found yet. By using a combination breakage of chemical bonds, redox processes, and generation of of single-crystal x-ray diffraction, small-angle scattering, and qual- free radicals. Alterations of the sample at primary and secondary itative and quantitative radiolysis experiments, we show that hy- damage sites may eventually cause long-range rearrangements of drogen gas, formed inside the sample during irradiation, rather molecules in crystals or other assemblies. The loss of crystalline than intramolecular bond cleavage between non-hydrogen atoms, order has been referred to as tertiary or global damage (1). is mainly responsible for the loss of high-resolution information In crystallography, radiation damage results in the decrease of and contrast in diffraction experiments and microscopy. -
Safety Analysis Report and Associated Documentation, TH
This page intentionally left blank to facilitate duplex printing. RH-TRU Payload Appendices Rev. 1, February 2011 TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 GAS GENERATION METHODOLOGY 2.1 Radiolytic G Values for Waste Materials 2.2 G Values for RH-TRU 72-B Waste 2.3 Shipping Period – General Case 2.4 Shipping Period – Controlled Shipments 2.5 Compliance Methodology for Gas Generation Requirements 3.0 ASSESSMENT METHODS 3.1 Gas Generation Test Plan for Remote-Handled Transuranic (RH-TRU) Waste Containers 3.2 Summary of the Flammability Assessment Methodology Program 4.0 SUPPORTING EVALUATIONS 4.1 Chemical Compatibility of Waste Forms 4.2 Free Halides in the RH-TRU 72-B Payload – Source Term and Release Rate Estimates 4.3 Payload Compatibility with Butyl Rubber O-Ring Seals 4.4 Volatile Organic Compounds (VOCs) in the RH-TRU 72-B Payload – Source Term and Release Rate Estimates 4.5 Biological Activity Assessment 4.6 Thermal Stability of Payload Materials at Transport Temperatures 5.0 PAYLOAD CONTAINER DESIGN BASIS EVALUATIONS 5.1 Description of Neutron Shielded Canister i RH-TRU Payload Appendices Rev. 1, February 2011 This page intentionally left blank. ii RH-TRU Payload Appendices Rev. 1, February 2011 1.0 INTRODUCTION This document, the RH-TRU Payload Appendices, accompanies the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC) and is provided as supplemental information pertaining to issues related to the transportation of remote-handled transuranic (RH-TRU) waste in the RH-TRU 72-B packaging. The RH-TRAMPAC contains all information, including requirements and methods of compliance, required for the qualification of a payload for transport in the RH-TRU 72-B packaging. -
Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases
International Journal of Molecular Sciences Review Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases Fabrice Collin Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX 09, France; [email protected] Received: 26 April 2019; Accepted: 13 May 2019; Published: 15 May 2019 Abstract: Increasing numbers of individuals suffer from neurodegenerative diseases, which are characterized by progressive loss of neurons. Oxidative stress, in particular, the overproduction of Reactive Oxygen Species (ROS), play an important role in the development of these diseases, as evidenced by the detection of products of lipid, protein and DNA oxidation in vivo. Even if they participate in cell signaling and metabolism regulation, ROS are also formidable weapons against most of the biological materials because of their intrinsic nature. By nature too, neurons are particularly sensitive to oxidation because of their high polyunsaturated fatty acid content, weak antioxidant defense and high oxygen consumption. Thus, the overproduction of ROS in neurons appears as particularly deleterious and the mechanisms involved in oxidative degradation of biomolecules are numerous and complexes. This review highlights the production and regulation of ROS, their chemical properties, both from kinetic and thermodynamic points of view, the links between them, and their implication in neurodegenerative diseases. Keywords: reactive oxygen species; superoxide anion; hydroxyl radical; hydrogen peroxide; hydroperoxides; neurodegenerative diseases; NADPH oxidase; superoxide dismutase 1. Introduction Reactive Oxygen Species (ROS) are radical or molecular species whose physical-chemical properties are well-known both on thermodynamic and kinetic points of view. -
Converting Nuclear Waste to Electricity
Mr Casey Ray McMahon, B.Sci (Hons), B.MechEng (Hons). Copyright © Version: 16th November, 2012 – 17th November, 2012 updated 28th October 2015 Page: 1 of 16 Nuclear solar cell- converting nuclear waste to electricity. Abstract: Trash to Treasure: Nuclear waste has been constantly accumulating since the advent of nuclear reactor technology to generate nuclear power. Until now, the waste products of nuclear reactions has been collected and stored in large concrete containers, to remain there for thousands of years because of the danger of radiation to human health. In this paper, I present a theory for the practical use for nuclear waste- a means by which it can be converted into electrical current. Because nuclear waste has a half-life of thousands of years, this technology can provide continuous electrical power for thousands of years. This technology can also be used for any radioactive compound that shows radioactive decay- no nuclear reactions are actually required. This technology also works at night, unlike current solar technology. Basically, we are modifying current solar cell technology and using it to capture some types of nuclear radiation to generate current. I also present evidence via Radiotropic fungi indicating that it is possible. What exactly is nuclear waste? Nuclear wastes are the left over or waste products from a nuclear reaction. These nuclear reactions are typically used to generate heat to turn a steam turbine to generate electricity. However, only the heat energy is used for electrical energy generation. Heat is basically a by-product in itself- heat is usually a result of inefficiency in mechanical machines, hence the bulk of the energy emitted from nuclear reactions is left unharnessed. -
Radiation Chemistry of Liquid Systems
Chapter 4 RADIATION CHEMISTRY OF LIQUID SYSTEMS Krzysztof Bobrowski Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warszawa, Poland 1. INTRODUCTION The radiation chemistry of liquid systems illustrates a versatile use of high energy ionizing radiation [1-4]. Radiolysis, the initiation of reactions by high energy radiation, is a very valuable and powerful chemical tool for inducing and studying radical reactions in liquids. In many cases radiolysis offers a convenient and relatively easy way of initiating radical reactions in all phases (including liquid phase) that cannot be or can be performed with some limita- tions by chemical, electrochemical and photolytic methods. Radiolysis of most liquids produces solvated electrons and relatively simple free radicals, some of which can oxidize and/or reduce materials [5]. This chapter is divided into four main sections: “Introduction”, “Radiolysis of water”, “Radiolysis of or- ganic solvents”, and “Radiolysis of ionic liquids”. The fi rst section summa- rizes the mechanisms and features of radiation energy deposition along with a quantifi cation of chemical effects induced by radiation, and techniques used in radiation chemical studies. The second section focuses on radiation-induced radical reactions in water and aqueous solutions using low and high linear energy transfer (LET) irradiation at ambient and high temperatures, and high pressures. Relevant examples include radical reactions initiated by primary and secondary radicals from water radiolysis with a variety of compounds. The third section describes the most important features of radiolysis in organic liquids using common solvents for inducing and studying radical reactions. Relevant examples include radical reactions connected with the selective for- mation of radical cations, radical anions and excited states. -
Ectomycorrhizal Fungi Reduce the Light Compensation Point and Promote Carbon Fixation of Pinus Thunbergii Seedlings to Adapt to Shade Environments
Mycorrhiza DOI 10.1007/s00572-017-0795-7 ORIGINAL PAPER Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments Liang Shi1 & Jie Wang1 & Binhao Liu1 & Kazuhide Nara2 & Chunlan Lian3 & Zhenguo Shen1 & Yan Xia 1 & Yahua Chen 1 Received: 10 April 2017 /Accepted: 3 August 2017 # The Author(s) 2017. This article is an open access publication Abstract We examined the effects of three ectomycorrhizal significantly increased chlorophyll content of needles and (ECM) symbionts on the growth and photosynthesis capacity higher Pi concentrations compared to NM seedlings. of Japanese black pine (Pinus thunbergii) seedlings and esti- Overall, ECM symbionts promoted growth and photosynthe- mated physiological and photosynthetic parameters such as sis while reducing the LCP of P. thunbergii seedlings. These the light compensation point (LCP), biomass, and phosphorus findings indicate that ECM fungi can enhance the survival and (Pi) concentration of P. thunbergii seedlings. Through this competitiveness of host seedlings under low light. investigation, we documented a new role of ectomycorrhizal (ECM) fungi: enhancement of the survival and competitive- Keywords Ectomycorrhiza . Photosynthetic rate . Light ness of P. thunbergii seedlings under low-light condition by compensation point . Japanese black pine . Light limitation reducing the LCP of seedlings. At a CO2 concentration of 400 ppm, the LCP of seedlings with ECM inoculations was − − 40–70 μmol photons m 2 s 1, significantly lower than that of Abbreviation μ −2 −1 non-mycorrhizal (NM) seedlings (200 mol photons m s ). ACO2 assimilation In addition, photosynthetic carbon fixation (Pn) increased AQY Apparent quantum yield with light intensity and CO2 level, and the Pn of ECM seed- CCP CO2 compensation point lings was significantly higher than that of NM seedlings; Chl Chlorophyll Pisolithus sp.