Heavy Bombardment of the Earth at -3.85 Ga: the Search for Petrographic and Geochemical Evidence

Total Page:16

File Type:pdf, Size:1020Kb

Heavy Bombardment of the Earth at -3.85 Ga: the Search for Petrographic and Geochemical Evidence Heavy Bombardment of the Earth at -3.85 Ga: The Search for Petrographic and Geochemical Evidence Graham Ryder Lunar and Planetary Institute Christian Koeberl U"iversity 0/Vienna Stephen J. Mojzsis University o/California, Los Angeles The Moon experienced an interval of intense bombardment peaking at -3.85 ± 0.05 Ga; subsequent mare plains as old as 3.7 or 3.8 Ga are preserved. It can be assumed that the early Earth must have been subjected to an even more intense impact flux resulting from its larger size and because of its proximity to the Moon. Siderophile-element analyses (e.g., Ir abun­ dance) of the oldest sediments on Earth could be used to indicate past escalated influxes of extraterrestrial material. In addition, shocked minerals may also be present in the oldest extant rocks of sedimentary origin as detrital minerals. and remnants of impact ejecta might exist in early Archean formations. Searches for impact signatures have been initiated in the oldest sedi­ ments on the Earth, from the early Archean (>3.7 Ga) terrane of West Greenland; some of these rocks have been interpreted to be at least 3.8 Ga in age. So far, unequivocal evidence of a late heavy bombardment on the early Earth remains elusive. We conclude that either the sedimen­ tation rate of the studied sediments was too fast and therefore too diluting to record an obvi­ ous signal, or the ancient bolide flux has been overestimated, or the bombardment declined so rapidly that the Greenland sediments, some even at -3.85 Ga in age, do not overlap in time with it. 1. INTRODUCTION Earth appears to have been completed about 50-100 m.y. after the initial collapse of the solar nebula (Lee and Halli­ Collisions between planetary bodies have been funda­ day, 1995, 1996; Halliday et al.. 1996; Podosek and Ozima, mental in the evolution of the solar system. Studies under­ 2000), in a timescale apparently more protracted than that taken over the last few decades have convinced most for smaller planetesimals and Mars. As a result of later workers that the planets formed by collision and hierarchi­ geological activity, no record of any primary accretion bom­ cal growth starting from small objects, i.e., from dust to bardment history remains on the surface of the Earth. planetesimals to planets (e.g., Wetherill. 1994; Taylor, Thc period on Earth between the end of accretion and I992a,b; see also chapters in section II of this volume), and the production of the oldest known crustal rocks is com­ not from condensation downward. Late during the accre­ monly referred to as the Hadean Eon (Cloud, 1976. 1988; tion of the Earth (some time after -4.5 Ga), when it had Harland et aI., 1989; Taylor, 2000), which is a chronostratic reached about 70% of its eventual mass, it was most prob­ division (Fig. I). Its terminal boundary is actually not de­ ably impacted by a Mars-sized or larger body (see Cameron, fined on the Earth; Harland et af. (1989) equate it with the 2000). The consequences of such an impact event for the Orientale impact on the Moon. Others do not even use the proto-Earth would have been severe and seminal, ranging teml Hadean, either distinguishing the chronometric divi­ from almost complete melting and formation of a magma sions of Archean Eon and (older) Priscoan time (Harland ocean, thermal loss of preexisting atmosphere, changes in et al., 1989), provisionally at 4.0 Ga. Here we use the term spin rate and spin-axis orientation, to accretion of material Hadean to represent the time period between the formation from the impactor directly, or through rapid fall-out from of the Moon at -4.5 Ga and the beginning of the continu­ orbital debris below the Roche limit. Much of the material ous terrestrial rock record at 3.8 Ga. blasted off in the impact eventually reimpacted the Earth; In contrast with the youthful age for the crust of the some of the ensuing Earth-orbiting debris would have rap­ Earth, the surface of the Moon displays abundant evidence idly coalesced to form most of the Moon and probably some of an intense bombardment at some time between its origi­ smaller moonlets. Some of this geocentrically orbiting nal crustal formation and the outpourings of lava that form material would have continued to impact both bodies for the dark mare plains. Even prior to the Apollo missions, perhaps tens of millions of years after the lunar forming these plains were calculated to be about 3.6 Ga in age based impact. The essential accretion and core formation of the on crater counts and realistic flux estimates. Hence, the 475 Origin ofthe Earth and Moon Eds.: Robin Canup and Kevin Righter University of Arizona Press, Tucson (2000) Fig. L. Comparative chronostratigraphies of the Earth and Moon, based on Harland el al. (1989) and Wilhelms (1987). The times of interest in this paper are the Isuan and Hadean Eras for the Earth and the Pre-Nectarian, Nectarian, and Imbrian Periods for the Moon. The Imbrian is divided into the two Epochs of Early Imbrian and Late Imbrian, which have greatly differing styles of geological activity (rock stratigraphic units, i.e, systems, are not used in this paper). Although the chronostratic divisions into these two Epochs (the Nectarian and the pre-Nectarian) are perfectly clear, the cotTeiation with absolute time is less established, although the age of the Fra Mauro Formation (Imbrium ejecta morphology) that defines the division of Early Imbtian and Nectarian is fairly well established at 3.84 or 3.85 Ga (e.g., Dalrymple and Ryder, 1993). Ryder et al.: Heavy Bombardmenl olthe Earth 477 heavy bombardment was inferred to be ancient (Hartmann, according to the recognition oflunar ferroan anorthosite of 1966). Lunar highland sample data show isotopic resetting that age. The present morphology of the highlands of the from thermal heating, for which there is abundant evidence Moon reflects, almost exclusively, a history of numerous for impact sources dominated by ages of around 3.8-3.9 Ga. subsequent impacts that occurred prior to the extrusion of The most ancient volcanic rocks from mare plains have ages the volcanic flows that form the visible mare plains (e.g., of about 3.8 Ga (see, e.g., Taylor, 1982; Wilhelms, 1987). Wilhelms, 1984, 1987). These ancient impact structures in­ The highland ages have been interpreted to either represent clude giant multiring basins and their debris (Spudis, 1993), a short and intense heavy bombardment period at 3.85 ± as well as a size-seriate range of smaller craters. Hartmann 0.05 Ga or so (e.g., Tera et al., 1974; Ryder, 1990), or the (1965, 1966) recognized that most ofthis cratering occurred tail end of a prolonged postaccretionaly bombardment (e.g., early in lunar history according to an estimate of the aver­ Baldwin, 1974; Hartmann, 1975), as discussed in Hartmann age age of mare plains of 3.6 Ga, which was calculated et af. (2000). In any case, the bulk of this bombardment, based on present-day cratering rates. He inferred a cratering which produced size-seriate scars up to multiring basins rate averaging roughly 200x higher for the first one-seventh many hundreds of kilometers across, preceded 3.8 Ga. We of lunar history than for the remainder. The general correct­ will use the term late heavy bombardment to refer specifi­ ness of Hartmann's conclusion was demonstrated by the cally to that bombardment of the Moon and the Earth from return ofApollo samples, and the dating ofthe oldest mare -3.90 to 3.80 Ga. plains at close to 3.8 Ga (Wilhelms, 1987). In any given time-span, the Earth must have been sub­ Geochronological studies of impact-brecciated highland jected to a significantly greater bombardment than was the samples show thermal events, most of them of impact ori­ Moon, as it has a larger diameter and a much larger gravi­ gin, concentrated at -3.8-3.9 Ga. These ages have been tational cross section, thus making it an easier target to hit taken to represent the tail end of a heavy but declining (e.g., Maher and Stevenson, 1988; Oberbeck and Fogleman, bombardment dating back to the accretion of the Moon 1989; Zahnle and Sleep, 1997). If a late heavy bombard­ (e.g., Shoemaker, 1972, 1977; Hartmann, 1975. 1980; ment occurred on the Moon, the Earth was subject to a flux Neukum et af., 1975; Baldwin, 1971, 1974. 1981, 1987; scaling because of the ratio of the impact cross sections Taylor, 1982; Wilhelms, 1987); alternatively, they may record (Sleep et al., 1989), which may have resulted in an impact a sharp or cataclysmic increase in bombardment for that rate ~20x greater than the lunar one, containing both more short interval (e.g., Tera et aI., 1974; Ryde/; 1990; Dalrymple and larger impact events. The consequences for the hydro­ and Ryder, 1993, 1996). There exists a sharp drop-off in sphere, atmosphere, and even the lithosphere of Earth at that estimates for the cratering rate from the youngest high­ time must have been devastating (Zahnle and Sleep, 1997; land surfaces, the Orientale and Imbrium ejecta blankets, Grieve, 1980; Frey. 1980). There is evidence that the Earth's to the oldest mare surfaces. This is according to crater upper mantle had already undergone some differentiation counts of those surfaces, which differ by a factor of -3-4 at the time of formation of the oldest igneous rocks, sug­ (e.g., Wetherill. 1977. 1981; B VSp, 1981). As a result of the gesting the prior existence of chemically evolved crust (e.g., difference in cratering rates, a flux at least lOOx higher can Harper and Jacobsen, 1992; McCulloch and Bennett, 1993; be calculated for this transition period, even if those young­ Bowring and Housh, 1995).
Recommended publications
  • Lunar Impact Crater Identification and Age Estimation with Chang’E
    ARTICLE https://doi.org/10.1038/s41467-020-20215-y OPEN Lunar impact crater identification and age estimation with Chang’E data by deep and transfer learning ✉ Chen Yang 1,2 , Haishi Zhao 3, Lorenzo Bruzzone4, Jon Atli Benediktsson 5, Yanchun Liang3, Bin Liu 2, ✉ ✉ Xingguo Zeng 2, Renchu Guan 3 , Chunlai Li 2 & Ziyuan Ouyang1,2 1234567890():,; Impact craters, which can be considered the lunar equivalent of fossils, are the most dominant lunar surface features and record the history of the Solar System. We address the problem of automatic crater detection and age estimation. From initially small numbers of recognized craters and dated craters, i.e., 7895 and 1411, respectively, we progressively identify new craters and estimate their ages with Chang’E data and stratigraphic information by transfer learning using deep neural networks. This results in the identification of 109,956 new craters, which is more than a dozen times greater than the initial number of recognized craters. The formation systems of 18,996 newly detected craters larger than 8 km are esti- mated. Here, a new lunar crater database for the mid- and low-latitude regions of the Moon is derived and distributed to the planetary community together with the related data analysis. 1 College of Earth Sciences, Jilin University, 130061 Changchun, China. 2 Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China. 3 Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, 130012 Changchun, China. 4 Department of Information Engineering and Computer ✉ Science, University of Trento, I-38122 Trento, Italy.
    [Show full text]
  • Volcanic History of the Imbrium Basin: a Close-Up View from the Lunar Rover Yutu
    Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu Jinhai Zhanga, Wei Yanga, Sen Hua, Yangting Lina,1, Guangyou Fangb, Chunlai Lic, Wenxi Pengd, Sanyuan Zhue, Zhiping Hef, Bin Zhoub, Hongyu Ling, Jianfeng Yangh, Enhai Liui, Yuchen Xua, Jianyu Wangf, Zhenxing Yaoa, Yongliao Zouc, Jun Yanc, and Ziyuan Ouyangj aKey Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; bInstitute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; cNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; dInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; eKey Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; fKey Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China; gThe Fifth Laboratory, Beijing Institute of Space Mechanics & Electricity, Beijing 100076, China; hXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China; iInstitute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China; and jInstitute of Geochemistry, Chinese Academy of Science, Guiyang 550002, China Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 24, 2015 (received for review February 13, 2015) We report the surface exploration by the lunar rover Yutu that flows in Mare Imbrium was obtained only by remote sensing from landed on the young lava flow in the northeastern part of the orbit. On December 14, 2013, Chang’e-3 successfully landed on the Mare Imbrium, which is the largest basin on the nearside of the young and high-Ti lava flow in the northeastern Mare Imbrium, Moon and is filled with several basalt units estimated to date from about 10 km south from the old low-Ti basalt unit (Fig.
    [Show full text]
  • Timeline of Natural History
    Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • January 2019 Cardanus & Krafft
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – JANUARY 2019 CARDANUS & KRAFFT Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA September 24, 2018 04:40-05:04 UT, 15 cm refl, 170x, seeing 7/10, transparence 6/6. I drew these craters and vicinity on the night of Sept. 23/24, 2018. The moon was about 22 hours before full. This area is in far western Oceanus Procellarum, and was favorably placed for observation that night. Cardanus is the southern one of this pair and is of moderate depth. Krafft to the north is practically identical in size, and is perhaps slightly deeper. Neither crater has a central peak. Several small craters are near and within Krafft. The crater just outside the southeast rim of Krafft is Krafft E, and Krafft C is nearby within Krafft. The small pit to the west is Krafft K, and Krafft D is between Krafft and Cardanus. Krafft C, D and E are similar sized, but K is smaller than these. A triangular-shaped swelling protrudes from the north side of Krafft. The tiny pit, even smaller than Krafft K, east of Cardanus is Cardanus E. There is a dusky area along the southwest side of Cardanus. Two short dark strips in this area may be part of the broken ring Cardanus R as shown on the. Lunar Quadrant map.
    [Show full text]
  • Planetary Surfaces
    Chapter 4 PLANETARY SURFACES 4.1 The Absence of Bedrock A striking and obvious observation is that at full Moon, the lunar surface is bright from limb to limb, with only limited darkening toward the edges. Since this effect is not consistent with the intensity of light reflected from a smooth sphere, pre-Apollo observers concluded that the upper surface was porous on a centimeter scale and had the properties of dust. The thickness of the dust layer was a critical question for landing on the surface. The general view was that a layer a few meters thick of rubble and dust from the meteorite bombardment covered the surface. Alternative views called for kilometer thicknesses of fine dust, filling the maria. The unmanned missions, notably Surveyor, resolved questions about the nature and bearing strength of the surface. However, a somewhat surprising feature of the lunar surface was the completeness of the mantle or blanket of debris. Bedrock exposures are extremely rare, the occurrence in the wall of Hadley Rille (Fig. 6.6) being the only one which was observed closely during the Apollo missions. Fragments of rock excavated during meteorite impact are, of course, common, and provided both samples and evidence of co,mpetent rock layers at shallow levels in the mare basins. Freshly exposed surface material (e.g., bright rays from craters such as Tycho) darken with time due mainly to the production of glass during micro- meteorite impacts. Since some magnetic anomalies correlate with unusually bright regions, the solar wind bombardment (which is strongly deflected by the magnetic anomalies) may also be responsible for darkening the surface [I].
    [Show full text]
  • Terrestrial Impact Structures Provide the Only Ground Truth Against Which Computational and Experimental Results Can Be Com­ Pared
    Ann. Rev. Earth Planet. Sci. 1987. 15:245-70 Copyright([;; /987 by Annual Reviews Inc. All rights reserved TERRESTRIAL IMI!ACT STRUCTURES ··- Richard A. F. Grieve Geophysics Division, Geological Survey of Canada, Ottawa, Ontario KIA OY3, Canada INTRODUCTION Impact structures are the dominant landform on planets that have retained portions of their earliest crust. The present surface of the Earth, however, has comparatively few recognized impact structures. This is due to its relative youthfulness and the dynamic nature of the terrestrial geosphere, both of which serve to obscure and remove the impact record. Although not generally viewed as an important terrestrial (as opposed to planetary) geologic process, the role of impact in Earth evolution is now receiving mounting consideration. For example, large-scale impact events may hav~~ been responsible for such phenomena as the formation of the Earth's moon and certain mass extinctions in the biologic record. The importance of the terrestrial impact record is greater than the relatively small number of known structures would indicate. Impact is a highly transient, high-energy event. It is inherently difficult to study through experimentation because of the problem of scale. In addition, sophisticated finite-element code calculations of impact cratering are gen­ erally limited to relatively early-time phenomena as a result of high com­ putational costs. Terrestrial impact structures provide the only ground truth against which computational and experimental results can be com­ pared. These structures provide information on aspects of the third dimen­ sion, the pre- and postimpact distribution of target lithologies, and the nature of the lithologic and mineralogic changes produced by the passage of a shock wave.
    [Show full text]
  • 37845R CS3 Book Hatfield's Diaries.Indd
    “H.M.A.S. PERTH” 1939 -1941 From the diaries of P.O. George Hatfield Published in Sydney Australia in 2009 Publishing layout and Cover Design by George Hatfield Jnr. Printed by Springwood Printing Co. Faulconbridge NSW 2776 1 2 Foreword Of all the ships that have flown the ensign of the Royal Australian Navy, there has never been one quite like the first HMAS Perth, a cruiser of the Second World War. In her short life of just less than three years as an Australian warship she sailed all the world’s great oceans, from the icy wastes of the North Atlantic to the steamy heat of the Indian Ocean and the far blue horizons of the Pacific. She survived a hurricane in the Caribbean and months of Italian and German bombing in the Mediterranean. One bomb hit her and nearly sank her. She fought the Italians at the Battle of Matapan in March, 1941, which was the last great fleet action of the British Royal Navy, and she was present in June that year off Syria when the three Australian services - Army, RAN and RAAF - fought together for the first time. Eventually, she was sunk in a heroic battle against an overwhelming Japanese force in the Java Sea off Indonesia in 1942. Fast and powerful and modern for her times, Perth was a light cruiser of some 7,000 tonnes, with a main armament of eight 6- inch guns, and a top speed of about 34 knots. She had a crew of about 650 men, give or take, most of them young men in their twenties.
    [Show full text]
  • TOC, Committee, Awards.Fm
    Barringer Medal Citation for Graham Ryder Item Type Article; text Authors Spudis, Paul D. Citation Spudis, P. D. (2003). Barringer Medal Citation for Graham Ryder. Meteoritics & Planetary Science, 38(Supplement), 5-6. DOI 10.1111/j.1945-5100.2003.tb00330.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 02/10/2021 00:36:25 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655722 66th Meeting of the Meteoritical Society: Awards A5 Barringer Medal Citation for Graham Ryder Graham Ryder, an extraordinary lunar scientist whose One of Graham’s lasting contributions to the community accomplishments revolutionized our understanding of lunar of lunar scientists was the work he conducted in Houston for processes and history, passed away on January 5, 2002 as a over a decade, preparing new catalogs of the lunar samples result of complications from cancer of the esophagus. In his returned by the Apollo 15, 16, and 17 missions. The lunar few years studying the lunar samples, Graham made sample catalogs not only described the nature of over 20,000 fundamental discoveries and came up with new insights that individually numbered lunar samples, but collated all the changed the way we look at the Moon and its history. published data (with full bibliographic references) into a handy Graham was born on January 28, 1949 in Shropshire, compendium that both guided existing projects and spurred England. He received his B.Sc. from the University of Wales new research throughout the 1980s.
    [Show full text]
  • Small, Young Volcanic Deposits Around the Lunar Farside Craters Rosseland, Bolyai, and Roche
    44th Lunar and Planetary Science Conference (2013) 2024.pdf SMALL, YOUNG VOLCANIC DEPOSITS AROUND THE LUNAR FARSIDE CRATERS ROSSELAND, BOLYAI, AND ROCHE. J. H. Pasckert1, H. Hiesinger1, and C. H. van der Bogert1. 1Institut für Planetologie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany. jhpasckert@uni- muenster.de Introduction: To understand the thermal evolu- mare basalts on the near- and farside. This gives us the tion of the Moon it is essential to investigate the vol- opportunity to investigate the history of small scale canic history of both the lunar near- and farside. While volcanism on the lunar farside. the lunar nearside is dominated by mare volcanism, the farside shows only some isolated mare deposits in the large craters and basins, like the South Pole-Aitken basin or Tsiolkovsky crater [e.g., 1-4]. This big differ- ence in volcanic activity between the near- and farside is of crucial importance for understanding the volcanic evolution of the Moon. The extensive mare volcanism of the lunar nearside has already been studied in great detail by numerous authors [e.g., 4-8] on the basis of Lunar Orbiter and Apollo data. New high-resolution data obtained by the Lunar Reconnaissance Orbiter (LRO) and the SELENE Terrain Camera (TC) now allow us to investigate the lunar farside in great detail. Basaltic volcanism of the lunar nearside was active for almost 3 Ga, lasting from ~3.9-4.0 Ga to ~1.2 Ga before present [5]. In contrast to the nearside, most eruptions of mare deposits on the lunar farside stopped much earlier, ~3.0 Ga ago [9].
    [Show full text]
  • POSTER SESSION 5:30 P.M
    Monday, July 27, 1998 POSTER SESSION 5:30 p.m. Edmund Burke Theatre Concourse MARTIAN AND SNC METEORITES Head J. W. III Smith D. Zuber M. MOLA Science Team Mars: Assessing Evidence for an Ancient Northern Ocean with MOLA Data Varela M. E. Clocchiatti R. Kurat G. Massare D. Glass-bearing Inclusions in Chassigny Olivine: Heating Experiments Suggest Nonigneous Origin Boctor N. Z. Fei Y. Bertka C. M. Alexander C. M. O’D. Hauri E. Shock Metamorphic Features in Lithologies A, B, and C of Martian Meteorite Elephant Moraine 79001 Flynn G. J. Keller L. P. Jacobsen C. Wirick S. Carbon in Allan Hills 84001 Carbonate and Rims Terho M. Magnetic Properties and Paleointensity Studies of Two SNC Meteorites Britt D. T. Geological Results of the Mars Pathfinder Mission Wright I. P. Grady M. M. Pillinger C. T. Further Carbon-Isotopic Measurements of Carbonates in Allan Hills 84001 Burckle L. H. Delaney J. S. Microfossils in Chondritic Meteorites from Antarctica? Stay Tuned CHONDRULES Srinivasan G. Bischoff A. Magnesium-Aluminum Study of Hibonites Within a Chondrulelike Object from Sharps (H3) Mikouchi T. Fujita K. Miyamoto M. Preferred-oriented Olivines in a Porphyritic Olivine Chondrule from the Semarkona (LL3.0) Chondrite Tachibana S. Tsuchiyama A. Measurements of Evaporation Rates of Sulfur from Iron-Iron Sulfide Melt Maruyama S. Yurimoto H. Sueno S. Spinel-bearing Chondrules in the Allende Meteorite Semenenko V. P. Perron C. Girich A. L. Carbon-rich Fine-grained Clasts in the Krymka (LL3) Chondrite Bukovanská M. Nemec I. Šolc M. Study of Some Achondrites and Chondrites by Fourier Transform Infrared Microspectroscopy and Diffuse Reflectance Spectroscopy Semenenko V.
    [Show full text]
  • Chapter 5: Shock Metamorphism and Impact Melting
    5. Shock Metamorphism and Impact Melting ❖❖❖ Shock-metamorphic products have become one of the diagnostic tools of impact cratering studies. They have become the main criteria used to identify structures of impact origin. They have also been used to map the distribution of shock-pressures throughout an impact target. The diverse styles of shock metamorphism include fracturing of crystals, formation of microcrystalline planes of glass through crystals, conversion of crystals to high-pressure polymorphs, conversion of crystals to glass without loss of textural integrity, conversion of crystals to melts that may or may not mix with melts from other crystals. Shock-metamorphism of target lithologies at the crater was first described by Barringer (1905, 1910) and Tilghman (1905), who recognized three different products. The first altered material they identified is rock flour, which they concluded was pulverized Coconino sandstone. Barringer observed that rock flour was composed of fragmented quartz crystals that were far smaller in size than the unaffected quartz grains in normal Coconino sandstone. Most of the pulverized silica he examined passed through a 200 mesh screen, indicating grain sizes <74 µm (0.074 mm), which is far smaller than the 0.2 mm average detrital grain size in normal Coconino (Table 2.1). Fairchild (1907) and Merrill (1908) also report a dramatic comminution of Coconino, although only 50% of Fairchild’s sample of rock flour passed through a 100 mesh screen, indicating grain sizes <149 µm. Heterogeneity of the rock flour is evident in areas where sandstone clasts survive within the rock flour. The rock flour is pervasive and a major component of the debris at the crater.
    [Show full text]