Pectus Excavatum, Pectus Carinatum and Poland's Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Pectus Excavatum, Pectus Carinatum and Poland's Syndrome PECTUS EXCAVATUM, PECTUS CARINATUM AND POLAND’S SYNDROME: SURGICAL CORRECTION BlueReview POSTED DATE: 3/23/2004 EFFECTIVE DATE: 7/1/2004 _____________________________________________________________________________ COVERAGE: Surgical repair of Pectus Excavatum and Pectus Carinatum is considered reconstructive and medically necessary if the patient meets ALL the following criteria: 1) Well documented evidence of complications arising from the sternal deformity. Complications include, but may not be limited to: a) Cardiopulmonary impairment documented by respiration and/or cardiac function tests; b) Frequent lower respiratory tract infections; c) Asthma; or d) Exercise limitations; e) Atypical chest pain; AND 2) An EKG or echocardiogram has been done if a heart murmur or known heart disease is present to define the relationship of the cardiac problem to the sternal deformity; AND 3) A CT scan of the chest demonstrates a pectus index greater that 3.25. This is derived from dividing the transverse diameter of the chest by the anterior-posterior diameter. Surgical repair of Pectus Excavatum and Pectus Carinatum is considered cosmetic if the procedure is primarily to alter appearance. Surgical repair of the deformities associated with Poland’s Syndrome is considered reconstructive and considered medically necessary. In order to determine medical necessity for the repair of Pectus Excavatum, Pectus Carinatum or deformities associated with Poland’s Syndrome, all of the following information must be provided: 1) Copies of diagnostic studies with radiologic interpretation; 2) Medical documentation describing indications for the procedure with signs and symptoms of complications arising from the sternal deformity; 3) History and physical; AND 4) Photographs of deformities. ______________________________________________________________________ DESCRIPTION: Pectus Excavatum (also known as Funnel Chest) is the most common of Blue Cross and Blue Shield of Texas, a Division of Health Care Service Corporation, a Mutual Legal Reserve Company* Southwest Texas HMO, Inc.* d/b/a HMO BlueÒ Texas * Independent Licensees of the Blue Cross and Blue Shield Association PECTUS EXCAVATUM, PECTUS CARINATUM AND POLAND’S SYNDROME: SURGICAL CORRECTION BlueReview POSTED DATE: 3/23/2004 EFFECTIVE DATE: 7/1/2004 _____________________________________________________________________________ the major congenital deformities of the sternum. This occurs when the sternum is displaced posteriorly to produce a funnel shaped depression. The degree of sternal depression is assessed on a CT scan or lateral chest X-Ray by measuring either the sternovertebral distance or a ratio of sternovertebral distance to transthoracic diameter. The etiology is not precisely understood, but overgrowth of the lower costal cartilages and ribs is thought to be responsible. The extent of the depression varies from person to person. Pectus Excavatum can cause medical complications when cardiopulmonary function is impaired. Both traditional open surgery (Ravitch repair) and newer minimally invasive techniques (Nuss repair) can be used to correct pectus excavatum. Both techniques generally improve chest appearance. They also improve rib and sternum configuration as well as cardiopulmonary (heart and lung) functioning. Both techniques result in a return to normal activity and improved exercise tolerance within the first few months following surgery. Pectus Carinatum, often called "pigeon breast," is caused when the sternum (breastbone) is pushed outward and is also a congenital deformity of the sternum. The forward protrusion of the sternum often causes pain during exercise or during times of increased respiratory effort. It increases in severity with age and generally worsens during growth spurts that occur during late childhood and adolescence. While pectus carinatum occasionally interferes with overall health, it generally does not interfere with cardiopulmonary functioning. The etiology is not precisely understood, but overgrowth of the lower costal cartilages and ribs is thought to be responsible. Surgery may be necessary to restore normal chest contour. Open surgery in boys is performed through a horizontal incision on the anterior chest well, usually just below the nipple area. In girls, this incision is placed to coincide with the lower breast margins when possible. The lower four to five cartilages that are abnormal are removed, leaving the perichondrium (the lining that envelops the outer portion of rib cartilage). This allows the cartilage to regrow in its new position. The sternum is surgically fractured and placed in the correct position. The incision is usually closed with internal sutures that minimize scarring. Poland's Syndrome is a congenital absence of the pectoralis major (chest muscle), absence or hypoplasia (underdevelopment) of the pectoralis minor, absence of costal cartilages, or hypoplasia of the breast and subcutaneous tissue. There can also be brachysyndactyly (missing fingers, missing phalanges, webbing between the fingers, one hand shorter than the other, or a combination of these deformities). Blue Cross and Blue Shield of Texas, a Division of Health Care Service Corporation, a Mutual Legal Reserve Company* Southwest Texas HMO, Inc.* d/b/a HMO BlueÒ Texas * Independent Licensees of the Blue Cross and Blue Shield Association PECTUS EXCAVATUM, PECTUS CARINATUM AND POLAND’S SYNDROME: SURGICAL CORRECTION BlueReview POSTED DATE: 3/23/2004 EFFECTIVE DATE: 7/1/2004 _____________________________________________________________________________ As children with these deformities grow older, the defects usually become more severe. ______________________________________________________________________ RATIONALE: Correction of pectus excavatum and pectus carinatum is usually performed to restore normal appearance, although some patients may have associated medical complications, such as: · Respiratory Infections, · Pneumonia, · Asthma, · Cardiac Arrhythmias, · Atypical chest pain, or · Exercise intolerance. It is the severity of the medical complications and the objective results of diagnostic studies that will help determine the medical necessity for surgical repair of pectus excavatum and pectus carinatum. Poland’s syndrome is a congenital defect and patients may require reconstructive surgery to the chest wall musculature, breasts and subcutaneous tissue. _____________________________________________________________________ PRICING: None ______________________________________________________________________ REFERENCES: · Morshuis, W., Folgering, H., et al. “Exercise cardiorespiratory function before and one year after operation for pectus excavatum.” Journal of Thoracic Cardiovascular Surgery (1994) 107: 1403-1409. · Morshius, W., Folgering, H., et al. “Pulmonary function before surgery for pectus excavatum and at long term follow-up.” Chest (1994) 105(6): 1646-1652. · Fonkalsrud, W.E., Dunn, J.C., et al. “Repair of pectus excavatum deformities: 30 years of experience with 375 patients.” Annuals of Surgery. (2000) 231(3): 443-448. · Swoveland, B., Medvick, C., et al. “The Nuss procedure for pectus excavatum correction.” AORN Journal (2001) 74(6): 828-841. · Kobayashi, S., Yoza, S., et al. “Correction of pectus excavatum and pectus carinatum assisted by the endoscope.” Plastic Reconstructive Surgery. (1997) 99(4); 1037-1045. Blue Cross and Blue Shield of Texas, a Division of Health Care Service Corporation, a Mutual Legal Reserve Company* Southwest Texas HMO, Inc.* d/b/a HMO BlueÒ Texas * Independent Licensees of the Blue Cross and Blue Shield Association PECTUS EXCAVATUM, PECTUS CARINATUM AND POLAND’S SYNDROME: SURGICAL CORRECTION BlueReview POSTED DATE: 3/23/2004 EFFECTIVE DATE: 7/1/2004 _____________________________________________________________________________ · Fonkalsrud, E.W., Beanes, S. “Surgical management of pectus carinatum: 30 years’ experience.” World Journal of Surgery. (2001) 25(7): 898-903. · Gatti, J.E. “Poland’s deformity reconstructions with a customized extra soft silicone prosthesis.” Annual of Plastic Surgery. (1997) 39(2): 122-130. · Borschel, G.H., Izenberg, P.H., Cederna, P.S. “Endoscopically assisted reconstruction of male and female Poland Syndrome.” Plastic Reconstructive Surgery. (2002) 109(5): 1536-1543. ______________________________________________________________________ DISCLAIMER: State and federal law, as well as contract language, including definitions and specific inclusions/exclusions, takes precedence over Medical Policy and must be considered first in determining coverage. The member’s contract benefits in effect on the date that services are rendered must be used. Any benefits are subject to the payment of premiums for the date on which services are rendered. Medical technology is constantly evolving, and we reserve the right to review and update Medical Policy periodically. HMO Blue Texas physicians who are contracted/affiliated with a capitated IPA/medical group must contact the IPA/medical group for information regarding HMO claims/reimbursement information and other general polices and procedures. Blue Cross and Blue Shield of Texas, a Division of Health Care Service Corporation, a Mutual Legal Reserve Company* Southwest Texas HMO, Inc.* d/b/a HMO BlueÒ Texas * Independent Licensees of the Blue Cross and Blue Shield Association .
Recommended publications
  • REGROUPI NG Congenital & Pediatric
    REGROUPI NG 2 Congenital & Ped iatric CONGENITAL & PAEDIATRIC 18.02.05 Preamble - Objectives and Outcomes ALSO SEE OVERALL PREAMBLE (hypertext link on webpage) Many children and young adults experience congenital health problems which require plastic and/or reconstructive surgery to enable them to function normally. To be effective in this area a surgeon requires technical skill, medical expertise and the capacity to respond effectively to their patients' needs and expectations" The graduating trainee will be able to: • Consistently demonstrate sound surgical skills • Maintain skills and learn new skills • Effectively manage complications • Manage complexity and uncertainty • Appraise and interpret plain radiographs, CT and MRI against patients' needs • Communicate information to patients (and their fa mily) about procedures, potentialities and risks associated with surgery in ways that encourage their participation in informed decision making • Develop a care plan for a patient in collaboration with members of an interdisciplinary team • Promote health maintenance • Draw on different kinds of knowledge in order to weigh up patient's problems in terms of context, issues, needs and consequences For Recommended Reading, Delivery and Assessment see the module fo r each body zone Revisional Knowledge following on from that gained from the PRS Science and Principles Module trainees are required to be able to analyse and appropriately apply the science and principles of the following in clinical environments : Craniomaxillofacial Cra niomaxillofacial embryology, anatomy, genetics • Pathogenesis of craniofacial clefts and their classification • Perioperative management of neurosurgical/orbital surgical/major facial surgical patients (including paediatric) Trunk, Perineum & Breast Embryology • Urogenital embryology - male, female, androgenic influence • Breast embryology Congenital Defects and their cla ssification • Spina bifida • Gastroschisis, omphalocele, Prune-belly • Pectus excavatum, pectus carinatum, Poland syndrome .
    [Show full text]
  • Poland Syndrome with Atypical Malformations Associated to a De Novo 1.5 Mb Xp22.31 Duplication
    Short Communication Poland Syndrome with Atypical Malformations Associated to a de novo 1.5 Mb Xp22.31 Duplication Carmela R. Massimino1 Pierluigi Smilari1 Filippo Greco1 Silvia Marino2 Davide Vecchio3 Andrea Bartuli3 Pasquale Parisi4 Sung Y. Cho5 Piero Pavone1,5 1 Department of Clinical and Experimental Medicine, Section of Pediatrics Address for correspondence Piero Pavone, MD, PhD, Department of and Child Neuropsychiatry, University of Catania, Catania, CT, Italy Pediatrics, AOU Policlinico-Vittorio Emanuele, University of Catania, 2 University-Hospital “Policlinico-Vittorio Emanuele,” University of Via S. Sofia 78, 95123 Catania, CT, Italy (e-mail: [email protected]). Catania, Catania, CT, Italy 3 Rare Disease and Medical Genetics, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy 4 Child Neurology, Chair of Pediatrics, NESMOS Department, Faculty of Medicine & Psychology, Sapienza University, c/o Sant’ Andrea Hospital, Rome, Italy 5 Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea Neuropediatrics Abstract Poland’s syndrome (PS; OMIM 173800) is a rare congenital syndrome which consists of absence or hypoplasia of the pectoralis muscle. Other features can be variably associated, including rib defects. On the affected side other features (such as of breast and nipple anomalies, lack of subcutaneous tissue and skin annexes, hand anomalies, visceral, and vertebral malformation) have been variably documented. To date, association of PS with central nervous system malformation has been rarely reported remaining poorly understood and characterized. We report a left-sided PS patient Keywords carrying a de novo 1.5 Mb Xp22.31 duplication diagnosed in addiction to strabismus, ► Poland’ssyndrome optic nerves and chiasm hypoplasia, corpus callosum abnormalities, ectopic neurohy- ► hypoplasic optic pophysis, pyelic ectasia, and neurodevelopmental delay.
    [Show full text]
  • A Narrative Review of Poland's Syndrome
    Review Article A narrative review of Poland’s syndrome: theories of its genesis, evolution and its diagnosis and treatment Eman Awadh Abduladheem Hashim1,2^, Bin Huey Quek1,3,4^, Suresh Chandran1,3,4,5^ 1Department of Neonatology, KK Women’s and Children’s Hospital, Singapore, Singapore; 2Department of Neonatology, Salmanya Medical Complex, Manama, Kingdom of Bahrain; 3Department of Neonatology, Duke-NUS Medical School, Singapore, Singapore; 4Department of Neonatology, NUS Yong Loo Lin School of Medicine, Singapore, Singapore; 5Department of Neonatology, NTU Lee Kong Chian School of Medicine, Singapore, Singapore Contributions: (I) Conception and design: EAA Hashim, S Chandran; (II) Administrative support: S Chandran, BH Quek; (III) Provision of study materials: EAA Hashim, S Chandran; (IV) Collection and assembly: All authors; (V) Data analysis and interpretation: BH Quek, S Chandran; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: A/Prof. Suresh Chandran. Senior Consultant, Department of Neonatology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore. Email: [email protected]. Abstract: Poland’s syndrome (PS) is a rare musculoskeletal congenital anomaly with a wide spectrum of presentations. It is typically characterized by hypoplasia or aplasia of pectoral muscles, mammary hypoplasia and variably associated ipsilateral limb anomalies. Limb defects can vary in severity, ranging from syndactyly to phocomelia. Most cases are sporadic but familial cases with intrafamilial variability have been reported. Several theories have been proposed regarding the genesis of PS. Vascular disruption theory, “the subclavian artery supply disruption sequence” (SASDS) remains the most accepted pathogenic mechanism. Clinical presentations can vary in severity from syndactyly to phocomelia in the limbs and in the thorax, rib defects to severe chest wall anomalies with impaired lung function.
    [Show full text]
  • Acropectorovertebral Dysgenesis (F Syndrome)
    213 LETTER TO JMG J Med Genet: first published as 10.1136/jmg.2003.014894 on 1 March 2004. Downloaded from Acropectorovertebral dysgenesis (F syndrome) maps to chromosome 2q36 H Thiele, C McCann, S van’t Padje, G C Schwabe, H C Hennies, G Camera, J Opitz, R Laxova, S Mundlos, P Nu¨rnberg ............................................................................................................................... J Med Genet 2004;41:213–218. doi: 10.1136/jmg.2003.014894 he F form of acropectorovertebral dysgenesis, also called F syndrome, is a rare dominantly inherited fully Key points Tpenetrant skeletal disorder.1 The name of the syndrome is derived from the first letter of the surname of the family in N Acropectorovertebral dysgenesis, also called F syn- which it was originally described. Major anomalies include drome, is a unique skeletal malformation syndrome, carpal synostoses, malformation of first and second fingers originally described in a four generation American with frequent syndactyly between these digits, hypoplasia family of European origin.1 The dominantly inherited and dysgenesis of metatarsal bones with invariable synostosis disorder is characterised by carpal and tarsal synos- of the proximal portions of the fourth and fifth metatarsals, toses, syndactyly between the first and the second variable degrees of duplication of distal portions of preaxial fingers, hypodactyly and polydactyly of feet, and toes, extensive webbing between adjacent toes, prominence abnormalities of the sternum and spine. of the sternum with variable pectus excavatum and spina bifida occulta of L3 or S1. Affected individuals also have N We have mapped F syndrome in the original family minor craniofacial anomalies and moderate impairment of and were able to localise the gene for F syndrome to a performance on psychometric tests.3 6.5 cM region on chromosome 2q36 with a maximum Two families have been reported to date.
    [Show full text]
  • Familial Poland Anomaly
    J Med Genet: first published as 10.1136/jmg.19.4.293 on 1 August 1982. Downloaded from Journal ofMedical Genetics, 1982, 19, 293-296 Familial Poland anomaly T J DAVID From the Department of Child Health, University of Manchester, Booth Hall Children's Hospital, Manchester SUMMARY The Poland anomaly is usually a non-genetic malformation syndrome. This paper reports two second cousins who both had a typical left sided Poland anomaly, and this constitutes the first recorded case of this condition affecting more than one member of a family. Despite this, for the purposes of genetic counselling, the Poland anomaly can be regarded as a sporadic condition with an extremely low recurrence risk. The Poland anomaly comprises congenital unilateral slightly reduced. The hands were normal. Another absence of part of the pectoralis major muscle in son (Greif himself) said that his own left pectoralis combination with a widely varying spectrum of major was weaker than the right. "Although the ipsilateral upper limb defects.'-4 There are, in difference is obvious, the author still had to carry addition, patients with absence of the pectoralis out his military duties"! major in whom the upper limbs are normal, and Trosev and colleagues9 have been widely quoted as much confusion has been caused by the careless reporting familial cases of the Poland anomaly. labelling of this isolated defect as the Poland However, this is untrue. They described a mother anomaly. It is possible that the two disorders are and child with autosomal dominant radial sided part of a single spectrum, though this has never been upper limb defects.
    [Show full text]
  • Spina Bifida & Certain Birth Defects
    Spina Bifida & Certain Birth Defects Spina Bifida Benefits Eligibility. (38 U.S.C. 1805) There are three basic eligibility requirements: 1. The parent(s) of a spina bifida child-claimant must have performed active military, naval, or air service in the Republic of Vietnam between January 9, 1962 and May 7, 1975. 2. The child must be the natural child of the Vietnam veteran, regardless of age or marital status, who was conceived after the date on which the veteran first entered the Republic of Vietnam. The term “natural child” means a biological child and excludes the notion of deriving entitlement from adoptive parents. Only a biological parent of an adopted child could make the child eligible. 3. Spina Bifida benefits are payable for all types of spina bifida except spina bifida occulta. Private physicians, government or private institution examination reports may establish the diagnosis. Effective Date Level I Level II Level III 12/1/2003 $237 $821 $1,402 Children of Women Vietnam Veterans Born with Certain Birth Defects (38 U.S.C. 1815) Who is eligible for the Children of Women Vietnam Veterans monthly allowance? Under Public Law 106-419, children born to women Vietnam veterans may be eligible for a monthly monetary allowance if they suffer from certain covered birth defects. Children must have been conceived after the date on which the veteran first entered the Republic of Vietnam during the period beginning on February 28, 1961, and ending on May 7, 1975. (Spina Bifida however, is covered under the VA’s Spina Bifida Program.) VA identifies the birth defects as those that are associated with the service of the mother in Vietnam and resulted in permanent physical or mental disability.
    [Show full text]
  • A Framework for the Evaluation of Patients with Congenital Facial Weakness Bryn D
    Webb et al. Orphanet J Rare Dis (2021) 16:158 https://doi.org/10.1186/s13023-021-01736-1 REVIEW Open Access A framework for the evaluation of patients with congenital facial weakness Bryn D. Webb1,2* , Irini Manoli3, Elizabeth C. Engle4,5,6 and Ethylin W. Jabs1,2 Abstract There is a broad diferential for patients presenting with congenital facial weakness, and initial misdiagnosis unfortu- nately is common for this phenotypic presentation. Here we present a framework to guide evaluation of patients with congenital facial weakness disorders to enable accurate diagnosis. The core categories of causes of congenital facial weakness include: neurogenic, neuromuscular junction, myopathic, and other. This diagnostic algorithm is presented, and physical exam considerations, additional follow-up studies and/or consultations, and appropriate genetic testing are discussed in detail. This framework should enable clinical geneticists, neurologists, and other rare disease special- ists to feel prepared when encountering this patient population and guide diagnosis, genetic counseling, and clinical care. Keywords: Congenital facial weakness, Facial paralysis, Clinical genetics, Clinical characterization Clinical characteristics: congenital facial weakness CFW may be unilateral or bilateral and may be partial Congenital facial weakness (CFW) refers to decreased or complete (Fig. 2). Complete CFW refers to complete facial movement present at birth secondary to impaired absence of facial movement in all four quadrants of the function of facial musculature. CFW may be second- face (right upper quadrant, right lower quadrant, left ary to a defect in the motor nucleus of the facial nerve upper quadrant, and left lower quadrant). Patients with or the facial nerve itself (cranial nerve 7; CN7) (neuro- complete absence of facial movement on the left side genic), a defect at the neuromuscular junction, an inher- of the face may be described as having unilateral (left) ent muscular problem (myopathic), or other unknown or complete CFW.
    [Show full text]
  • The Effect of Minimally Invasive Pectus Excavatum Repair on Thoracic Scoliosis
    European Journal of Cardio-Thoracic Surgery 59 (2021) 375–381 ORIGINAL ARTICLE doi:10.1093/ejcts/ezaa328 Advance Access publication 30 October 2020 Cite this article as: Is¸can_ M, Kılıc¸ B, Turna A, Kaynak MK. The effect of minimally invasive pectus excavatum repair on thoracic scoliosis. Eur J Cardiothorac Surg 2021;59:375–81. The effect of minimally invasive pectus excavatum repair on thoracic scoliosis Mehlika Is¸can_ a,*, Burcu Kılıc¸b, Akif Turna b and Mehmet Kamil Kaynak b a Department of Thoracic Surgery, Gebze Fatih State Hospital, Kocaeli, Turkey b Department of Thoracic Surgery, Istanbul University-Cerrahpas¸a,Cerrahpas¸aSchool of Medicine, Istanbul, Turkey Downloaded from https://academic.oup.com/ejcts/article/59/2/375/5943430 by guest on 29 September 2021 * Corresponding author. Department of Thoracic Surgery, Gebze Fatih State Hospital, 41400 Gebze - Kocaeli, Turkey. Tel: +90-543-6609334; e-mail: [email protected] (M. Is¸can)._ Received 13 March 2020; received in revised form 17 July 2020; accepted 23 July 2020 THORACIC Abstract OBJECTIVES: The Nuss technique comprises the placement of an intrathoracic bar behind the sternum. However, besides improving the body posture through the correction of the pectus excavatum (PE), this procedure may cause or worsen thoracic scoliosis as a result of the considerable stress loaded on the chest wall and the thorax. Our goal was to investigate the impact of the Nuss procedure on the thoracic spinal curvature in patients with PE. METHODS: A total of 100 patients with PE who underwent the Nuss procedure were included in the study and evaluated retrospectively.
    [Show full text]
  • Chest Wall Abnormalities and Their Clinical Significance in Childhood
    Paediatric Respiratory Reviews 15 (2014) 246–255 Contents lists available at ScienceDirect Paediatric Respiratory Reviews CME article Chest Wall Abnormalities and their Clinical Significance in Childhood Anastassios C. Koumbourlis M.D. M.P.H.* Professor of Pediatrics, George Washington University, Chief, Pulmonary & Sleep Medicine, Children’s National Medical Center EDUCATIONAL AIMS 1. The reader will become familiar with the anatomy and physiology of the thorax 2. The reader will learn how the chest wall abnormalities affect the intrathoracic organs 3. The reader will learn the indications for surgical repair of chest wall abnormalities 4. The reader will become familiar with the controversies surrounding the outcomes of the VEPTR technique A R T I C L E I N F O S U M M A R Y Keywords: The thorax consists of the rib cage and the respiratory muscles. It houses and protects the various Thoracic cage intrathoracic organs such as the lungs, heart, vessels, esophagus, nerves etc. It also serves as the so-called Scoliosis ‘‘respiratory pump’’ that generates the movement of air into the lungs while it prevents their total collapse Pectus Excavatum during exhalation. In order to be performed these functions depend on the structural and functional Jeune Syndrome VEPTR integrity of the rib cage and of the respiratory muscles. Any condition (congenital or acquired) that may affect either one of these components is going to have serious implications on the function of the other. Furthermore, when these abnormalities occur early in life, they may affect the growth of the lungs themselves. The followingarticlereviewsthe physiology of the respiratory pump, providesa comprehensive list of conditions that affect the thorax and describes their effect(s) on lung growth and function.
    [Show full text]
  • Shprintzen-Goldberg Syndrome
    Shprintzen-Goldberg syndrome Description Shprintzen-Goldberg syndrome is a disorder that affects many parts of the body. Affected individuals have a combination of distinctive facial features and skeletal and neurological abnormalities. A common feature in people with Shprintzen-Goldberg syndrome is craniosynostosis, which is the premature fusion of certain skull bones. This early fusion prevents the skull from growing normally. Affected individuals can also have distinctive facial features, including a long, narrow head; widely spaced eyes (hypertelorism); protruding eyes ( exophthalmos); outside corners of the eyes that point downward (downslanting palpebral fissures); a high, narrow palate; a small lower jaw (micrognathia); and low-set ears that are rotated backward. People with Shprintzen-Goldberg syndrome are often said to have a marfanoid habitus, because their bodies resemble those of people with a genetic condition called Marfan syndrome. For example, they may have long, slender fingers (arachnodactyly), unusually long limbs, a sunken chest (pectus excavatum) or protruding chest (pectus carinatum), and an abnormal side-to-side curvature of the spine (scoliosis). People with Shprintzen-Goldberg syndrome can have other skeletal abnormalities, such as one or more fingers that are permanently bent (camptodactyly) and an unusually large range of joint movement (hypermobility). People with Shprintzen-Goldberg syndrome often have delayed development and mild to moderate intellectual disability. Other common features of Shprintzen-Goldberg syndrome include heart or brain abnormalities, weak muscle tone (hypotonia) in infancy, and a soft out-pouching around the belly-button (umbilical hernia) or lower abdomen (inguinal hernia). Shprintzen-Goldberg syndrome has signs and symptoms similar to those of Marfan syndrome and another genetic condition called Loeys-Dietz syndrome.
    [Show full text]
  • A Rare Case of Poland: Mobeius Syndrome in an Infant
    International Journal of Contemporary Pediatrics Gupta A. Int J Contemp Pediatr. 2019 Sep;6(5):2206-2208 http://www.ijpediatrics.com pISSN 2349-3283 | eISSN 2349-3291 DOI: http://dx.doi.org/10.18203 /2349-3291.ijcp20193151 Case Report A rare case of Poland: Mobeius syndrome in an infant Arohi Gupta* Department of Paediatrics, Lady Hardinge Medical College and Kalawati Saran Child hospital, New Delhi, India Received: 31 May 2019 Revised: 04 July 2019 Accepted: 09 July 2019 *Correspondence: Dr. Arohi Gupta, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Mobius syndrome is a rare condition of unclear origin, characterized by a unilateral or bilateral congenital facial weakness with impairment of ocular abduction, which is frequently associated with limb anomalies. Poland Syndrome is a rare condition that is evident at birth (congenital). Associated features may be extremely variable from case to case. However, it is classically characterized by absence (aplasia) of chest wall muscles on one side of the body (unilateral) and abnormally short, webbed fingers (symbrachydactyly) of the hand on the same side (ipsilateral). In those with the condition, there is typically unilateral absence of the pectoralis minor and the sternal or breastbone portion of the pectoralis major. In females, there may be underdevelopment or absence (aplasia) of one breast and underlying (subcutaneous) tissues. In some cases, associated skeletal abnormalities may also be present, such as underdevelopment or absence of upper ribs; elevation of the shoulder blade (Sprengel deformity); and/or shortening of the arm, with underdevelopment of the forearm bones (i.e., ulna and radius).
    [Show full text]
  • Assessment of Copy Number Variations in 120 Patients with Poland
    Vaccari et al. BMC Medical Genetics (2016) 17:89 DOI 10.1186/s12881-016-0351-x RESEARCHARTICLE Open Access Assessment of copy number variations in 120 patients with Poland syndrome Carlotta Maria Vaccari1, Elisa Tassano2, Michele Torre3, Stefania Gimelli4, Maria Teresa Divizia2, Maria Victoria Romanini5, Simone Bossi1, Ilaria Musante1, Maura Valle6, Filippo Senes7, Nunzio Catena7, Maria Francesca Bedeschi8, Anwar Baban2,10, Maria Grazia Calevo9, Massimo Acquaviva1, Margherita Lerone2, Roberto Ravazzolo1,2 and Aldamaria Puliti1,2* Abstract Background: Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. Methods: To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Results: Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size.
    [Show full text]