Xpoints: Extension Interfaces for Multilayered Applications

Total Page:16

File Type:pdf, Size:1020Kb

Xpoints: Extension Interfaces for Multilayered Applications XPoints: Extension Interfaces for Multilayered Applications Mohamed Aly⇤†, Anis Charfi⇤, Sebastian Erdweg†, and Mira Mezini† ⇤Applied Research, SAP AG fi[email protected] †Software Technology Group, TU Darmstadt [email protected] Abstract—Extensibility is a key requirement in modern develop and integrate extensions. The extensions are likely software applications. In the context of business applications to interact with the core software (e.g. access internal data it is one of the major selection criteria from the customer resources) and can as well affect the main execution stream. perspective. However, there are some challenges concerning the specification and enforcement of extension interfaces. Extension In the case of business applications, especially those that interfaces define the resources of the base applications that are implement strict legal regulations (e.g. tax calculations), allowed to be extended, where and when the extension code will extensibility has to be controlled in a rigorous way. This is run, and what resources of the base application an extension is required for example to prevent undesirable system behavior, allowed to access. While concepts for such interfaces are still a data inconsistencies, and restrict access to sensitive system hot research topic for “traditional” software constructed using a single programming language, they are completely missing information. In our previous works [1], [2], we have outlined for complex consisting of several abstraction layers. In addition, the challenges and requirements for enabling extensibility state-of-the-art approaches do not support providing different for complex multilayered applications. extension interfaces for different stakeholders. With respect to applications that require a controlled This paper attempts to fill this gap by introducing XPoints, an approach and a language for specifying and enforcing form of extensibility, there are two perspectives that should extension interfaces in multilayered applications. An extension be considered: the software provider perspective and the interface in XPoints defines the available extension points extension developer perspective. From the perspective of the on the different abstraction layers, controls the access and software provider, the application consists of several logical visibility of the core application to the extension, and con- layers (e.g. user interface (UI), business process, business strains the interplay between extension points possibly from different abstraction layers. Several extension interfaces can object, database etc.) containing many artifacts that can be be overlaid over the same core application, hence, enabling made extensible for the extension developer. However, in multiple extender views to co-exist. Using an XPoints interface, the context of complex business applications, a software a software provider can automatically generate the extensibility provider can have several kinds of extension developer code infrastructure to provide the extension interface for the groups that can build extensions for the software (e.g. inter- core application. nal development teams and external partner companies). In all cases, the software provider has to develop the necessary I. INTRODUCTION mechanisms to support extensibility such that they express Applications targeted for a large scale and a wide range of and support the following for the extension developer. customers such as business applications typically support a set of standard business processes (e.g. sales order process- M1. Extension possibilities: the artifacts that are al- • ing, recruitment, etc.). Once an organization acquires such lowed to be extended (e.g. UI forms, business process an application, it has to customize and / or extend it to match activities, database tables, etc.). their specific needs. To achieve that, the software provider M2. Interdependencies: the relationships and con- • has to design the software system to support variability straints that exist between these extensible artifacts. and extensibility. In the context of this paper, we focus M3. Extension types: the types of extensions that are al- • on extensibility. We refer to extensibility as the addition lowed to be added to these artifacts (e.g. new methods, of new functionalities to a software system to support new attributes, UI elements, process artifacts, new columns requirements. in a database table, etc.). In most commercial business software systems, a software M4. Extension method: the required coding elements • provider does not give the source code of his applications and how to extend these artifacts (e.g. inheritance, plug- to the extension developers. However, the software provider ins etc.). gives the extension developers access to artifacts like, e.g., M5. Extension control: what underlying application • API libraries, frameworks, etc. along with documentation, resources are available for the extension code (e.g. tutorials, and other materials to help an extension developer variables, methods, etc.) as well as their access rights understand what extension possibilities exist, and how to and usage rules. M6. Extension integration and execution: when and of extension interfaces from their realization (e.g., using • where will the extension code run. design patterns or plug-ins). By decoupling the extension An extension interface specifies the extensibility of a interface from the application, XPoints enables different source code artifact according to M1–M6 above. The ex- extension interfaces for different groups of extension de- tension developer, on the other hand, has to understand the velopers. Moreover, a developer can realize the extensibility extension interface of the system as well as its correct usage interface of a software system by automatically generating to successfully develop and integrate his extension with the the extensibility supporting code from an XPoints interface core software. (Section III). Third, we report on one particular instantiation Turning to object-oriented languages (e.g. Java), there of the approach in business applications consisting of three are two kinds of mechanisms related to the implementa- layers: business object, UI, and business process. We also tion of extension interfaces: those geared towards enabling report on an implementation of XPoints in this context (Sec- extensibility (e.g. inheritance and overriding), and those tion IV). Finally, we discuss the advantages and limitations geared towards controlling extensibility, e.g., modifiers that of our approach (Section V) and compare our approach with enable the developer of a class to control what methods can related work (Section VI). be overridden or attributes that can be accessed(c.f. [3]). In addition to these mechanisms, a software provider can II. PROBLEM STATEMENT use advanced means (e.g. design patterns, aspect-oriented In this section, we first introduce an exemplary business programming, plug-in architectures, etc.) to implement the application that we use throughout the paper. Then, we required extension interface for the software system. analyze the limitation of current works with respect to In this paper we argue that the state-of-the-art approaches extensibility and extension interfaces. have several limitations for realizing the extension interfaces Example Business Application. We consider a business of complex multilayered applications. First, the technical application spanning three logical layers: the business pro- realization of the extension interface is coupled with the cess layer, the business object layer, and the UI layer. A busi- functional code of the core software. Second, these con- ness process defines the flow of activities that are required to ventional means for controlling extensibility e.g., via Java achieve a specific business objective such as creating a sales modifiers, are not expressive enough to enable fine-grained order, ordering goods, or hiring a new employee. Business control on what can be extended and how. Third, it is not objects [13] represent entities that are meaningful within a possible to provide different extension interfaces to different specific business process like sales order, invoice, customer, groups of extension developers. Fourth, software applica- and employee. A business object encapsulates attributes, tions are nowadays extremely complex and involve several behaviour, constraints, and relationships to other business architectural layers, demanding extension interfaces that cut objects. UIs provide means to support the end users to across these layers; support for the latter is also lacking. accomplish the different activities within a business process Moreover, most approaches focus on language or layer- via a graphical interface. specific extensibility mechanisms and thus do not support the needs of multilayered applications. Last but not least, to generate an extension interface of a complex software with many extensibility constraints, a developer has to be experienced with advanced development techniques. The need and the challenges related to providing well- defined extension interfaces for object-oriented systems are documented in the literature [4], [5], [6], [7]. As a variation Figure 1. Sales quotation business process on this theme, several proposals for aspect-based extension interfaces have been published recently [8], [9], [10], [11], We introduce a simple sales quotation management mod- [12]. Yet, as we will elaborate in related work, these
Recommended publications
  • Interface Evolution Via Virtual Extension Methods Brian Goetz Fourth Draft, June 2011
    Interface evolution via virtual extension methods Brian Goetz Fourth draft, June 2011 1. Problem statement Once published, it is impossible to add methods to an interface without breaking existing implementations. (Specifically, adding a method to an interface is not a source- compatible change.) The longer the time since a library has been published, the more likely it is that this restriction will cause grief for its maintainers. The addition of closures to the Java language in JDK 7 place additional stress on the aging Collection interfaces; one of the most significant benefits of closures is that it enables the development of more powerful libraries. It would be disappointing to add a language feature that enables better libraries while at the same time not extending the core libraries to take advantage of that feature1. V1 of the Lambda Strawman proposed C#-style static extension methods as a means of creating the illusion of adding methods to existing classes and interfaces, but they have significant limitations – for example, they cannot be overridden by classes that implement the interface being extended, so implementations are stuck with the “one size fits all” implementation provided as an extension2, and they are not reflectively discoverable. 2. Virtual extension methods3 In this document, we outline a mechanism for adding new methods to existing interfaces, which we call virtual extension methods. Existing interfaces can be augmented without compromising backward compatibility4 by adding extension methods to the interface, whose declaration would contain instructions for finding the default implementation in the event that implementers do not provide a method body.
    [Show full text]
  • Identitymodel Documentation
    IdentityModel Documentation Dominick Baier and Brock Allen May 11, 2021 IdentityModel 1 IdentityModel 3 2 IdentityModel.AspNetCore 5 3 IdentityModel.AspNetCore.OAuth2Introspection7 4 IdentityModel.OidcClient 9 5 oidc-client.js 11 5.1 Overview................................................. 11 5.2 Discovery Endpoint........................................... 12 5.3 Token Endpoint.............................................. 14 5.4 Token Introspection Endpoint...................................... 17 5.5 Token Revocation Endpoint....................................... 17 5.6 UserInfo Endpoint............................................ 18 5.7 Dynamic Client Registration....................................... 18 5.8 Device Authorization Endpoint..................................... 19 5.9 Protocol and Claim Type Constants................................... 19 5.10 Creating Request URLs (e.g. for Authorize and EndSession endpoints)................ 20 5.11 Fluent API for the X.509 Certificate Store................................ 22 5.12 Base64 URL Encoding.......................................... 22 5.13 Epoch Time Conversion......................................... 22 5.14 Time-Constant String Comparison.................................... 22 5.15 Overview................................................. 23 5.16 Worker Applications........................................... 23 5.17 Web Applications............................................ 25 5.18 Extensibility............................................... 27 5.19 Overview................................................
    [Show full text]
  • Appendix a and Appendix B
    This PDF contains 2 Appendices: Appendix A and Appendix B. Appendix A Answers to the Test Your Knowledge Questions This appendix has the answers to the questions in the Test Your Knowledge section at the end of each chapter. Chapter 1 – Hello, C#! Welcome, .NET! 1. Why can a programmer use different languages, for example, C# and F#, to write applications that run on .NET? Answer: Multiple languages are supported on .NET because each one has a compiler that translates the source code into intermediate language (IL) code. This IL code is then compiled to native CPU instructions at runtime by the CLR. 2. What do you type at the prompt to create a console app? Answer: You enter dotnet new console. 3. What do you type at the prompt to build and execute C# source code? Answer: In a folder with a ProjectName.csproj file, you enter dotnet run. 4. What is the Visual Studio Code keyboard shortcut to view Terminal? Answer: Ctrl + ` (back tick). Answers to the Test Your Knowledge Questions 5. Is Visual Studio 2019 better than Visual Studio Code? Answer: No. Each is optimized for different tasks. Visual Studio 2019 is large, heavy- weight, and can create applications with graphical user interfaces, for example, Windows Forms, WPF, UWP, and Xamarin.Forms mobile apps, but it is only available on Windows. Visual Studio Code is smaller, lighter-weight, code-focused, supports many more languages, and is available cross-platform. In 2021, with the release of .NET 6 and .NET Multi-platform App User Interface (MAUI), Visual Studio Code will get an extension that enables building user interfaces for desktop and mobile apps.
    [Show full text]
  • Nested Class Modularity in Squeak/Smalltalk
    Springer, Nested Class Modularity in Squeak/Smalltalk Nested Class Modularity in Squeak/Smalltalk Modularität mit geschachtelten Klassen in Squeak/Smalltalk by Matthias Springer A thesis submitted to the Hasso Plattner Institute at the University of Potsdam, Germany in partial fulfillment of the requirements for the degree of Master of Science in ITSystems Engineering Supervisor Prof. Dr. Robert Hirschfeld Software Architecture Group Hasso Plattner Institute University of Potsdam, Germany August 17, 2015 Abstract We present the concept, the implementation, and an evaluation of Matriona, a module system for and written in Squeak/Smalltalk. Matriona is inspired by Newspeak and based on class nesting: classes are members of other classes, similarly to class instance variables. Top-level classes (modules) are globals and nested classes can be accessed using message sends to the corresponding enclosing class. Class nesting effec- tively establishes a global and hierarchical namespace, and allows for modular decomposition, resulting in better understandability, if applied properly. Classes can be parameterized, allowing for external configuration of classes, a form of dependency management. Furthermore, parameterized classes go hand in hand with mixin modularity. Mixins are a form of inter-class code reuse and based on single inheritance. We show how Matriona can be used to solve the problem of duplicate classes in different modules, to provide a versioning and dependency management mech- anism, and to improve understandability through hierarchical decomposition. v Zusammenfassung Diese Arbeit beschreibt das Konzept, die Implementierung und die Evaluierung von Matriona, einem Modulsystem für und entwickelt in Squeak/Smalltalk. Ma- triona ist an Newspeak angelehnt und basiert auf geschachtelten Klassen: Klassen, die, wie zum Beispiel auch klassenseitige Instanzvariablen, zu anderen Klassen gehören.
    [Show full text]
  • Specialising Dynamic Techniques for Implementing the Ruby Programming Language
    SPECIALISING DYNAMIC TECHNIQUES FOR IMPLEMENTING THE RUBY PROGRAMMING LANGUAGE A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Engineering and Physical Sciences 2015 By Chris Seaton School of Computer Science This published copy of the thesis contains a couple of minor typographical corrections from the version deposited in the University of Manchester Library. [email protected] chrisseaton.com/phd 2 Contents List of Listings7 List of Tables9 List of Figures 11 Abstract 15 Declaration 17 Copyright 19 Acknowledgements 21 1 Introduction 23 1.1 Dynamic Programming Languages.................. 23 1.2 Idiomatic Ruby............................ 25 1.3 Research Questions.......................... 27 1.4 Implementation Work......................... 27 1.5 Contributions............................. 28 1.6 Publications.............................. 29 1.7 Thesis Structure............................ 31 2 Characteristics of Dynamic Languages 35 2.1 Ruby.................................. 35 2.2 Ruby on Rails............................. 36 2.3 Case Study: Idiomatic Ruby..................... 37 2.4 Summary............................... 49 3 3 Implementation of Dynamic Languages 51 3.1 Foundational Techniques....................... 51 3.2 Applied Techniques.......................... 59 3.3 Implementations of Ruby....................... 65 3.4 Parallelism and Concurrency..................... 72 3.5 Summary............................... 73 4 Evaluation Methodology 75 4.1 Evaluation Philosophy
    [Show full text]
  • Pharo by Example
    Portland State University PDXScholar Computer Science Faculty Publications and Computer Science Presentations 2009 Pharo by Example Andrew P. Black Portland State University, [email protected] Stéphane Ducasse Oscar Nierstrasz University of Berne Damien Pollet University of Lille Damien Cassou See next page for additional authors Let us know how access to this document benefits ouy . Follow this and additional works at: http://pdxscholar.library.pdx.edu/compsci_fac Citation Details Black, Andrew, et al. Pharo by example. 2009. This Book is brought to you for free and open access. It has been accepted for inclusion in Computer Science Faculty Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Authors Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet, Damien Cassou, and Marcus Denker This book is available at PDXScholar: http://pdxscholar.library.pdx.edu/compsci_fac/108 Pharo by Example Andrew P. Black Stéphane Ducasse Oscar Nierstrasz Damien Pollet with Damien Cassou and Marcus Denker Version of 2009-10-28 ii This book is available as a free download from http://PharoByExample.org. Copyright © 2007, 2008, 2009 by Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz and Damien Pollet. The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0 Unported license. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
    [Show full text]
  • Functional Programming at Work in Object-Oriented Programming
    Functional Programming at Work in Object-Oriented Programming Narbel version 2010 Narbel Functional Programming at Work in Object-Oriented Programming 1 A Claim about Programming Styles Claim: Adding functional programming capabilities to an object-oriented language leads to benefits in object-oriented programming design. Narbel Functional Programming at Work in Object-Oriented Programming 2 Existing Languages with a FP-OOP Mix Some old and less old languages with FP+OOP: For instance, Smalltalk, Common Lisp (CLOS). More recently, Python or Ruby. Notations: FP, Functional programming; OOP, Object-oriented programming, Narbel Functional Programming at Work in Object-Oriented Programming 3 FP techniques emulated in OOP Practices in OOP languages include emulations of FP techniques: C++ programmers: function pointers and overloadings of the () operator, i.e. “object-functions” or functors. Java programmers: anonymous classes and introspection/reflexion. Narbel Functional Programming at Work in Object-Oriented Programming 4 Existence of FP-OOP Comparison Points The idea of using FP to enrich OOP is old, see e.g. the discussions about the problem of the user-defined datatype extension: User-defined types and procedural data structures as complementary approaches to data abstraction. Reynolds. 1975. The Expression Problem. Wadler. 1998. Narbel Functional Programming at Work in Object-Oriented Programming 5 A Trend: FP Extensions for OO Languages A recent trend: to propose and include typed FP extensions in mainstream static OO languages. Extensions for C++ (see e.g. Laufer, Striegnitz, McNamara, Smaragdakis), and work in progress in the C++ standard committees. Java 7 expected to include FP constructs. C# offers FP constructs (even more in its 3.0 version).
    [Show full text]
  • Visual Basic)
    DEVHOL202 – Curing the asynchronous blues with the Reactive Extensions for .NET (Visual Basic) Introduction This Hands-on-Lab (HOL) familiarizes the reader with the Reactive Extensions for .NET (Rx). By exploring the framework through a series of incremental samples, the reader gets a feel for Rx’s compositional power used to write asynchronous applications, based on the concept of observable collections. Prerequisites We assume the following intellectual and material prerequisites in order to complete this lab successfully: Active knowledge of .NET and the Visual Basic programming language. Feeling for the concept of asynchronous programming and related complexities. Visual Studio 2010 and .NET 4 (prior versions can be used but the lab is built for VS2010) installation. Installation of Rx for .NET 4 from MSDN DevLabs at http://msdn.microsoft.com/en-us/devlabs. What is Rx? Rx can be summarized in the following sentence which can also be read on the DevLabs homepage: Rx is a library for composing asynchronous and event-based programs using observable collections. Three core properties are reflected in here, all of which will be addressed throughout this lab: Asynchronous and event-based – As reflected in the title, the bread and butter of Rx’s mission statement is to simplify those programming models. Everyone knows what stuck user interfaces look like, both on the Windows platform and on the web. And with the cloud around the corner, asynchrony becomes quintessential. Low-level technologies like .NET events, the asynchronous pattern, tasks, AJAX, etc. are often too hard. Composition – Combining asynchronous computations today is way too hard. It involves a lot of plumbing code that has little to nothing to do with the problem being solved.
    [Show full text]
  • Vector Load Testing Strategy
    Interface evolution via “public defender” methods Brian Goetz, May 2010 1. Problem statement Once published, it is impossible to add methods to an interface without breaking existing implementations. The longer the time since a library has been published, the more likely it is that this restriction will cause grief for its maintainers. The addition of closures to the Java language in JDK 7 place additional stress on the aging Collection interfaces; to add closures without extending the Collections classes to take better advantage of closures (e.g., methods like forEach, map, filter, reduce, etc) would be seen as anticlimactic by the community. Static extension methods have been proposed as a means of creating the illusion of adding methods to existing classes and interfaces, but they have significant limitations – for example, they cannot be overridden by classes that implement the interface being extended, so implementations are stuck with the “one size fits all” implementation provided as an extension. In general, static-ness is a source of all sorts of problems in Java, so adding more static mechanisms seems like a step in the wrong direction. 2. Public defender methods (aka virtual extension methods) In this document, we propose adding a mechanism for adding new methods to existing interfaces, which could be called virtual extension methods. Existing interfaces could be added to without compromising backward compatibility by adding extension methods to the interface, whose declaration would contain instructions for finding the default implementation in the event that implementers do not provide one. Listing 1 shows an example of the Set interface extended with a virtual extension method.
    [Show full text]
  • Plug-In Guide 5.4.7.169266
    Escenic Content Studio Plug-in Guide 5.4.7.169266 Copyright © 2009-2015 Vizrt. All rights reserved. No part of this software, documentation or publication may be reproduced, transcribed, stored in a retrieval system, translated into any language, computer language, or transmitted in any form or by any means, electronically, mechanically, magnetically, optically, chemically, photocopied, manually, or otherwise, without prior written permission from Vizrt. Vizrt specifically retains title to all Vizrt software. This software is supplied under a license agreement and may only be installed, used or copied in accordance to that agreement. Disclaimer Vizrt provides this publication “as is” without warranty of any kind, either expressed or implied. This publication may contain technical inaccuracies or typographical errors. While every precaution has been taken in the preparation of this document to ensure that it contains accurate and up-to-date information, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained in this document. Vizrt’s policy is one of continual development, so the content of this document is periodically subject to be modified without notice. These changes will be incorporated in new editions of the publication. Vizrt may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time. Vizrt may have patents or pending patent applications covering subject matters in this document. The furnishing of this document does not give you any license to these patents. Technical Support For technical support and the latest news of upgrades, documentation, and related products, visit the Vizrt web site at www.vizrt.com.
    [Show full text]
  • Matriona: Class Nesting with Parameterization in Squeak/Smalltalk
    Matriona: Class Nesting with Parameterization in Squeak/Smalltalk Matthias Springer†,‡ Fabio Niephaus† Robert Hirschfeld†,§ Hidehiko Masuhara‡ † Hasso Plattner Institute, University of Potsdam, Germany ‡ Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan § Communications Design Group (CDG), SAP Labs, USA; Viewpoints Research Institute, USA [email protected] [email protected] [email protected] [email protected] Abstract 1. Introduction We present Matriona, a module system for Squeak, a Smalltalk A popular description of modularity claims that a design dialect. It supports class nesting and parameterization and is method should satisfy five requirements [29] if we want to based on a hierarchical name lookup mechanism. Matriona call it modular: decomposablity, composability, understand- solves a range of modularity issues in Squeak. Instead of a flat ability, continuity, and protection. In this paper, we present class organization, it provides a hierarchical namespace, that the Matriona1 module system for Squeak/Smalltalk, which avoids name clashes and allows for shorter local names. Fur- supports class nesting and class parameterization and aims thermore, it provides a way to share behavior among classes for supporting the first three modularity requirements. and modules using mixins and class hierarchy inheritance (a form of inheritance that subclasses an entire class fam- 1.1 Modularity Requirements ily), respectively. Finally, it allows modules to be externally In this work, we focus on a selection of common modular- configurable, which is a form of dependency management ity issues. We decided to demonstrate our approach using decoupling a module from the actual implementation of its Smalltalk, because it is a language suitable for prototyping.
    [Show full text]
  • A Simulation Modeling Approach of Aspect-Oriented Production System
    International Conference on Manufacturing Science and Engineering (ICMSE 2015) A Simulation Modeling Approach of Aspect-oriented Production System Xiao-gao YU HuBei University of Economics, Wuhan, China [email protected] Keywords: Production System, Simulation Modeling Approach, Object-oriented technology. Abstract. For the deficiencies of the mature view of current object-oriented simulation modeling of production system, the UMLs of aspect-oriented extension , the Advanced Properties-based UML extension mechanism is completed. in this article from the aspect-oriented modeling point of view, give the cell design method which is based on the AO, mainly solute the identification of cross-cutting concerns, the selection of connection point and aspects separation, extended UML design and modeling and so on. This study provided a new way of thinking on the development of manufacturing simulation system. Introduction The object-oriented technology has been widely applied in simulation modeling of production system in many fields for the moment [2]. The ultimate goal of the manufacturing system simulation is optimizing the production system performance indicators, and accurately meets the market of the customer needs. So, required the closely integrated approach of using the object-oriented technology and Artificial Intelligence, expert systems, decision-making system, get the optimization analysis of the system based on the simulation[1]. The typical optimization goal such as: manufacturing time, costs, bottlenecks, and anomalies and so on, that embodied in the traditional OO modeling is often necessary to introduce a special type of treatment to deal with. Clearly, the complexity relationships of this type of treatment and entity class would increase the number of unfavorable factors of the analysis of systems.
    [Show full text]