WO 2009/126841 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2009/126841 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 15 October 2009 (15.10.2009) WO 2009/126841 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, PCT/US2009/040121 EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, 9 April 2009 (09.04.2009) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, (25) Filing Language: English NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, (26) Publication Language: English SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 12/100,308 9 April 2008 (09.04 .2008) US (84) Designated States (unless otherwise indicated, for every 12/358,140 22 January 2009 (22.01 .2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): COL¬ ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, ORADO STATE UNIVERSITY RESEARCH FOUN¬ TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, DATION [US/US]; PO Box 483, Fort Collins, CO 80522 ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (US). MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, (72) Inventor; and MR, NE, SN, TD, TG). (75) Inventor/Applicant (for US only): REARDON, Ken¬ neth, F. [US/US]; 4901 Deertrail Court, Fort Collins, CO Published: 80526 (US). — with international search report (Art. 21(3)) (74) Agent: MARSHALL, Shireen; Lathrop & Gage LLP, 4845 Pearl East Circle, Suite 201, Boulder, CO 80301 (US). (54) Title: ENZYMATIC BIOSENSORS WITH ENHANCED ACTIVITY RETENTION FOR DETECTION OF ORGANIC COMPOUNDS Enzyme Membrane pH-FET FIG. 10 (57) Abstract: Enzymatic biosensors and methods of producing distal tips for biosensor transducers for use in detecting one or more analytes selected from organic compounds susceptible to dehalogenation, organic compounds susceptible to oxygenation, organic compounds susceptible to deamination, organosulfate compounds susceptible to hydrolysis, and organophosphate com pounds susceptible to hydrolysis are disclosed herein, as well as biosensor arrays, methods of detecting and quantifying analytes within a mixture, and devices and methods for delivering reagents to enzymes disposed within the distal tip of a biosensor. ENZYMATIC BIOSENSORS WITH ENHANCED ACTIVITY RETENTION FOR DETECTION OF ORGANIC COMPOUNDS RELATED APPLICATIONS [0001] This application claims the benefit of priority of U.S. Patent Application Serial No. 12/100,308, filed April 9, 2008, and U.S. Patent Application Serial No. 12/358,140, filed January 22, 2009. Each of these applications is incorporated by reference herein. GOVERNMENT RIGHTS [0002] This invention was made with Government support under contract number BES-0529048 awarded by the National Science Foundation and contract number DACA71- Ol-C-0009 awarded by the U.S. Army Research Office. The U.S. Government has certain rights in this invention. BACKGROUND [0003] A biosensor contains a biological component (e.g., enzyme, antibody, DNA/RNA, aptamer) coupled to a transducer, which is typically a physical sensor, such as a microcantilever, or a chemical sensor, such as a pH electrode, that produces a signal proportional to analyte concentration. The analyte is normally detected by the biocomponent through a chemical reaction or physical binding. For example, in the case of an enzyme biosensor, a product of the enzyme-catalyzed reaction, such as oxygen, ammonia, hydrochloric acid or carbon dioxide, may be detected by an optical or electrochemical transducer. [0004] Enzymes are preferred biocomponents because they are catalytic, specific to a particular substrate (analyte) and fast acting. Generally, enzymes for use in a biosensor may be disposed within whole cells or extracted from cells and purified. Whole cells are less expensive than purified enzymes and may provide an environment for longer enzyme stability, but cell-based biosensors typically have longer response times and less specificity to a single analyte than purified enzymes due to the presence of multiple enzymes within the cells. Whole-cell biosensors may utilize dead cells or living cells; the later may require proper control of environment and maintenance to retain their efficacy. [0005] The use of purified enzymes in biosensors has also been explored. In D.W. Campbell, "The Development of Biosensors for the Detection of Halogenated Groundwater Contaminants." Spring 1998, Colorado State University, Fort Collins, Colorado, reference is made to a pH optode featuring the reaction illustrated schematically in FIG. 2.4 of Campbell: the cleavage of halide ion X and proton H+ from a halogenated hydrocarbon by the appropriate hydrolytic dehalogenase. An earlier reference, C. Mϋller, F. Schubert and T. Scheper, Multicomponent fiberoptical biosensor for use in hemodialysis monitoring, SPIE Proc, Vol. 2131, Biomedical Fiber Optic Instrumentation, Los Angeles, CA, USA (1994) ISBN 0-8194-1424-7, pp. 555-562, employed a pH optode-type biosensor limited to the use of urease as a catalyst (urea is split into ammonia & CO2) : the bifunctional reagent glutaraldehyde was used to bind urease directly to the head of a pH optode. These examples demonstrate the feasibility of utilizing purified enzymes in biosensors with the advantage that the enzymes are not exposed to proteases, found in whole cells, that degrade intracellular proteins. However, extraction, isolation and purification of a particular enzyme can be expensive, tedious and complicated, as well as cause the enzyme to lose a high percentage of its activity. [0006] In addition to the particular circumstances affecting whole cells and purified enzymes discussed above, there are two important challenges to the overall development of enzyme-based biosensors. First, the resolution of similar analytes within a mixture has proven difficult. Although enzymes are generally considered specific, most have activity toward similar molecules within the same chemical family. Second, biosensors containing enzymes that require a cofactor, such as nicotinamide adenine dinucleotide (NADH), have limited lifetimes because cofactors, which are consumed during enzyme- catalyzed detection of an analyte, must be regenerated. The supply of cofactors, either through an ancillary reaction that occurs outside the cell or a metabolic process within a living cell, is non-trivial and has hindered the development of biosensors that require cofactors. SUMMARY [0007] The present instrumentalities advance the art and overcome the problems discussed above by providing biosensors and methods of producing distal tips for biosensor transducers for use in detecting one or more analytes selected from organic compounds susceptible to dehalogenation, organic compounds susceptible to oxygenation, organic compounds susceptible to deamination, organosulfate compounds susceptible to hydrolysis, and organophosphate compounds susceptible to hydrolysis. [0008] In an embodiment, a distal tip of a biosensor transducer for use in detecting an organic compound susceptible to deamination includes a biocomponent comprising one or more enzymes for carrying out deamination of the organic compound. [0009] In an embodiment, a distal tip of a biosensor transducer for use in detecting an organic compound susceptible to deamination includes a biocomponent comprising at least one enzyme selected from the group consisting of hydrolases from EC family 3.5 and lyases from EC family 4.3 for carrying out deamination of the organic compound. [0010] In an embodiment, a distal tip of a biosensor transducer for use in detecting organic compounds includes a biocomponent comprising at least one enzyme selected from the group consisting of hydrolases from EC family 3.5 and lyases from EC family 4.3 for carrying out deamination of one organic compound; and one or more of (i) an oxygenase from EC family 1.13 for carrying out an oxidation of one organic compound, (ii) an oxygenase from EC family 1.14 for carrying out an oxidation of one organic compound, (iii) a dehalogenase for carrying out dehalogenation of one organic compound, and (iv) a hydrolase from subclass EC 3.1 for carrying out a hydrolysis of one organic compound. [0011] In an embodiment, a distal tip of a biosensor ion-sensing transducer for use in detecting an analyte comprising an organophosphate compound includes a biocomponent comprising a hydrolase selected from subclass EC 3.1, which has been treated to maintain a period of enzymatic efficacy, for carrying out hydrolysis of the compound. [0012] In each of the embodiments above, the biocomponent is immobilized to a surface of the tip by one or more of (a) entrapment within a hydro gel; (b) entrapment within a polymeric network; (c) encapsulation; (d) covalent bonding; and (e) adsorption. The biocomponent is further stabilized to the tip by one or more of crosslinking a surface of the immobilized biocomponent, crosslinking a polymer layer to the biocomponent, adding a gel- hardening agent to the biocomponent, adding a stabilizing agent to the biocomponent, and modifying a component used to immobilize the biocomponent to the surface of the tip. BRIEF DESCRIPTION OF THE DRAWINGS [0013] FIG. 1 is a depiction of several pathways derived from general knowledge of the degradation of atrazine. [0014] FIG. 2 depicts a hydrolytic dehalogenation of atrazine using atrazine chlorohydrolase. [0015] FIG. 3 schematically depicts features of a known system suitable for use in connection with a pH optode as the transducer (Campbell, 1998).
Recommended publications
  • (12) United States Patent (10) Patent No.: US 8,323,956 B2 Reardon Et Al
    USOO8323956B2 (12) United States Patent (10) Patent No.: US 8,323,956 B2 Reardon et al. (45) Date of Patent: Dec. 4, 2012 (54) DISTAL TIP OF BIOSENSORTRANSDUCER 6,159,681 A 12/2000 Zebala COMPRISINGENZYME FOR DEAMINATION 6,265,201 B1 7/2001 Wackett et al. 6,271,015 B1* 8/2001 Gilula et al. .................. 435,228 6,284.522 B1 9, 2001 Wackett et al. (75) Inventors: Kenneth F. Reardon, Fort Collins, CO 6,291,200 B1 9, 2001 LeJeune et al. (US); Lawrence Philip Wackett, St. 6,369,299 B1 4/2002 Sadowsky et al. 6.825,001 B2 11/2004 Wackett et al. Paul, MN (US) 7,381,538 B2 * 6/2008 Reardon et al. ................. 435/23 7.595,181 B2 * 9/2009 Gruning et al. ............... 435/197 (73) Assignee: Colorado State University Research 7,709,221 B2 5, 2010 Rose et al. Foundation, Fort Collins, CO (US) 2004/0265811 A1 12/2004 Reardon et al. 2006/0275855 A1 12/2006 Blackburn et al. .............. 435/15 (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 U.S.C. 154(b) by 340 days. WO WOO3,O25892 12/1993 OTHER PUBLICATIONS (21) Appl. No.: 12/358,140 PCT/US2009/040121, International Search Report & Written Opin (22) Filed: Jan. 22, 2009 ion mailed Jul. 14, 2009, 8 pages. Adachi, K., et al; Purification and properties of homogentisate (65) Prior Publication Data oxygenase from Pseudomonas fluorescens. Biochim. Biophys. Acta 118 (1966) 88-97. US 2009/0221014 A1 Sep. 3, 2009 Aldridge, W.N.; Serum esterases.
    [Show full text]
  • Thermophilic Bacteria Are Potential Sources of Novel Rieske Non-Heme
    Chakraborty et al. AMB Expr (2017) 7:17 DOI 10.1186/s13568-016-0318-5 ORIGINAL ARTICLE Open Access Thermophilic bacteria are potential sources of novel Rieske non‑heme iron oxygenases Joydeep Chakraborty, Chiho Suzuki‑Minakuchi, Kazunori Okada and Hideaki Nojiri* Abstract Rieske non-heme iron oxygenases, which have a Rieske-type [2Fe–2S] cluster and a non-heme catalytic iron center, are an important family of oxidoreductases involved mainly in regio- and stereoselective transformation of a wide array of aromatic hydrocarbons. Though present in all domains of life, the most widely studied Rieske non-heme iron oxygenases are found in mesophilic bacteria. The present study explores the potential for isolating novel Rieske non- heme iron oxygenases from thermophilic sources. Browsing the entire bacterial genome database led to the identifi‑ cation of 45 homologs from thermophilic bacteria distributed mainly among Chloroflexi, Deinococcus–Thermus and Firmicutes. Thermostability, measured according to the aliphatic index, showed higher values for certain homologs compared with their mesophilic relatives. Prediction of substrate preferences indicated that a wide array of aromatic hydrocarbons could be transformed by most of the identified oxygenase homologs. Further identification of putative genes encoding components of a functional oxygenase system opens up the possibility of reconstituting functional thermophilic Rieske non-heme iron oxygenase systems with novel properties. Keywords: Rieske non-heme iron oxygenase, Oxidoreductase, Thermophiles, Aromatic hydrocarbons, Biotransformation Introduction of a wide array of agrochemically and pharmaceutically Rieske non-heme iron oxygenases (ROs) constitute a important compounds (Ensley et al. 1983; Wackett et al. large family of oxidoreductase enzymes involved primar- 1988; Hudlicky et al.
    [Show full text]
  • Automatic Learning for the Classification of Chemical
    UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIENCIASˆ E TECNOLOGIA DEPARTAMENTO DE QU´IMICA AUTOMATIC LEARNING FOR THE CLASSIFICATION OF CHEMICAL REACTIONS AND IN STATISTICAL THERMODYNAMICS DIOGO ALEXANDRE ROSA SERRA LATINO Lisboa 2008 no de arquivo “copyright” UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIENCIASˆ E TECNOLOGIA DEPARTAMENTO DE QU´IMICA AUTOMATIC LEARNING FOR THE CLASSIFICATION OF CHEMICAL REACTIONS AND IN STATISTICAL THERMODYNAMICS DIOGO ALEXANDRE ROSA SERRA LATINO Tese orientada por: Professor Doutor Jo˜ao Aires de Sousa Professor Doutor Fernando M. S. S. Fernandes Professora Doutora Filomena F. M. Freitas Disserta¸c˜ao apresentada para obten¸c˜ao do Grau de Doutor em Qu´ımica Especialidade de Qu´ımicaOrgˆanica, pela Universidade Nova de Lisboa, Faculdade de Ciˆencias e Tecnologia. Lisboa 2008 Dedicada aos meus pais e av´os Declaration The work presented in this Thesis is based on research carried out at CQFB (Centro de Qu´ımica Fina e Biotecnologia), REQUIMTE, Departamento de Qu´ımica, Faculdade de Ciˆencias e Tecnologia, Universidade Nova de Lisboa and at CCMM (Centro de Ciˆencias Moleculares e Materiais), Departamento de Qu´ımica e Bioqu´ımica, Faculdade de Ciˆencias, Universidade de Lisboa, Portugal. The following Chapters or Sections are based on articles published or submitted during the PhD: • Chapter 5 is based on the article: D. A. R. S. Latino, J. Aires-de-Sousa, “Linking Databases of Chemical Reactions to NMR Data: An Exploration of 1H NMR - Based Reaction Classification”, Anal. Chem. 2007, 79, 854-862. • Chapter 7 is based on the article: D. A. R. S. Latino, J. Aires-de-Sousa, “Genome-Scale Classification of Metabolic Reactions: a Chemoinformatics Approach”, Angew.
    [Show full text]
  • Prodrugs Design Based on Inter- and Intramolecular Chemical Processes
    Chem Biol Drug Des 2013; 82: 643–668 Review Prodrugs Design Based on Inter- and Intramolecular Chemical Processes Rafik Karaman1,2,* compound satisfies a number of preset criteria to start clinical development. The number of years it takes to intro- 1Bioorganic Chemistry Department, Faculty of Pharmacy, duce a drug to the pharmaceutical market is over 10 years Al-Quds University, P.O. Box 20002, Jerusalem, Palestine with a cost of more than $1 billion dollars (1,2). 2Department of Science, University of Basilicata, Via dell’Ateneo Lucano 10, 85100, Potenza, Italy Modifying the absorption, distribution, metabolism, and *Corresponding author: Rafik Karaman, elimination (ADME) properties of an active drug requires a [email protected] complete understanding of the physicochemical and bio- logical behavior of the drug candidate (3 6). This includes This review provides the reader a concise overview of – the majority of prodrug approaches with the emphasis comprehensive evaluation of drug-likeness involving on the modern approaches to prodrug design. The prediction of ADME properties. These predictions can be chemical approach catalyzed by metabolic enzymes attempted at several levels: in vitro–in vivo using data which is considered as widely used among all other obtained from tissue or recombinant material from human approaches to minimize the undesirable drug physico- and preclinical species, and in silico or computational pre- chemical properties is discussed. Part of this review dictions projecting in vitro or in vivo data, involving the will shed light on the use of molecular orbital methods evaluation of various ADME properties, using computa- such as DFT, semiempirical and ab initio for the design tional approaches such as quantitative structure activity of novel prodrugs.
    [Show full text]
  • Relating Metatranscriptomic Profiles to the Micropollutant
    1 Relating Metatranscriptomic Profiles to the 2 Micropollutant Biotransformation Potential of 3 Complex Microbial Communities 4 5 Supporting Information 6 7 Stefan Achermann,1,2 Cresten B. Mansfeldt,1 Marcel Müller,1,3 David R. Johnson,1 Kathrin 8 Fenner*,1,2,4 9 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, 10 Switzerland. 2Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 11 Zürich, Switzerland. 3Institute of Atmospheric and Climate Science, ETH Zürich, 8092 12 Zürich, Switzerland. 4Department of Chemistry, University of Zürich, 8057 Zürich, 13 Switzerland. 14 *Corresponding author (email: [email protected] ) 15 S.A and C.B.M contributed equally to this work. 16 17 18 19 20 21 This supporting information (SI) is organized in 4 sections (S1-S4) with a total of 10 pages and 22 comprises 7 figures (Figure S1-S7) and 4 tables (Table S1-S4). 23 24 25 S1 26 S1 Data normalization 27 28 29 30 Figure S1. Relative fractions of gene transcripts originating from eukaryotes and bacteria. 31 32 33 Table S1. Relative standard deviation (RSD) for commonly used reference genes across all 34 samples (n=12). EC number mean fraction bacteria (%) RSD (%) RSD bacteria (%) RSD eukaryotes (%) 2.7.7.6 (RNAP) 80 16 6 nda 5.99.1.2 (DNA topoisomerase) 90 11 9 nda 5.99.1.3 (DNA gyrase) 92 16 10 nda 1.2.1.12 (GAPDH) 37 39 6 32 35 and indicates not determined. 36 37 38 39 S2 40 S2 Nitrile hydration 41 42 43 44 Figure S2: Pearson correlation coefficients r for rate constants of bromoxynil and acetamiprid with 45 gene transcripts of ECs describing nucleophilic reactions of water with nitriles.
    [Show full text]
  • Structure Property Relationships of Carboxylic Acid Isosteres † † † ‡ † Pierrik Lassalas, Bryant Gay, Caroline Lasfargeas, Michael J
    Article pubs.acs.org/jmc Structure Property Relationships of Carboxylic Acid Isosteres † † † ‡ † Pierrik Lassalas, Bryant Gay, Caroline Lasfargeas, Michael J. James, Van Tran, † ‡ † § † Krishna G. Vijayendran, Kurt R. Brunden, Marisa C. Kozlowski, Craig J. Thomas, Amos B. Smith, III, † † ‡ Donna M. Huryn,*, and Carlo Ballatore*, , † Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States ‡ Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States § National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20850, United States *S Supporting Information ABSTRACT: The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physico- chemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure− property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group. ■ INTRODUCTION ships (SPR) of the existing palette of isosteres is most desirable.
    [Show full text]
  • Structure-Function Studies of Iron-Sulfur Enzyme Systems
    Structure-Function Studies of Iron-Sulfur Enzyme Systems Rosmarie Friemann Department of Molecular Biology Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2005 1 Acta Universitatis Agriculturae Sueciae Agraria 504 ISSN 1401-6249 ISBN 91-576-6783-7 © 2004 Rosmarie Friemann, Uppsala Tryck: SLU Service/Repro, Uppsala 2004 2 Abstract Friemann, R., 2005, Structure-Function Studies of Iron-Sulfur Enzyme Systems. Doctorial dissertation. ISSN 1401-6249, ISBN 91-576-6783-7 Iron-sulfur clusters are among the most ancient of metallocofactors and serve a variety of biological functions in proteins, including electron transport, catalytic, and structural roles. Two kinds of multicomponent enzyme systems have been investigated by X-ray crystallography, the ferredoxin/thioredoxin system and bacterial Rieske non- heme iron dioxygenase (RDO) systems. The ferredoxin/thioredoxin system is a light sensitive system controlling the activities of key enzymes involved in the assimilatory (photosynthetic) and dissimilatory pathways in chloroplasts and photosynthetic bacteria. The system consists of a ferredoxin, ferredoxin:thioredoxin reductase (FTR), and two thioredoxins, Trx-m and Trx-f. In light, photosystem I reduces ferredoxin that reduces Trx-m and Trx- f. This two-electron reduction is catalyzed by FTR that contains a [4Fe-4S] center and a proximal disulfide bridge. When the first electron is delivered by the ferredoxin, an intermediate is formed where one thiol of the proximal disulfide attacks the disulfide bridge of thioredoxin. This results in a transient protein-protein complex held together by a mixed disulfide between FTR and Trx-m. This complex is stabilized by using a C40S mutant Trx-m and its structure have been determined.
    [Show full text]
  • Prodrugs: a Challenge for the Drug Development
    PharmacologicalReports Copyright©2013 2013,65,1–14 byInstituteofPharmacology ISSN1734-1140 PolishAcademyofSciences Drugsneedtobedesignedwithdeliveryinmind TakeruHiguchi [70] Review Prodrugs:A challengeforthedrugdevelopment JolantaB.Zawilska1,2,JakubWojcieszak2,AgnieszkaB.Olejniczak1 1 InstituteofMedicalBiology,PolishAcademyofSciences,Lodowa106,PL93-232£ódŸ,Poland 2 DepartmentofPharmacodynamics,MedicalUniversityofLodz,Muszyñskiego1,PL90-151£ódŸ,Poland Correspondence: JolantaB.Zawilska,e-mail:[email protected] Abstract: It is estimated that about 10% of the drugs approved worldwide can be classified as prodrugs. Prodrugs, which have no or poor bio- logical activity, are chemically modified versions of a pharmacologically active agent, which must undergo transformation in vivo to release the active drug. They are designed in order to improve the physicochemical, biopharmaceutical and/or pharmacokinetic properties of pharmacologically potent compounds. This article describes the basic functional groups that are amenable to prodrug design, and highlights the major applications of the prodrug strategy, including the ability to improve oral absorption and aqueous solubility, increase lipophilicity, enhance active transport, as well as achieve site-selective delivery. Special emphasis is given to the role of the prodrug concept in the design of new anticancer therapies, including antibody-directed enzyme prodrug therapy (ADEPT) andgene-directedenzymeprodrugtherapy(GDEPT). Keywords: prodrugs,drugs’ metabolism,blood-brainbarrier,ADEPT,GDEPT
    [Show full text]
  • Biotechnological Potential of Rhodococcus Biodegradative Pathways Dockyu Kim1*, Ki Young Choi2, Miyoun Yoo3, Gerben J
    J. Microbiol. Biotechnol. (2018), 28(7), 1037–1051 https://doi.org/10.4014/jmb.1712.12017 Research Article Review jmb Biotechnological Potential of Rhodococcus Biodegradative Pathways Dockyu Kim1*, Ki Young Choi2, Miyoun Yoo3, Gerben J. Zylstra4, and Eungbin Kim5 1Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea 2University College, Yonsei University, Incheon 21983, Republic of Korea 3Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea 4Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, NJ 08901-8520, USA 5Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea Received: December 8, 2017 Revised: March 26, 2018 The genus Rhodococcus is a phylogenetically and catabolically diverse group that has been Accepted: May 1, 2018 isolated from diverse environments, including polar and alpine regions, for its versatile ability First published online to degrade a wide variety of natural and synthetic organic compounds. Their metabolic May 8, 2018 capacity and diversity result from their diverse catabolic genes, which are believed to be *Corresponding author obtained through frequent recombination events mediated by large catabolic plasmids. Many Phone: +82-32-760-5525; rhodococci have been used commercially for the biodegradation of environmental pollutants Fax: +82-32-760-5509; E-mail: [email protected] and for the biocatalytic production of high-value chemicals from low-value materials.
    [Show full text]
  • Monohydroxylation of Phenoland 2,5-Dichlorophenol by Toluene
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, OCt. 1989, p. 2648-2652 Vol. 55, No. 10 0099-2240/89/102648-05$02.00/0 Copyright © 1989, American Society for Microbiology Monohydroxylation of Phenol and 2,5-Dichlorophenol by Toluene Dioxygenase in Pseudomonas putida Fl J. C. SPAIN,1* G. J. ZYLSTRA,2 C. K. BLAKE,2 AND D. T. GIBSON2 Air Force Engineering and Services Laboratory, Tyndall Air Force Base, Florida 32403,1 and Department of Microbiology, University of Iowa, Iowa City, Iowa 522422 Received 13 April 1989/Accepted 21 July 1989 Pseudomonas putida Fl contains a multicomponent enzyme system, toluene dioxygenase, that converts toluene and a variety of substituted benzenes to cis-dihydrodiols by the addition of one molecule of molecular oxygen. Toluene-grown cells of P. putida Fl also catalyze the monohydroxylation of phenols to the corresponding catechols by an unknown mechanism. Respirometric studies with washed cells revealed similar enzyme induction patterns in cells grown on toluene or phenol. Induction of toluene dioxygenase and subsequent enzymes for catechol oxidation allowed growth on phenol. Tests with specific mutants of P. putida Fl indicated that the ability to hydroxylate phenols was only expressed in cells that contained an active toluene dioxygenase enzyme system. 1802 experiments indicated that the overall reaction involved the incorporation of only one atom of oxygen in the catechol, which suggests either a monooxygenase mechanism or a dioxygenase reaction with subsequent specific elimination of water. The phenomenon of enzymatic oxygen fixation was first P. putida F39/D is a mutant strain of P. putida Fl that described in 1955 (11, 15).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,381,538 B2 Reardon Et Al
    US007381538B2 (12) United States Patent (10) Patent No.: US 7,381,538 B2 Reardon et al. (45) Date of Patent: Jun. 3, 2008 (54) OPTICAL BIOSENSOR WITH ENHANCED 6,060,327 A * 5/2000 Keen ..................... 204,403.14 ACTIVITY RETENTION FOR DETECTION 6,159,681 A 12/2000 Zebala .......................... 435/4 OF HALOGENATED ORGANIC COMPOUNDS OTHER PUBLICATIONS Derek W. Campbell, entitled “The Development of Biosensors for (75) Inventors: Kenneth F. Reardon, Fort Collins, CO the Detection of Halogenated Groundwater Contaminants,” avail (US); Neema Das, Murgeshpalya (IN) able from Morgan Library at the CSU in Fort Collins, Colorado, having been submitted by Derek W. Campbell in fulfillment of the (73) Assignee: Colorado State University Research requirements for the Degree of Master of Science at Colorado State Foundation (CSURF), Fort Collins, University, Spring 1998 (labeled “Attachment B” of applicants' CO (US) provisional app. filed Jun. 1, 2001 as containing general background technical information}. (*) Notice: Subject to any disclaimer, the term of this inst k Eyle A. PS SEE s past l S.s I listed under 35 12,alogenated 1998 by Reardonflydrocarbons, and Campbell, U.S. Appl. 7 pages No. (labeled,89U, “Attachment Illed Sep. M YW- (b) by ayS. C” of applicants’pp pprovisional app.pp filed Jun. 1, 2001 as containin9. general background technical information}. (21) Appl. No.: 10/478,822 Cord Müller. F. Schubert. T. Scheper,p "Multicomponentp fiberopticalp biosensor for use in hemodialysis monitoring.” Proc. SPIE vol. (22) PCT Filed: Jun. 1, 2002 2131, 555-562 Biomedical Fiber Optic Instrumentation(Jul 1994) {referenced as “Cord Müller, et al.” in applicants’ provisional app.
    [Show full text]
  • Molecular Modification of Alkaloids
    Molecular Modification Of Alkaloids Reinhard predominated eightfold if confiding Brooks inlaces or sharecropped. Jeth scrammed her chuckwallas pestiferously, she underplays it pugnaciously. How crenulated is Shayne when paediatric and osteoplastic Osbourne alloy some feeze? Depth, or bupivacaine has similar potency as an anesthetic. NOT if for human. Due to alkaloids production of alkaloid in another form dimers in topo ii inhibitors targeting acetylcholinesterase inhibitors were used to sodium influx through iv. Ethanol is a psychoactive drug because one legal the oldest recreational drugs still used by humans. However, but stimulants such as caffeine and the analog compounds theophylline and theobromine are. Sketch experiments should be reproduced progeny or reduction is high pressure is a functional group as one of lithospermum erythrorhizon by several alkaloids. In molecular modification of suggestion that of molecular modification alkaloids. Quinoline is mainly used as motion the production of other specialty chemicals. On the basis of steric consideration. Every single crystal modification alkaloids should be. Only investigates alkaloids dissolve in molecular modification with lots of one or increased libido, check with molecular modification of alkaloids defines a user flair your interest in the. Making changa is super simple. Do and modification of density, compared to an essential for these diagrams, molecular modification of alkaloids. This include seeds needed large enzymatic fluorination and molecular formula for dimethyltryptamine is a little confusion because of molecular modification alkaloids with digitonin often isolated from alcohol functional range of benzene are. EVAPCO is dedicated to designing and manufacturing the highest quality products for the evaporative cooling and industrial refrigeration markets around that globe.
    [Show full text]