Immobilization on Chitosan of a Thermophilic Trehalose Synthase from Thermus Thermophilus HJ6

Total Page:16

File Type:pdf, Size:1020Kb

Immobilization on Chitosan of a Thermophilic Trehalose Synthase from Thermus Thermophilus HJ6 J. Microbiol. Biotechnol. (2010), 20(3), 513–517 doi: 10.4014/jmb.0906.06048 First published online 5 December 2009 Immobilization on Chitosan of a Thermophilic Trehalose Synthase from Thermus thermophilus HJ6 Kim, Hyun-Jung1, Ae-Ran Kim2, and Sung-Jong Jeon1,2,3* 1Department of Biomaterial Control, 2Department of Biotechnology and Bioengineering, and 3Blue-Bio Industry RIC, Dong-Eui University, Busan 614-714, Korea Received: June 24, 2009 / Accepted: September 14, 2009 A thermostable trehalose synthase (TtTSase) from Thermus of the α-1,4-linkage of maltose to the α,α,-1,1-linkage of thermophilus HJ6 was immobilized on chitosan activated trehalose in the absence of coenzyme [23]. This enzymatic with glutaraldehyde. The yield of immobilization was process has the advantages of simple reaction, high substrate evaluated as 39.68%. The optimum pH of the immobilized specificity, high conversion yield, and low cost. Therefore, enzyme was similar to that of the free enzyme. However, it is one of the most efficient processes for the production the optimal temperature ranges were shifted by about 4oC of trehalose in the point of industrial application. owing to better thermal stability after immobilization. The immobilization of enzyme has been often regarded The half-life of heat inactivation for free and immobilized preparative for commercial applications owing to low stability enzymes was 5.7 and 6.3 days at 70oC, respectively, thus [6]. Advantages of immobilized enzymes are that the showing a lager thermostability of the immobilized enzyme. generally expensive biocatalysts can be used repeatedly in When tested in batch reaction, the immobilized enzyme batch or continuous reactors. Enzymes can be immobilized retained its relative activity of 53% after 30 reuses of on various supports and by different methods. Recently, reaction within 12 days, and still retained 82% of its initial immobilization of recombinant TSase for trehalose production activity even after 150 days at 4oC. A packed-bed bioreactor has been reported [4]. The recombinant TSase was with immobilized enzyme showed a maximum yield of 56% immobilized with a high yield onto commercially available trehalose from 100 mM maltose in a continuous recycling Eupergit C250L, an epoxy-activated acrylic bead. In our system (bed volume: 10 ml) under conditions of pH 7.0 studies, chitosan was selected as the support for enzyme and 70oC. immobilization. Chitosan is a natural polyaminosaccharide N Keywords: Chitosan, immobilization, trehalose synthase, obtained by -deacetylation of chitin, and is non-toxic, Thermus thermophilus, thermostability, bioreactor biocompatible, and biodegradable [2, 19]. Its reactive amino and hydroxyl groups after chemical modifications make possible the coupling of enzymes [10]. Therefore, chitosan has been used as a support material for immobilization of Trehalose (α-D-glucopyranosyl-1,1-α-D-glucopyranoside) is enzymes [3, 22]. a nonreducing disaccharide that is widely present in In a previous study, we have cloned and analyzed the various organisms, including bacteria, yeast, fungi, insects, expression of the gene encoding a hyperthermostable invertebrates, and plants [7, 21]. The nonreducing disaccharide trehalose synthase from Thermus thermophilus HJ6 and serves as a carbohydrate reserve and a protecting agent studied its molecular and enzymatic properties [9]. In this against a variety of environmental stresses such as heat, paper, we report the optimization of TSases immobilization cold, desiccation, dehydration, and osmotic pressure [1]. on porous chitosans, the properties of the immobilized These functions have been applied to the development of preparation, and the performance of a bioreactor for trehalose additives, stabilizers, and sweeteners, which are useful in production at high temperature. the food, cosmetic, and pharmaceutical industries [15, 18, 20]. Trehalose synthase (TSase; E.C. 5.4.99.16) converts maltose into trehalose by an intramolecular rearrangement MATERIALS AND METHODS Chemicals, Strains, and Plasmids *Corresponding author Phone: +82-51-890-2278; Fax: +82-51-890-2632; Chitosan (C3646, from crab shells), Tween 80, sodium tripolyphosphate, E-mail: [email protected] Triton X-100, and glutaraldehyde were obtained from Sigma Co. 514 Kim et al. (St. Louis, MO, U.S.A.). All chemicals were of analytical purity and used as purchased. The column (XK16/20) for the packed bed bioreactor was purchased from GE Healthcare. E. coli DH5α and BL21 (DE3) codon plus (Novagen, Inc., San Diego, CA, U.S.A.) were used as the cloning and expression host cells, respectively. The plasmid pJLA503 was preserved in our laboratory as the expression vector for the TtTS gene. Chitosan Particle Preparation Chitosan particles were prepared by a precipitation method [3]. Chitosan was solubilized in 2% acetic acid to a final concentration of 2% (w/v). The solution was filtered through Whatman GF/A filters and added Fig. 1. Scheme of the packed-bed immobilized enzyme reactor. dropwise through a capillary into a gently stirred coagulation liquid 1, Substrate reservoir; 2, piston pump; 3, thermostat column reactor; 4, [1 N sodium hydroxide and 26% (v/v) ethanol]. The obtained particles water circular; 5, hot waterbath. were centrifuged and washed with distilled water until neutrality. The mean size of the particles was determined from optical micrographs taken with an Eclipse 50i optical microscope (Nikon, Japan). One unit of TtTSase activity was defined as the amount of enzyme that catalyzed the formation of 1 µmole of trehalose per minute Enzyme Immobilization under the reaction conditions. Trehalose synthase (TtTSase) from Thermus thermophilus HJ6 cloned in E. coli was produced as previously described [8, 9]. Immobilization Continuous Conversions in a Packed-Bed Reactor on chitosan particles was carried out adding 1 g (wet weight) particles The chitosan particles with TtTSase bound were packed into a XK to a mixture of 3.5 ml of 0.02 mol/l potassium phosphate buffer 16/20 glass column (16×200 mm) (GE Healthcare, Uppsala, Sweden) (pH 7.0) and 1.5 ml of TtTSase (10 mg/ml). The mixtures were gently equipped with a jacket for constant temperature operation. The o shaken at 100 rpm for 2 h, and after a further 16 h at 25oC in the reaction temperature was maintained at 70 C using a water circular presence of 2.5% (v/v) glutaraldehyde, the mixture was centrifuged at (Jeio Tech CW-05G, Korea). The continuous production was carried 12,000 rpm for 2 min. The immobilized enzymes were washed with out using a packed-bed bioreactor (16×100 mm) containing 8.6 g 0.02 mol/l potassium phosphate buffer (pH 7.0) until protein was no (dry weight) of immobilized enzyme preparation. The reactor was longer detected in the washing solution. Protein concentration was filled with 10 ml of immobilized enzyme resin and the working determined using a Bio-Rad protein assay system (Bio-Rad, Hercules, volume (Vw) was evaluated as 10 ml. The column was continuously CA, U.S.A.) with bovine serum albumin as the standard. The fed from the bottom with 100 mM maltose solution in 50 mM immobilized protein amount was calculated by subtracting the sodium phosphate buffer (pH 7.0) at a flow rate of 0.5 ml/min using protein recovered in the supernatant from the protein subjected to a piston pump (Fig. 1). The samples at the outlet of the reactor were immobilization. The immobilization yield was calculated as the ratio taken and used for further analyses. Two duplicates were made for of immobilized protein to protein subjected to immobilization. each determination. Assay of Enzyme Activity Enzyme activity was assayed by measuring trehalose produced from RESULTS AND DISCUSSION 50 mM maltose solution. Maltose solution in 50 mM potassium phosphate buffer (pH 7.0) was incubated with free or immobilized Immobilization of TtTSase o enzyme at 70 C for 30 min in a water bath. The reaction mixture Chitosan is a suitable biocompatible and inexpensive matrix was boiled for 10 min to stop the reaction. The trehalose produced for a bioreactor in which the main features of the free was analyzed by HPLC (Waters Alliance 2690). Chromatography enzyme are preserved. Furthermore, it has been used as a was performed using a carbohydrate analysis column (Waters, support material for immobilization of thermostable enzymes 300 mm×3.9 mm) on a Waters Alliance 2690 system and a Waters model 410 detector. Separation of the samples was accomplished [5, 16]. In view of the thermostable and practicable industrial with a linear gradient using eluant (acetonitrile:water, 75:25). The applications, the thermostable trehalose synthase (TtTSase) column temperature was set at 25oC. A Pierce standard amino acid was immobilized on chitosan. Chitosan supports were mixture (hydrolysis standard) was used to calibrate the analyses. prepared by a precipitation method, and the mean diameter The authentic glucose, maltose, and trehalose were used as controls. of the prepared particles was 2.0 mm. The amount of Table 1. Immobilization yield of support and specific activity of immobilized enzyme. Support Immobilized protein Immobilization yield Immobilized enzyme Specific activity of (mg/mg support) (%) activitya immobilized enzymeb Chitosan 0.16 39.68 0.072 0.45 aUnit of activity: µmol maltose/min/mg dry support. bUnit of specific activity: µmol maltose/min/mg protein. IMMOBILIZATION OF A THERMOPHILIC TREHALOSE SYNTHASE 515 immobilized protein on chitosan particle, the immobilization yield, the activity of TtTSase related to the weight of dry supports as well as the specific activity of immobilized enzyme are summarized in Table 1. The immobilization yield reached 39.68% when the conditions were as follows: coupling time of 18 h at 25oC in 20 mM potassium phosphate buffer (pH 7.0) and enzyme loading of 0.01 g protein/g- supports. The immobilization capacity of chitosan was much lower than that of Eupergit C250L (92% of immobilization yield) that has been previously reported [4]. The specific activities of the free and the immobilized TtTSase were 0.42 and 0.45 U/mg protein, respectively, when measured at pH 7.0 and 70oC.
Recommended publications
  • Anti-Obese Effects of Chitosan and Psyllium Husk
    Progress in Nutrition 2016; Vol. 18, N. 2: 152-160 © Mattioli 1885 Original Article Anti-obese effects of chitosan and psyllium husk containing vitamin C in Sprague-Dawley (SD) rats fed a high fat diet Eun Young Jung1†, Yang Hee Hong2†, Un Jae Chang3, Hyung Joo Suh4 1Department of Home Economics Education, Jeonju University, Jeonju 560-759, Korea; 2Department of Beauty Art, Suwon Women’s University, Suwon 441-748, Korea; 3Department of Food and Nutrition, Dongduk Women’s University, Seoul 136-714, Korea; 4Department of Public Health Science, Graduate School, Korea University, Seoul 07249, Republic of Korea - E-mail: [email protected]; †Eun Young Jung and Yang Hee Hong contributed equally to this study Summary. We investigated whether vitamin C would enhance the anti-obese effects of chitosan and psyllium husk. The study was carried out with male Sprague-Dawley (SD) rats for 6 wk using the following diet groups. Normal diet (control), high fat diet (F-control), 5% chitosan (chitosan-1), 5% chitosan containing 1% vitamin C (chitosan-2), 10% psyllium husk (psyllium-1), and 10% psyllium husk containing 1% vitamin C (psyllium-2). Chitosan-2 (1.5%) showed a significant (p<0.05) decrease in epididymal fat pad weight as compared to F- control (2.3%) and chitosan-1 (2.1%). The epididymal fat pad weight of psyllium-2 (1.9%) was significantly (p<0.05) lower than that of F-control (2.3%). In conclusion, additions of vitamin C to chitosan and psyllium husk may be useful for reducing body fat. Key words: chitosan, psyllium husk, vitamin C, body weight, body fat Introduction models have indicated the efficacy of dietary fiber in regulating body weight (3, 4).
    [Show full text]
  • Starch-Chitosan) Development: Characterization for Packaging Materials
    Open Journal of Organic Polymer Materials, 2016, 6, 11-24 Published Online January 2016 in SciRes. http://www.scirp.org/journal/ojopm http://dx.doi.org/10.4236/ojopm.2016.61002 Biodegradable Colour Polymeric Film (Starch-Chitosan) Development: Characterization for Packaging Materials M. Z. I. Mollah1*, N. Akter2, F. B. Quader2, S. Sultana1, R. A. Khan1 1Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh 2Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh Received 13 December 2015; accepted 8 January 2016; published 12 January 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Biodegradable starch-based chitosan reinforced composite polymeric films were prepared by casting. The chitosan content in the films was varied from 20% to 80% (w/w). Tensile strength (TS) was improved significantly with the addition of chitosan but elongation at break (EB %) of the composites decreased. Tensile strength of the composites raised more with the addition of the acacia catechu content in the films varied from 0.05% to 0.2% (w/w). The better thermal stability of this prepared film was confirmed by thermo-gravimetric analysis. Structural characterization was done by Fourier transform infrared spectroscopy. Surface morphologies of the composites were examined by scanning electron microscope (SEM) which suggested sufficient homogeniza- tion of starch, chitosan and acacia catechu. Water uptake was found lower for final composites in comparison to starch/chitosan and chitosan films.
    [Show full text]
  • Advances in Chitin/Chitosan Characterization and Applications
    Advances in Chitin/Chitosan Characterization and Applications Edited by Marguerite Rinaudo and Francisco M. Goycoolea Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Advances in Chitin/Chitosan Characterization and Applications Advances in Chitin/Chitosan Characterization and Applications Special Issue Editors Marguerite Rinaudo Francisco M. Goycoolea MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Marguerite Rinaudo Francisco M. Goycoolea University of Grenoble Alpes University of Leeds France UK Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Polymers (ISSN 2073-4360) from 2017 to 2018 (available at: https://www.mdpi.com/journal/polymers/ special issues/chitin chitosan) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-802-2 (Pbk) ISBN 978-3-03897-803-9 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... ix Preface to ”Advances in Chitin/Chitosan Characterization and Applications” .........
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/025 1613 A1 Zhang Et Al
    US 2006025 1613A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/025 1613 A1 Zhang et al. (43) Pub. Date: Nov. 9, 2006 (54) BIODEGRADABLE CHITOSAN-PEG (22) Filed: May 9, 2005 COMPOSITIONS, AND METHODS OF USE Publication Classification (76) Inventors: Miqin Zhang, Bothell, WA (US); Narayan Bhattarai, Seattle, WA (US); (51) Int. Cl. Frederick A. Matsen, Seattle, WA (US) COSB 37/08 (2006.01) C08G 63/9. (2006.01) Correspondence Address: (52) U.S. Cl. ........................ 424/78.27: 525/54.2:536/20 CHRISTENSEN, O'CONNOR, JOHNSON, KINDNESS, PLLC (57) ABSTRACT 1420 FIFTHAVENUE The present invention provides compositions comprising an SUTE 28OO interpolymer of chitosan and polyethylene glycol, wherein SEATTLE, WA 98101-2347 (US) the interpolymer is a liquid below 25°C. and a gel above 35° C. The present invention also provides methods for using the (21) Appl. No.: 11/124,916 compositions to deliver drugs to a living body over time. Patent Application Publication Nov. 9, 2006 Sheet 1 of 7 US 2006/025 1613 A1 6 NHCOCH CHOH 3 4 5 o 1. HO O O 3)-2 O Hong HO H-CH CH O-(CH CHO)CH 3 A2. A 5 O 4 a 3 s 3 2 2 e 1 O O 10 20 30 40 50 60 TEMPERATURE (C) A2.2 Patent Application Publication Nov. 9, 2006 Sheet 2 of 7 US 2006/025 1613 A1 (Std) ALISOOSIA (CINOOSIS)?IWIL 000€00SZ000Z00SI000I009 (CINOOSIS)HWIL º?y 0009000?00SI000Z00SZ000€ (Std) ALISOOSIA Patent Application Publication Nov. 9, 2006 Sheet 3 of 7 US 2006/025 1613 A1 a es S > P M A24.
    [Show full text]
  • A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Chitosan Network Matrix
    Chinese Journal of Chemistry, 2005, 23, 275—279 Full Paper A Glucose Biosensor Based on Immobilization of Glucose Oxidase in Chitosan Network Matrix YAO, Hui(姚慧) LI, Nan(李楠) XU, Jing-Zhong(徐锦忠) ZHU, Jun-Jie*(朱俊杰) Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, Jiangsu 210093, China A simple and promising glucose biosensor was constructed by successful entrapment of glucose oxidase (GOD) into chitosan matrix, which was cross-linked with glutaraldehyde (GA). This material provided good biocompatibil- ity and the stabilizing microenvironment around the enzyme. The morphologies and properties of chitosan and chi- tosan/GOD were characterized by FTIR, UV-Vis and SEM techniques. This biosensor exhibited a fast amperometric response to glucose. The linear range for glucose determination was from 1×10-5 to 3.4×10-3 mol•L-1, with a de- tection limit of 5×10-6 mol•L-1 based on S/N=3. The biosensor could retain ca. 90% of its original activity after two weeks of storage under dry conditions at 4 ℃. Keywords chitosan, glucose oxidase, biosensor, glucose, crosslink Introduction tionality. As an attractive structural material, chitosan has good biocompatibility and has been studied as a Chitosan obtained by N-deacetylation of chitin, has support for immobilization of enzyme, and it can retain attracted some attention since chitin is the secondly enzyme activity and improve the performance of bio- most abundant polysaccharide. As a natural product, sensor. chitosan has the inherent properties of biocompatibility, Chitosan is a functional structural material and has biodegradability, chemical inertness, low toxicity, high been studied as a support for the immobilization of en- mechanical strength and hydrophilicity, and good film zyme and cells.
    [Show full text]
  • Levan-Type Fructooligosaccharide Production Using Bacillus Licheniformis RN-01 Levansucrase Y246S Immobilized on Chitosan Beads
    Songklanakarin J. Sci. Technol. 38 (3), 295-303, May - Jun. 2016 http://www.sjst.psu.ac.th Original Article Levan-type fructooligosaccharide production using Bacillus licheniformis RN-01 levansucrase Y246S immobilized on chitosan beads Surawut Sangmanee1, Santhana Nakapong2, Rath Pichyangkura3, and Kamontip Kuttiyawong4* 1 Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phaya Thai, Bangkok, 10330 Thailand. 2 Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bang Kapi, Bangkok, 10240 Thailand. 3 Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phaya Thai, Bangkok, 10330 Thailand. 4 Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Sean, Nakhon Pathom, 73140 Thailand. Received: 11 August 2015; Accepted: 30 November 2015 Abstract Bacillus licheniformis RN-01 levansucrase Y246S (LsRN-Y246S) was immobilized by covalently linking onto chitosan, Sepabead EC-EP, and Sepabead EC-HFA, beads. The stability of immobilized LsRN-Y246S was found to be the highest with chitosan beads, retaining more than 70% activity after 13 weeks storage at 4 oC, and 68% activity after 12 hours incubation at 40°C. LsRN-Y246S immobilized on chitosan beads withstands sucrose concentrations up to 70% (w/v), retaining over 85% of its activity, significantly better than LsRN-Y246S immobilized on others supporting matrices. LsRN-Y246S immobilized on chitosan showed a 2.4 fold increase in activity in the presence of Mn2+, and gave slight protection against deactivation by of Cu2+, Zn2+, Fe3+, SDS and EDTA. A maximum of 8.36 g and an average of 7.35 g LFOS yield at least up to DP 11 can be produced from 25 g of sucrose, during five production cycles.
    [Show full text]
  • 1 Effects of Gelatin Origin, Bovine-Hide and Tuna-Skin, on The
    1 EFFECTS OF GELATIN ORIGIN, BOVINE-HIDE AND TUNA-SKIN, ON THE 2 PROPERTIES OF COMPOUND GELATIN-CHITOSAN FILMS 3 Gómez-Estaca, J., Gómez-Guillén, M.C. *, Fernández-Martín, F., & Montero, P. 4 5 Instituto de Ciencia y Tecnología de Alimentos y Nutrición** (ICTAN-CSIC) 6 (formerly Instituto del Frío), José Antonio Novais 10, 28040 Madrid (Spain) 7 Tel.: +34 91 5445607; Fax: +34 91 5493627 8 *Author for correspondence: [email protected] 9 10 ** This centre has implemented and maintains a Quality Management System in 11 compliance with ISO standard 9001:2000. 12 13 ABSTRACT 14 With the purpose to improve the physico-chemical performance of plain gelatin 15 and chitosan films, compound gelatin-chitosan films were prepared. The effect 16 of the gelatin origin (commercial bovine-hide gelatin and laboratory-made tuna- 17 skin gelatin) on the physico-chemical properties of films was studied. The 18 dynamic viscoelastic properties (elastic modulus G’, viscous modulus, G’’ and 19 phase angle) of the film forming solutions upon cooling and subsequent heating 20 revealed that the interactions between gelatin and chitosan were stronger in the 21 blends made with tuna-skin gelatin than in the blends made with bovine-hide 22 gelatin. As a result, the fish gelatin-chitosan films were more water resistant 23 (~18% water solubility for tuna vs 30% for bovine) and more deformable (~68% 1 24 breaking deformation for tuna vs 11% for bovine) than the bovine gelatin- 25 chitosan films. The breaking strength of gelatin-chitosan films, whatever the 26 gelatin origin, was higher than that of plain gelatin films.
    [Show full text]
  • Fundamentals and Applications of Chitosan Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, Grégorio Crini
    Fundamentals and Applications of Chitosan Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, Grégorio Crini To cite this version: Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, Grégorio Crini. Fundamentals and Applica- tions of Chitosan. Sustainable Agriculture Reviews 35. Chitin and Chitosan: History, Fundamentals and Innovations, 35, Springer International Publishing AG, pp.338, 2019, Sustainable Agriculture Reviews, 978-3-030-16538-3; 978-3-030-16537-6. 10.1007/978-3-030-16538-3_2. hal-02152878 HAL Id: hal-02152878 https://hal.archives-ouvertes.fr/hal-02152878 Submitted on 11 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Fundamentals and Applications of Chitosan Nadia Morin-Crini, Eric Lichtfouse, Giangiacomo Torri, and Grégorio Crini Abstract Chitosan is a biopolymer obtained from chitin, one of the most abundant and renewable material on Earth. Chitin is a primary component of cell walls in fungi, the exoskeletons of arthropods, such as crustaceans, e.g. crabs, lobsters and shrimps, and insects, the radulae of molluscs, cephalopod beaks, and the scales of fish and lissamphibians. The discovery of chitin in 1811 is attributed to Henri Braconnot while the history of chitosan dates back to 1859 with the work of Charles Rouget.
    [Show full text]
  • Antibacterial Evaluation of Starch and Chitosan Based Polymeric Blend
    IOSR Journal of Applied Chemistry (IOSR-JAC) e-ISSN: 2278-5736.Volume 8, Issue 4 Ver. I. (Apr. 2015), PP 26-32 www.iosrjournals.org Antibacterial Evaluation of Starch and Chitosan Based Polymeric Blend Neena Singh, Jaya Maitra* School of Applied Sciences and Vocational Studies, Gautam Buddha University, Greater Noida Abstract: Demand of food safety, quality and environmental concern associated with the handling of plastic waste has emphasized antimicrobial packaging, as one of the promising packaging system. Development of biodegradable and edible films based on natural polymers such as starch has been considered as economical material for antimicrobial packaging. This work aimed at the development of food packaging based on starch blended with chitosan as antimicrobial and gluteraldehyde as crosslinker. Blend of starch (ST) and chitosan (CHI) crosslinked with glutaraldehyde (4ml of 2% aqueous solution) is prepared. The common solvent 1% aqueous solution of acetic acid is used for the preparation of polymeric blend of chitosan and starch in the ratio of 5.5. agent. Chitosan has been extensively used as an antimicrobial agent either alone or blended with other natural polymers [1,2], because of its biodegradable, nontoxic and antimicrobial nature [3]. To extend chitosan's antimicrobial applicability, blend of starch (ST) and chitosan (CHI) are used in food packaging and biomedical applications [2, 3], but barriers still exist to its broader use due to its physical and chemical limitations [3, 4, 5, 6]. The antibacterial property of the blended film is observed along with their controls against two Gram-negative pathogenic and non pathogenic bacteria. The pathogenic bacterium is Salmonella enterica and the non pathogenic bacterium is Escherichia coli.
    [Show full text]
  • Evaluation of the Mucoadhesive Properties of Chitosan Nanoparticles
    1 2 3 Evaluation of the mucoadhesive properties of chitosan 4 nanoparticles prepared using different chitosan to 5 tripolyphosphate (CS:TPP) ratios 6 7 8 9 Ezzeddin M. A. Hejjajia,b, Alan M. Smithb and Gordon A. Morrisa, 10 11 12 13 aDepartment of Chemical Sciences, School of Applied Sciences, University of Huddersfield, 14 Huddersfield HD1 3DH, UK 15 bDepartment of Pharmacy, School of Applied Sciences, University of Huddersfield, 16 Huddersfield HD1 3DH, UK 17 18 19 Corresponding author 20 Tel: +44 (0) 1484 473871 21 Fax: +44 (0) 1484 472182 22 Email: [email protected] 23 24 25 26 27 28 29 30 31 32 1 33 Highlights 34 the interactions between CS:TPP nanoparticles and mucin were evaluated 35 the degree of interaction depends on the CS:TPP ratio, -potential and viscosity 36 a CS:TPP ratio of 4:1 displayed the strongest interaction with mucin 37 greater mucin binding efficiencies achieved at CS:TPP ratios of 4:1 and higher 38 a minimum CS:TPP ratio of 4:1 is required for stable interactions with mucin 39 2 40 Abstract 41 Mucoadhesive molecules such as chitosan, can allow targeting of a particular tissue to prolong 42 residence time and subsequently improve bioavailability. The purpose of this study was to 43 investigate chitosan-tripolyphosphate (CS:TPP) nanoparticles and to evaluate the interaction 44 between nanoparticles of different CS:TPP ratios with mucin using viscosity, particle size 45 analysis and -potential. For all CS:TPP ratios examined, a minimum value of viscosity was 46 reached for a 3:1 CS:TPP ratio, however chitosan nanoparticles at this ratio were not stable (< 47 +30 mV), whereas a CS:TPP ratio of 4:1 displayed the strongest interaction.
    [Show full text]
  • Sorption and Drug Release Studies from Semi-Interpenetrating Polymer Networks of Chitosan and Xanthan Gum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE A. THAKUR et al., Sorption and Drug Release Studies from Semi-interpenetrating…, Chem. Biochem. Eng. Q., 28 (1) 105–115 (2014) 105 Sorption and Drug Release Studies from Semi-interpenetrating Polymer Networks of Chitosan and Xanthan Gum * A. Thakur, S. Monga, and R. K. Wanchoo Original scientific paper Dr. S. S. Bhatnagar University Institute of Chemical Engineering Received: April 10, 2013 & Technology, Panjab University, Chandigarh, India -160014 Accepted: October 28, 2013 Hydrogel films of Chitosan (CS) and Xanthan gum (XA) of compositions 100/0, 90/10, 80/20, 70/30, 60/40 and 50/50 (w/w) % were prepared and swollen in simulated gastric fluid (SGF) of pH 1.2 and simulated intestinal fluid (SIF) of pH 7.4. To impart stability in acidic environment, semi-interpenetrating polymer network (semi-IPNs) films were formed using glutaraldehyde (GA) as the crosslinking agent. With increase in XA concentration, equilibrium degree of swelling reduced in SGF as well as SIF indicating maximum intermolecular interactions for 50/50 CS/XA semi-IPN. The swelling data was observed to follow second order kinetics. Spectroscopic and thermal analyses of these semi-IPN films also suggest maximum intermolecular interactions for 50/50 CS/XA semi-IPN. The potential of using 50/50 semi-IPN in drug delivery was studied using amoxicillin. In-vitro drug release studies indicated higher drug release in SGF than in SIF suggesting dependence of amoxicillin release kinetics and diffusion coefficient on pH of the environment and drug loading.
    [Show full text]
  • ENTOMO FARMS Chitin, Chitosan and Chitin-Oligosaccharide Assessment and Health Benefits By: Dr
    ENTOMO FARMS Chitin, Chitosan and Chitin-Oligosaccharide Assessment and Health Benefits By: Dr. Grace Liu PhD. Role of Fiber and Oligosaccharides in Human Health Fiber is an underappreciated component in both modern and ancestral diets, yet the gut microbiota and its vast implications for health have clearly emerged in the last 10-15 years as second generation sequencing technology illuminates the intricate relationships the intestinal microorganisms have with human health and disease. Prebiotics are defined as fiber that stimulate the growth and activity of advantageous microorganisms. From our first hours of life, prebiotic oligosaccharides in breast milk feed and nurture the gut flora of babies until weaning onto solid food. Without an immune system, babies receive immunoprotection from not only their mother’s immunoglobulins but also the prebiotic oligosaccharides which have properties that reduce and eliminate pathogens such as E. coli, Salmonella, Pseudomonas, and Shigella which are associated with infection and disease. Oligosaccharides are considered fiber 1because they are resistant to digestion, fail to be broken in the small intestines by human digestive enzymes, and do not feed the baby or host. Instead oligosaccharides nourish and stimulate gut bacteria. Our intestinal flora help us with many functions that fortify our health that we cannot live without such as: ● breakdowning food ● producing or assimilating vitamins and nutrients ● purging opportunistic pathogens ● boosting fat burning antioxidants like conjugated linoleic acid (CLA) ● secretion of targeted antimicrobial compounds that crowd out harmful yeasts and pathogenic flora ● reversal of intestinal permeability ● balancing and improving immunity against disease and cancer Prebiotic oligosaccharides are found abundantly in nature and food such as lentils, legumes, green leafy vegetables, agave cacti, and non-starchy vegetables such as sunchokes, onions, and yacon roots.
    [Show full text]