Primitive Direcursion and Difunctorial Semantics of Typed Object Calculus

Total Page:16

File Type:pdf, Size:1020Kb

Primitive Direcursion and Difunctorial Semantics of Typed Object Calculus Primitive Direcursion and Difunctorial Semantics of Typed Object Calculus Johan Glimming Doctoral Thesis in Computer Science at Stockholm University, Sweden 2007 The fi rst part of this thesis consists of two research papers and concerns the fi eld of denotational semantics of typed object calculus, i.e., a for- malism for object-based programming. It provides a category-theoretic semantics based on partial maps subject to an algebraic compactness assumption. This semantics interprets types as mixed-variant functors (so-called difunctors) and is therefore termed difunctorial. In addition, we prove computational soundness and adequacy results for typed ob- ject calculus via Plotkin’s FPC, thus providing a class of computatio- nally adequate models for an extended fi rst-order typed object calculus (with recursive objects supporting method update, but not subtyping). Taken together, this provides a mathematical foundation for studying program algebras for object-based programming languages. The second part (which appeared at CALCO 2007, Springer-Ver- lag) deals with recursion principles on datatypes, including the untyped lambda calculus as a special case. Freyd showed that, in certain domain theoretic categories, locally continuous functors have minimal invari- ants, which possess a structure that he termed dialgebra. This gives rise to a category of dialgebras and homomorphisms, where the minimal in- variants are initial, inducing a powerful recursion scheme (direcursion) on a complete partial order. We identify a problem that appears when we translate (co)iterative functions to direcursion, and as a solution to this problem we develop a recursion scheme (primitive direcursion). This immediately gives a number of examples of direcursive functions, improving on the situation in the literature where only a few examples have appeared. By means of a case study, this line of work is connected to object calculus models. Johan Glimming received his BSc (in Computer Sci- ence) from Uppsala University, and his MSc (in Mat- hematics and the Foundations of Computer Science) from University of Oxford. In 2005, he received the title of Licentiate of Philosophy at Stockholm Univer- sity. issn 1653-5723 isbn 978-91-7155-550-2 Department of Numerical Analysis and Computer Science STOCKHOLM UNIVERSITY, SWEDEN TRITA-CSC-A 2007:22 Stockholms Universitet ISSN 1653-5723 Numerisk analys och datalogi (KTH CSC) ISRN-KTH/CSC/A–07/22–SE SE-100 44 Stockholm ISBN 978-91-7155-550-2 SWEDEN Akademisk avhandling som med tillstånd av Stockholms Universitet framlagges¨ till offentlig granskning for¨ avlaggande¨ av doktorsavhandling den 9 januari 2008 kl 14.00 i sal F3, Lindstedtsvagen¨ 26 (infart Valhallavagen¨ /Drottning Kristinas vag),¨ Kungl Tekniska hogskolan,¨ Stockholm. © Johan Glimming, November 22, 2007 Tryck: Universitetsservice US-AB iii Abstract This thesis concerns two closely related lines of research: (i) We contribute to the se- mantics of typed object calculus by giving (a) a denotational semantics using partial maps making use of an algebraic compactness assumption on the ambient category, (b) a no- tion of “wrappers” by which algebraic datatypes can be represented as object types, and (c) proofs of computational soundness and adequacy of typed object calculus via Plotkin’s FPC (with lazy operational semantics), thus making every denotational model of FPC (with these properties) a computationally adequate model also for a first-order typed object cal- culus (with recursive objects supporting method update, but not subtyping). In this way, we give a mathematical foundation for studying program algebras for object-based program- ming languages, since a valid equation in the model is proved to induce operationally con- gruent terms in the language. For (c), we also develop a variation of Abadi and Cardelli’s first-order typed object calculus with recursive object types and sum types (and some other extensions), and prove subject reduction for this calculus. (ii) The second part concerns recursion principles on datatypes including the untyped lambda calculus as a special case. Freyd showed that in certain domain theoretic categories, locally continuous functors have minimal invariants which possess a structure that he termed dialgebra. This gives rise to a category of dialgebras and homomorphisms, where the minimal invariants are initial, in- ducing a powerful recursion scheme (direcursion) on a complete partial order. We identify a problem that appears when (co)iterative functions (on a fixed parameterised datatype) are translated to direcursion (on the same datatype), and as a solution to this problem we present a recursion scheme (primitive direcursion), generalising and symmetrising primi- tive (co)recursion for endofunctors. To this end, we give a uniform technique for translating (co)iterative maps into direcursive maps. This immediately gives a plethora of examples of direcursive functions, improving on the situation in the literature where only a few ex- amples have appeared. Moreover, an ad-hoc solution proposed elsewhere is avoided for the translated maps, while interesting new examples appear (bisimulations, higher-order coalgebra), also in the context of models of typed object calculus. Contents Contents v Acknowledgements . vii 1 Introduction 1 1.1 Aims . 6 1.2 Related Work . 7 1.3 Contributions . 19 1.4 Overview . 20 2 Categories and Domains 23 2.1 Categories . 23 2.2 Limits and Colimits . 40 2.3 Recursion and Corecursion . 49 2.4 Domain Theory . 57 3 Paper I: Difunctorial Semantics 65 1 Introduction . 68 2 Mathematical Preliminaries . 69 3 Object Calculus . 72 4 Difunctorial Semantics . 74 5 Wrapper Classes . 78 6 Conclusion and Further Work . 80 4 Paper II: Computational Soundness and Adequacy 85 1 Introduction . 88 2 Typed Object Calculus with Recursive Objects . 89 3 FPC . 99 4 Translating Object Calculus into FPC . 100 v vi CONTENTS 5 Soundness and Adequacy . 104 6 Conclusion and Further Work . 109 5 Paper III: Primitive Direcursion vs. Parametric (Co)Iteration 113 1 Introduction . 116 2 Mathematical Preliminaries . 117 3 Primitive Direcursion . 123 4 Example: Application to Object Calculus Semantics . 133 5 Conclusion and Further Work . 140 6 Concluding Remarks 145 Bibliography 157 vii Acknowledgements First and foremost, I would like to thank my supervisor Karl Meinke, my depart- ment, and Stockholm University for taking me on as a PhD student and for funding and supporting my research. I am also most grateful to my coauthor Neil Ghani for many enligthening discussions, for his wit and personal qualities and for his friendship. I am equally grateful to Faron Moller, who introduced me to com- puter science research and whose advice and encouragement I value greatly, and to Bjorn¨ Lisper for his support and advice throughout the years. I am also indebted to Viggo Stoltenberg-Hansen for his courses in logic and domain theory in Uppsala, for many helpful discussions and for the interest he has shown in my work. Over the years, I have had the opportunity to visit researchers in different parts of the world. I am grateful for their hospitality, encouragement and openhanded support. The suggestions I have received on those occasions, and the many award- ing discussions, have greatly influenced and improved my work, and sometimes pointed me in new directions. Here I want to particularly mention: Ralph Back, Roland Backhouse, Marcelo Fiore, Andy Gordon, Furio Honsell, Graham Hutton, Patrik Jansson, Achim Jung, Marina Lenisa, Rasmus Møgelberg, Andy Pitts, Gor- don Plotkin, John Power, Horst Reichel, Bernhard Reus, Alex Simpson, Hendrik Tews, Tarmu Uustalu and Varmo Vene. I am also grateful to Mart´ın Abadi, Vi- viana Bono, Luca Cardelli, Benjamin Pierce, Ramesh Viswanathan, among others, for helpful correspondence. It has also been a privilege to get to know many of the people in the Uppsala-Stockholm logic group, researchers at the IT department in Uppsala and the colleagues at KTH/SU. During the work on this thesis, I have received financial support from Lennander’s foundation at Uppsala University, Wallenberg foundations, as well as scholarships from Stockholm University. They are hereby gratefully acknowledged. Last but not least, I am grateful for the support of my friends and family, who are important well beyond this thesis. I am particularly thankful to my sister Ida for proof-reading sections of an earlier version of the text, and to my parents for their unfailing support. And to Pia, thank you for your love. Chapter 1 Introduction This thesis concerns the denotational semantics approach to the semantics of pro- gramming languages. This approach is based on assigning elements in suitable mathematical structures to the various language constructions. To this end, we will be interested in object-based programming languages, a class of program- ming languages based on entities known as objects, which consist of a family of self-referential methods acting on the object. These objects compute in response to method invocation or method update. The former stimulus is similar to function evaluation, but there is no argument or input, as the evaluation is with respect to the present self of the object, which provides a local state for the computations be- ing carried out. Method update makes change possible, and a sequence of method updates and method invocations together give the ability to simulate in particular purely functional programs, so that any partial recursive function can be repre- sented solely by objects. Moreover, the popular
Recommended publications
  • Complete Objects in Categories
    Complete objects in categories James Richard Andrew Gray February 22, 2021 Abstract We introduce the notions of proto-complete, complete, complete˚ and strong-complete objects in pointed categories. We show under mild condi- tions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the product of an abelian proto-complete (respectively complete) object and a strong-complete object. This to- gether with the observation that the trivial group is the only abelian complete group recovers a theorem of Baer classifying complete groups. In addition we generalize several theorems about groups (subgroups) with trivial center (respectively, centralizer), and provide a categorical explana- tion behind why the derivation algebra of a perfect Lie algebra with trivial center and the automorphism group of a non-abelian (characteristically) simple group are strong-complete. 1 Introduction Recall that Carmichael [19] called a group G complete if it has trivial cen- ter and each automorphism is inner. For each group G there is a canonical homomorphism cG from G to AutpGq, the automorphism group of G. This ho- momorphism assigns to each g in G the inner automorphism which sends each x in G to gxg´1. It can be readily seen that a group G is complete if and only if cG is an isomorphism. Baer [1] showed that a group G is complete if and only if every normal monomorphism with domain G is a split monomorphism. We call an object in a pointed category complete if it satisfies this latter condi- arXiv:2102.09834v1 [math.CT] 19 Feb 2021 tion.
    [Show full text]
  • CCC 2017 Continuity, Computability, Constructivity - from Logic to Algorithms
    CCC 2017 Continuity, Computability, Constructivity - From Logic to Algorithms Inria { LORIA, Nancy 26-30 June 2017 Abstracts On the commutativity of the powerspace monads .......... 3 Matthew de Brecht Hybrid Semantics for Higher-Order Store ............... 4 Bernhard Reus Point-free Descriptive Set Theory and Algorithmic Randomness5 Alex Simpson Sequentially locally convex QCB-spaces and Complexity Theory6 Matthias Schr¨oder Concurrent program extraction ..................... 7 Ulrich Berger and Hideki Tsuiki ERA: Applications, Analysis and Improvements .......... 9 Franz Brauße, Margarita Korovina and Norbert Th. Mller σ-locales and Booleanization in Formal Topology .......... 11 Francesco Ciraulo Rigorous Function Calculi ......................... 13 Pieter Collins Ramsey actions and Gelfand duality .................. 15 Willem Fouch´e Geometric Lorenz attractors are computable ............. 17 Daniel Gra¸ca,Cristobal Rojas and Ning Zhong A Variant of EQU in which Open and Closed Subspaces are Complementary without Excluded Middle ............ 19 Reinhold Heckmann Duality of upper and lower powerlocales on locally compact locales 22 Tatsuji Kawai 1 Average case complexity for Hamiltonian dynamical systems .. 23 Akitoshi Kawamura, Holger Thies and Martin Ziegler The Perfect Tree Theorem and Open Determinacy ......... 26 Takayuki Kihara and Arno Pauly Towards Certified Algorithms for Exact Real Arithmetic ..... 28 Sunyoung Kim, Sewon Park, Gyesik Lee and Martin Ziegler Decidability in Symbolic-Heap System with Arithmetic and Ar- rays
    [Show full text]
  • Research.Pdf (1003.Kb)
    PERSISTENT HOMOLOGY: CATEGORICAL STRUCTURAL THEOREM AND STABILITY THROUGH REPRESENTATIONS OF QUIVERS A Dissertation presented to the Faculty of the Graduate School, University of Missouri, Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by KILLIAN MEEHAN Dr. Calin Chindris, Dissertation Supervisor Dr. Jan Segert, Dissertation Supervisor MAY 2018 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled PERSISTENT HOMOLOGY: CATEGORICAL STRUCTURAL THEOREM AND STABILITY THROUGH REPRESENTATIONS OF QUIVERS presented by Killian Meehan, a candidate for the degree of Doctor of Philosophy of Mathematics, and hereby certify that in their opinion it is worthy of acceptance. Associate Professor Calin Chindris Associate Professor Jan Segert Assistant Professor David C. Meyer Associate Professor Mihail Popescu ACKNOWLEDGEMENTS To my thesis advisors, Calin Chindris and Jan Segert, for your guidance, humor, and candid conversations. David Meyer, for our emphatic sharing of ideas, as well as the savage question- ing of even the most minute assumptions. Working together has been an absolute blast. Jacob Clark, Brett Collins, Melissa Emory, and Andrei Pavlichenko for conver- sations both professional and ridiculous. My time here was all the more fun with your friendships and our collective absurdity. Adam Koszela and Stephen Herman for proving that the best balm for a tired mind is to spend hours discussing science, fiction, and intersection of the two. My brothers, for always reminding me that imagination and creativity are the loci of a fulfilling life. My parents, for teaching me that the best ideas are never found in an intellec- tual vacuum. My grandparents, for asking me the questions that led me to where I am.
    [Show full text]
  • Separable Commutative Rings in the Stable Module Category of Cyclic Groups
    SEPARABLE COMMUTATIVE RINGS IN THE STABLE MODULE CATEGORY OF CYCLIC GROUPS PAUL BALMER AND JON F. CARLSON Abstract. We prove that the only separable commutative ring-objects in the stable module category of a finite cyclic p-group G are the ones corresponding to subgroups of G. We also describe the tensor-closure of the Kelly radical of the module category and of the stable module category of any finite group. Contents Introduction1 1. Separable ring-objects4 2. The Kelly radical and the tensor6 3. The case of the group of prime order 14 4. The case of the general cyclic group 16 References 18 Introduction Since 1960 and the work of Auslander and Goldman [AG60], an algebra A over op a commutative ring R is called separable if A is projective as an A ⊗R A -module. This notion turns out to be remarkably important in many other contexts, where the module category C = R- Mod and its tensor ⊗ = ⊗R are replaced by an arbitrary tensor category (C; ⊗). A ring-object A in such a category C is separable if multiplication µ : A⊗A ! A admits a section σ : A ! A⊗A as an A-A-bimodule in C. See details in Section1. Our main result (Theorem 4.1) concerns itself with modular representation theory of finite groups: Main Theorem. Let | be a separably closed field of characteristic p > 0 and let G be a cyclic p-group. Let A be a commutative and separable ring-object in the stable category |G- stmod of finitely generated |G-modules modulo projectives.
    [Show full text]
  • Extra Examples for “Scott Continuity in Generalized Probabilistic Theories”
    Extra Examples for “Scott Continuity in Generalized Probabilistic Theories” Robert Furber May 27, 2020 1 Introduction The purpose of this note is to draw out some counterexamples using the con- struction described in [9]. In Section 3 we show that there is an order-unit space A such that there exist 2@0 pairwise non-isometric base-norm spaces E such that A =∼ E∗ as order-unit spaces. This contrasts with the case of C∗-algebras, where if there is a predual (and therefore the C∗-algebra is a W∗-algebra), it is unique. In Section 4 we show that there is a base-norm space E, whose dual order- unit space A = E∗ is therefore bounded directed-complete, such that there is a Scott-continuous unital map f : A ! A that is not the adjoint of any linear map g : E ! E. Again, this contrasts with the situation for W∗-algebras, where Scott-continuous maps A ! B correspond to adjoints of linear maps between preduals B∗ ! A∗. In Section 5 we show that there are base-norm and order- unit spaces E such that E =∼ E∗∗, but the evaluation mapping E ! E∗∗ is not an isomorphism, i.e. E is not reflexive, using an example of R. C. James from Banach space theory. In Section 6 we use an example due to J. W. Roberts to show that there are base-norm spaces E admitting Hausdorff vectorial topologies in which the base and unit ball are compact, but are not dual spaces, and similarly that there are order-unit spaces A admitting Hausdorff vectorial topologies in which the unit interval and unit ball are compact, but are not dual spaces.
    [Show full text]
  • Homological Algebra Lecture 1
    Homological Algebra Lecture 1 Richard Crew Richard Crew Homological Algebra Lecture 1 1 / 21 Additive Categories Categories of modules over a ring have many special features that categories in general do not have. For example the Hom sets are actually abelian groups. Products and coproducts are representable, and one can form kernels and cokernels. The notation of an abelian category axiomatizes this structure. This is useful when one wants to perform module-like constructions on categories that are not module categories, but have all the requisite structure. We approach this concept in stages. A preadditive category is one in which one can add morphisms in a way compatible with the category structure. An additive category is a preadditive category in which finite coproducts are representable and have an \identity object." A preabelian category is an additive category in which kernels and cokernels exist, and finally an abelian category is one in which they behave sensibly. Richard Crew Homological Algebra Lecture 1 2 / 21 Definition A preadditive category is a category C for which each Hom set has an abelian group structure satisfying the following conditions: For all morphisms f : X ! X 0, g : Y ! Y 0 in C the maps 0 0 HomC(X ; Y ) ! HomC(X ; Y ); HomC(X ; Y ) ! HomC(X ; Y ) induced by f and g are homomorphisms. The composition maps HomC(Y ; Z) × HomC(X ; Y ) ! HomC(X ; Z)(g; f ) 7! g ◦ f are bilinear. The group law on the Hom sets will always be written additively, so the last condition means that (f + g) ◦ h = (f ◦ h) + (g ◦ h); f ◦ (g + h) = (f ◦ g) + (f ◦ h): Richard Crew Homological Algebra Lecture 1 3 / 21 We denote by 0 the identity of any Hom set, so the bilinearity of composition implies that f ◦ 0 = 0 ◦ f = 0 for any morphism f in C.
    [Show full text]
  • Categories of Projective Spaces
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF PURE AND APPLIED ALGEBRA Journal of Pure and Applied Algebra 110 (1996) 241-258 Categories of projective spaces Aurelio Carboni *, Marco Grandis Dipartimento di Matematica, Universitri di Genova, Via L.B. Alberti 4, 16132 Geneva, Italy Communicated by by F.W. Lawvere; received 1 December 1994 Abstract Starting with an abelian category d, a natural construction produces a category Pd such that, when d is an abelian category of vector spaces, llp& is the corresponding category of projective spaces. The process of forming the category P& destroys abelianess, but not completely, and the precise measure of what remains of it gives the possibility to reconstruct d out from PzZ, and allows to characterize categories of the form Pd, for an abelian d (projective categories). The characterization is given in terms of the notion of “Puppe exact category” and of an appropriate notion of “weak biproducts”. The proof of the characterization theorem relies on the theory of “additive relations”. 0. Introduction Starting with an abelian category &, a natural construction described in [5] produces a category P& such that, when & is an abelian category of vector spaces, Pd is the corresponding category of projective spaces. This construction is based on the subobject fimctor on d, which in the linear context we call “Grassmannian finctor”. Clearly, categories of the form P&’ for an abelian category ~4 are to be thought of as “categories of projective spaces”, and the natural question arises of their intrinsic characterization.
    [Show full text]
  • Math 256: Linear Algebra Dr
    Math 256: Linear Algebra Dr. Heather Moon contributing-Authors: Dr. Thomas J. Asaki, Dr. Marie Snipes, and Dr. Chris Camfield April 20, 2016 1 Contents 1 Systems of Equations 5 1.1 Review from your basic Algebra class . .5 1.1.1 Substitution . .5 1.1.2 Elimination . .5 1.2 Systems of Equations with more variables . .6 1.3 Using Matrices to solve systems of equations . .8 2 Matrix operations and Matrix Equations 12 2.1 Basic Operations on Matrices . 12 2.1.1 Matrix Addition . 13 2.1.2 Matrix Multiplication . 13 2.2 Matrix Equations and more . 14 2.3 Determinants . 18 3 Radiograpy and Tomography in Linear Algebra Lab #1 24 3.1 Grayscale Images . 24 4 Vector Spaces 26 4.1 Vectors and Vector Spaces . 27 4.2 Subspaces . 32 5 Span 35 5.1 Definition of Span . 36 5.2 Span as a Vector Space . 38 6 Linear Independence/Dependence 41 6.1 Linear Dependence Definitions . 41 6.2 Basis . 43 6.3 Dimension . 44 7 Coordinate Spaces 49 7.1 Coordinates in the Standard Basis . 49 7.2 Coordinates in Other Bases . 50 8 Transmission Radiography and Tomography A Simplified Overview 54 8.1 What is Radiography? . 54 8.1.1 Transmission Radiography . 55 8.1.2 Tomography . 55 8.2 The Incident X-ray Beam . 55 8.3 X-Ray Beam Attenuation . 56 8.4 Radiographic Energy Detection . 57 8.5 The Radiographic Transformation Operator . 58 8.6 Multiple Views and Axial Tomography . 58 8.7 Model Summary . 60 8.8 Model Assumptions .
    [Show full text]
  • On the Compact-Regular Coreflection of a Stably Compact Locale
    MFPS XV Preliminary Version On the compact-regular coreflection of a stably compact locale Mart´ınH¨otzelEscard´o Laboratory for Foundations of Computer Science, The University of Edinburgh, King’s Buildings, JMCB, Mayfield Road, Edinburgh EH9 3JZ, Scotland [email protected] http://www.dcs.ed.ac.uk/home/mhe/ Abstract A nucleus on a frame is a finite-meet preserving closure operator. The nuclei on a frame form themselves a frame, with the Scott continuous nuclei as a subframe. We refer to this subframe as the patch frame. We show that the patch construction ex- hibits the category of compact regular locales and continuous maps as a coreflective subcategory of the category of stably compact locales and perfect maps, and the category of Stone locales and continuous maps as a coreflective subcategory of the category of spectral locales and spectral maps. We relate our patch construction to Banaschewski and Br¨ummer’sconstruction of the dual equivalence of the category of stably compact locales and perfect maps with the category of compact regular biframes and biframe homomorphisms. Keywords: Frame of nuclei, Scott continuous nuclei, patch topology, stably locally compact locales, perfect maps, compact regular locales. AMS Classification: 06A15, 06B35, 06D20, 06E15, 54C10, 54D45, 54F05. 1 Introduction It is well-known that the open sets of a topological space can be regarded as the (abstract) “semi-decidable properties” of its points [23]—the terminologies “observable property” [1] and “affirmable property” [28] are also suggestive. Smyth regards the patch topology as a topology of “positive and negative information” [25]. We consider the patch construction in the (localic manifes- tation of the) category of stably compact spaces.
    [Show full text]
  • Appendix A. Preliminaries
    UvA-DARE (Digital Academic Repository) Logic, algebra and topology: investigations into canonical extensions, duality theory and point-free topology Vosmaer, J. Publication date 2010 Link to publication Citation for published version (APA): Vosmaer, J. (2010). Logic, algebra and topology: investigations into canonical extensions, duality theory and point-free topology. Institute for Logic, Language and Computation. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:28 Sep 2021 Appendix A Preliminaries In this appendix, we will briefly discuss some of the mathematical background knowledge that we rely on elsewhere in this dissertation. The presentation of this appendix is not linear: when explaining one subject, we will sometimes refer to another one which may lie further ahead in the text.
    [Show full text]
  • Scott-Continuous Functions. Part II1
    FORMALIZED MATHEMATICS Volume 9, Number 1, 2001 University of Białystok Scott-Continuous Functions. Part II1 Adam Grabowski University of Białystok MML Identifier: WAYBEL24. The terminology and notation used here are introduced in the following articles: [13], [5], [1], [16], [6], [14], [11], [18], [17], [12], [15], [7], [3], [4], [10], [2], [8], [19], and [9]. 1. Preliminaries One can prove the following proposition (1) Let S, T be up-complete Scott top-lattices and M be a subset of SCMaps(S, T ). Then FSCMaps(S,T ) M is a continuous map from S into T . Let S be a non empty relational structure and let T be a non empty reflexive relational structure. One can check that every map from S into T which is constant is also monotone. Let S be a non empty relational structure, let T be a reflexive non empty relational structure, and let a be an element of the carrier of T . One can check that S 7−→ a is monotone. One can prove the following propositions: (2) Let S be a non empty relational structure and T be a lower-bounded anti- symmetric reflexive non empty relational structure. Then ⊥MonMaps(S,T ) = S 7−→ ⊥T . (3) Let S be a non empty relational structure and T be an upper- bounded antisymmetric reflexive non empty relational structure. Then ⊤MonMaps(S,T ) = S 7−→ ⊤T . 1 This work has been supported by KBN Grant 8 T11C 018 12. °c 2001 University of Białystok 5 ISSN 1426–2630 6 adam grabowski (4) Let S, T be complete lattices, f be a monotone map from S into T , and x be an element of S.
    [Show full text]
  • Two Topologise on the Lattice of Scott Closed Subsets?
    Two topologise on the lattice of Scott closed subsets? Yu Chen, Hui Kou∗, Zhenchao Lyu Department of Mathematics, Sichuan University, Chengdu 610064, China Abstract For a poset P , let σ(P ) and Γ(P ) respectively denote the lattice of its Scott open subsets and Scott closed subsets ordered by inclusion, and set ΣP = (P; σ(P )). In this paper, we discuss the lower Vietoris topology and the Scott topology on Γ(P ) and give some sufficient conditions to make the two topologies equal. We built an adjunction between σ(P ) and σ(Γ(P )) and proved that ΣP is core-compact iff ΣΓ(P ) is core-compact iff ΣΓ(P ) is sober, locally compact and σ(Γ(P )) = υ(Γ(P )) (the lower Vietoris topology). This answers a question in [17]. Brecht and Kawai [2] asked whether the consonance of a topological space X implies the consonance of its lower powerspace, we give a partial answer to this question at the last part of this paper. Keywords: Scott closed sets; adjunction; distributive continuous lattice; lower powerspace; consonance. 1. Introduction The lower powerspace over a topological space X is the set of closed subsets of X with the lower Vietoris topology. The lower powerspace coincides with the lower powerdomain for continuous dcpos with the Scott topology, where the latter construction is used in modelling non-deterministic computation (see [1, 19]). There naturally arise a question when the lower Vietoris topology and the Scott topology coincide on the lattice of closed subsets of a topological space. For a poset P , we give some sufficient conditions such that the lower Vietoris topology and the Scott topology coincide on Γ(P ).
    [Show full text]