Module B - Eigenvalue and Singular Value Decompositions

Total Page:16

File Type:pdf, Size:1020Kb

Module B - Eigenvalue and Singular Value Decompositions GLOBAL INITIATIVE OF ACADEMIC NETWORKS Ivan Slapniˇcar MODERN APPLICATIONS OF NUMERICAL LINEAR ALGEBRA METHODS Module B - Eigenvalue and Singular Value Decompositions IIT INDORE, 2016 GLOBAL INITIATIVE OF ACADEMIC NETWORKS Ivan Slapniˇcar MODERN APPLICATIONS OF NUMERICAL LINEAR ALGEBRA METHODS Module B - Eigenvalue and Singular Value Decompositions https://github.com/ivanslapnicar/GIAN-Applied-NLA-Course Cover photo: TU Berlin, Institut f¨urMathematik IIT INDORE, 2016 Contents 1 Eigenvalue Decomposition - Definitions and Facts5 1.1 Prerequisites......................................5 1.2 Competences......................................5 1.3 Selected references...................................5 1.4 General matrices....................................5 1.4.1 Definitions...................................5 1.4.2 Facts.......................................6 1.4.3 Examples....................................7 1.4.4 Example.....................................9 1.4.5 Example..................................... 10 1.4.6 Example - Circulant matrix.......................... 12 1.5 Hermitian and real symmetric matrices........................ 14 1.5.1 Definitions................................... 14 1.5.2 Facts....................................... 14 1.5.3 Example - Hermitian matrix......................... 16 1.5.4 Example - real symmetric matrix....................... 21 1.6 Positive definite matrices............................... 22 1.6.1 Definitions................................... 22 1.6.2 Facts....................................... 22 1.6.3 Example - Positive definite matrix...................... 23 1.6.4 Example - Positive semidefinite matrix.................... 24 1.6.5 Example - Covariance and corellation matrices............... 25 2 Eigenvalue Decomposition - Perturbation Theory 28 2.1 Prerequisites...................................... 28 2.2 Competences...................................... 28 2.3 Norms.......................................... 28 2.3.1 Definitions................................... 28 2.3.2 Examples.................................... 29 2.3.3 Facts....................................... 29 2.4 Errors and condition numbers............................. 32 2.4.1 Definitions................................... 32 2.5 Peturbation bounds.................................. 32 2.5.1 Definitions................................... 32 2.5.2 Facts....................................... 33 2.5.3 Example - Nondiagonalizable matrix..................... 34 2.5.4 Example - Jordan form............................ 36 2.5.5 Example - Normal matrix........................... 40 2.5.6 Example - Hermitian matrix......................... 41 3 Symmetric Eigenvalue Decomposition - Algorithms and Error Analysis 47 3.1 Prerequisites...................................... 47 3.2 Competences...................................... 47 3.3 Backward error and stability............................. 47 1 3.3.1 Definitions................................... 47 3.4 Basic methods..................................... 47 3.4.1 Definitions................................... 47 3.4.2 Facts....................................... 48 3.4.3 Examples.................................... 49 3.5 Tridiagonalization................................... 52 3.5.1 Facts....................................... 52 3.6 Tridiagonal QR method................................ 57 3.6.1 Definition.................................... 57 3.6.2 Facts....................................... 57 3.6.3 Examples.................................... 58 3.6.4 Computing the eigenvectors.......................... 60 3.6.5 Symmetric QR method............................ 63 4 Symmetric Eigenvalue Decomposition - Algorithms for Tridiagonal Matrices 65 4.1 Prerequisites...................................... 65 4.2 Competences...................................... 65 4.3 Bisection and inverse iteration............................. 65 4.3.1 Facts....................................... 65 4.4 Divide-and-conquer................................... 67 4.4.1 Facts....................................... 67 4.5 MRRR.......................................... 70 5 Symmetric Eigenvalue Decomposition - Jacobi Method and High Relative Accuracy 72 5.1 Prerequisites...................................... 72 5.2 Competences...................................... 72 5.3 Jacobi method..................................... 72 5.3.1 Definitions................................... 72 5.3.2 Facts....................................... 73 5.3.3 Examples.................................... 73 5.4 Relative perturbation theory............................. 76 5.4.1 Definition.................................... 76 5.4.2 Facts....................................... 76 5.4.3 Example - Scaled matrix............................ 77 5.5 Indefinite matrices................................... 79 5.5.1 Definition.................................... 79 5.5.2 Facts....................................... 79 5.6 # Symmetric Eigenvalue Decomposition - Lanczos Method............ 79 5.7 Prerequisites...................................... 80 5.8 Competences...................................... 80 5.9 Lanczos method.................................... 80 5.9.1 Definitions................................... 80 5.9.2 Facts....................................... 80 5.9.3 Examples.................................... 81 2 5.9.4 Operator version................................ 90 5.9.5 Sparse matrices................................. 93 6 Singular Value Decomposition - Definitions and Facts 95 6.1 Prerequisites...................................... 95 6.2 Competences...................................... 95 6.3 Selected references................................... 95 6.4 Singular value problems................................ 95 6.4.1 Definitions................................... 95 6.4.2 Facts....................................... 95 6.4.3 Example - Symbolic computation....................... 97 6.4.4 Example - Random complex matrix..................... 98 6.4.5 Example - Random real matrix........................ 100 6.5 Matrix approximation................................. 102 7 Singular Value Decomposition - Perturbation Theory 104 7.1 Prerequisites...................................... 104 7.2 Competences...................................... 104 7.3 Peturbation bounds.................................. 104 7.3.1 Definitions................................... 104 7.3.2 Facts....................................... 104 7.3.3 Example..................................... 105 7.4 Relative perturbation theory............................. 108 7.4.1 Definitions................................... 108 7.4.2 Facts....................................... 108 7.4.3 Example - Bidiagonal matrix......................... 109 8 Singular Value Decomposition - Algorithms and Error Analysis 113 8.1 Prerequisites...................................... 113 8.2 Competences...................................... 113 8.3 Basics.......................................... 113 8.3.1 Definitions................................... 113 8.3.2 Facts....................................... 113 8.4 Bidiagonalization.................................... 114 8.4.1 Facts....................................... 114 8.5 Bidiagonal QR method................................. 118 8.5.1 Facts....................................... 118 8.5.2 Examples.................................... 119 8.6 QR method....................................... 122 9 Singular Value Decomposition - Jacobi and Lanczos Methods 125 9.1 Prerequisites...................................... 125 9.2 Competences...................................... 125 9.3 One-sided Jacobi method............................... 125 9.3.1 Definition.................................... 125 9.3.2 Facts....................................... 125 3 9.3.3 Example - Standard matrix.......................... 126 9.3.4 Example - Strongly scaled matrix....................... 128 9.4 Lanczos method.................................... 132 9.4.1 Example - Large matrix............................ 135 9.4.2 Example - Very large sparse matrix..................... 135 10 Algorithms for Structured Matrices 138 10.1 Prerequisites...................................... 138 10.2 Competences...................................... 138 10.3 Rank revealing decompositions............................ 138 10.3.1 Definitions................................... 138 10.3.2 Facts....................................... 138 10.3.3 Example - Positive definite matrix...................... 140 10.3.4 Example - Hilbert matrix........................... 142 10.4 Symmetric arrowhead and DPR1 matrices...................... 149 10.4.1 Definitions................................... 149 10.4.2 Facts on arrowhead matrices......................... 149 10.4.3 Example - Random arrowhead matrix.................... 150 10.4.4 Example - Numerically demanding matrix.................. 152 10.4.5 Facts on DPR1 matrices............................ 152 10.4.6 Example - Random DPR1 matrix....................... 153 10.4.7 Example - Numerically demanding matrix.................. 153 11 Updating the SVD 155 11.1 Prerequisites...................................... 155 11.2 Competences...................................... 155 11.3 Facts........................................... 155 11.3.1 Example - Adding row to a tall matrix.................... 156 11.3.2 Example - Adding row to a flat matrix.................... 158 11.3.3 Example - Adding columns.......................... 158 11.3.4 Example - Updating a
Recommended publications
  • Eigenvalues and Eigenvectors of Tridiagonal Matrices∗
    Electronic Journal of Linear Algebra ISSN 1081-3810 A publication of the International Linear Algebra Society Volume 15, pp. 115-133, April 2006 ELA http://math.technion.ac.il/iic/ela EIGENVALUES AND EIGENVECTORS OF TRIDIAGONAL MATRICES∗ SAID KOUACHI† Abstract. This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by Wen- Chyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvectors of tridiagonal matrices, is generalized. Expressions for the eigenvectors are obtained that differ completely from those obtained by Yueh. The techniques used herein are based on theory of recurrent sequences. The entries situated on each of the secondary diagonals are not necessary equal as was the case considered by Yueh. Key words. Eigenvectors, Tridiagonal matrices. AMS subject classifications. 15A18. 1. Introduction. The subject of this paper is diagonalization of tridiagonal matrices. We generalize a result obtained in [5] concerning the eigenvalues and the corresponding eigenvectors of several tridiagonal matrices. We consider tridiagonal matrices of the form −α + bc1 00 ... 0 a1 bc2 0 ... 0 .. .. 0 a2 b . An = , (1) .. .. .. 00. 0 . .. .. .. . cn−1 0 ... ... 0 an−1 −β + b n−1 n−1 ∞ where {aj}j=1 and {cj}j=1 are two finite subsequences of the sequences {aj}j=1 and ∞ {cj}j=1 of the field of complex numbers C, respectively, and α, β and b are complex numbers. We suppose that 2 d1, if j is odd ajcj = 2 j =1, 2, ..., (2) d2, if j is even where d 1 and d2 are complex numbers.
    [Show full text]
  • 18.06 Linear Algebra, Problem Set 2 Solutions
    18.06 Problem Set 2 Solution Total: 100 points Section 2.5. Problem 24: Use Gauss-Jordan elimination on [U I] to find the upper triangular −1 U : 2 3 2 3 2 3 1 a b 1 0 0 −1 4 5 4 5 4 5 UU = I 0 1 c x1 x2 x3 = 0 1 0 : 0 0 1 0 0 1 −1 Solution (4 points): Row reduce [U I] to get [I U ] as follows (here Ri stands for the ith row): 2 3 2 3 1 a b 1 0 0 (R1 = R1 − aR2) 1 0 b − ac 1 −a 0 4 5 4 5 0 1 c 0 1 0 −! (R2 = R2 − cR2) 0 1 0 0 1 −c 0 0 1 0 0 1 0 0 1 0 0 1 ( ) 2 3 R1 = R1 − (b − ac)R3 1 0 0 1 −a ac − b −! 40 1 0 0 1 −c 5 : 0 0 1 0 0 1 Section 2.5. Problem 40: (Recommended) A is a 4 by 4 matrix with 1's on the diagonal and −1 −a; −b; −c on the diagonal above. Find A for this bidiagonal matrix. −1 Solution (12 points): Row reduce [A I] to get [I A ] as follows (here Ri stands for the ith row): 2 3 1 −a 0 0 1 0 0 0 6 7 60 1 −b 0 0 1 0 07 4 5 0 0 1 −c 0 0 1 0 0 0 0 1 0 0 0 1 2 3 (R1 = R1 + aR2) 1 0 −ab 0 1 a 0 0 6 7 (R2 = R2 + bR2) 60 1 0 −bc 0 1 b 07 −! 4 5 (R3 = R3 + cR4) 0 0 1 0 0 0 1 c 0 0 0 1 0 0 0 1 2 3 (R1 = R1 + abR3) 1 0 0 0 1 a ab abc (R = R + bcR ) 60 1 0 0 0 1 b bc 7 −! 2 2 4 6 7 : 40 0 1 0 0 0 1 c 5 0 0 0 1 0 0 0 1 Alternatively, write A = I − N.
    [Show full text]
  • Parametrizations of K-Nonnegative Matrices
    Parametrizations of k-Nonnegative Matrices Anna Brosowsky, Neeraja Kulkarni, Alex Mason, Joe Suk, Ewin Tang∗ October 2, 2017 Abstract Totally nonnegative (positive) matrices are matrices whose minors are all nonnegative (positive). We generalize the notion of total nonnegativity, as follows. A k-nonnegative (resp. k-positive) matrix has all minors of size k or less nonnegative (resp. positive). We give a generating set for the semigroup of k-nonnegative matrices, as well as relations for certain special cases, i.e. the k = n − 1 and k = n − 2 unitriangular cases. In the above two cases, we find that the set of k-nonnegative matrices can be partitioned into cells, analogous to the Bruhat cells of totally nonnegative matrices, based on their factorizations into generators. We will show that these cells, like the Bruhat cells, are homeomorphic to open balls, and we prove some results about the topological structure of the closure of these cells, and in fact, in the latter case, the cells form a Bruhat-like CW complex. We also give a family of minimal k-positivity tests which form sub-cluster algebras of the total positivity test cluster algebra. We describe ways to jump between these tests, and give an alternate description of some tests as double wiring diagrams. 1 Introduction A totally nonnegative (respectively totally positive) matrix is a matrix whose minors are all nonnegative (respectively positive). Total positivity and nonnegativity are well-studied phenomena and arise in areas such as planar networks, combinatorics, dynamics, statistics and probability. The study of total positivity and total nonnegativity admit many varied applications, some of which are explored in “Totally Nonnegative Matrices” by Fallat and Johnson [5].
    [Show full text]
  • Recursive Approach in Sparse Matrix LU Factorization
    51 Recursive approach in sparse matrix LU factorization Jack Dongarra, Victor Eijkhout and the resulting matrix is often guaranteed to be positive Piotr Łuszczek∗ definite or close to it. However, when the linear sys- University of Tennessee, Department of Computer tem matrix is strongly unsymmetric or indefinite, as Science, Knoxville, TN 37996-3450, USA is the case with matrices originating from systems of Tel.: +865 974 8295; Fax: +865 974 8296 ordinary differential equations or the indefinite matri- ces arising from shift-invert techniques in eigenvalue methods, one has to revert to direct methods which are This paper describes a recursive method for the LU factoriza- the focus of this paper. tion of sparse matrices. The recursive formulation of com- In direct methods, Gaussian elimination with partial mon linear algebra codes has been proven very successful in pivoting is performed to find a solution of Eq. (1). Most dense matrix computations. An extension of the recursive commonly, the factored form of A is given by means technique for sparse matrices is presented. Performance re- L U P Q sults given here show that the recursive approach may per- of matrices , , and such that: form comparable to leading software packages for sparse ma- LU = PAQ, (2) trix factorization in terms of execution time, memory usage, and error estimates of the solution. where: – L is a lower triangular matrix with unitary diago- nal, 1. Introduction – U is an upper triangular matrix with arbitrary di- agonal, Typically, a system of linear equations has the form: – P and Q are row and column permutation matri- Ax = b, (1) ces, respectively (each row and column of these matrices contains single a non-zero entry which is A n n A ∈ n×n x where is by real matrix ( R ), and 1, and the following holds: PPT = QQT = I, b n b, x ∈ n and are -dimensional real vectors ( R ).
    [Show full text]
  • Abstract 1 Introduction
    Implementation in ScaLAPACK of Divide-and-Conquer Algorithms for Banded and Tridiagonal Linear Systems A. Cleary Department of Computer Science University of Tennessee J. Dongarra Department of Computer Science University of Tennessee Mathematical Sciences Section Oak Ridge National Laboratory Abstract Described hereare the design and implementation of a family of algorithms for a variety of classes of narrow ly banded linear systems. The classes of matrices include symmetric and positive de - nite, nonsymmetric but diagonal ly dominant, and general nonsymmetric; and, al l these types are addressed for both general band and tridiagonal matrices. The family of algorithms captures the general avor of existing divide-and-conquer algorithms for banded matrices in that they have three distinct phases, the rst and last of which arecompletely paral lel, and the second of which is the par- al lel bottleneck. The algorithms have been modi ed so that they have the desirable property that they are the same mathematical ly as existing factorizations Cholesky, Gaussian elimination of suitably reordered matrices. This approach represents a departure in the nonsymmetric case from existing methods, but has the practical bene ts of a smal ler and more easily hand led reduced system. All codes implement a block odd-even reduction for the reduced system that al lows the algorithm to scale far better than existing codes that use variants of sequential solution methods for the reduced system. A cross section of results is displayed that supports the predicted performance results for the algo- rithms. Comparison with existing dense-type methods shows that for areas of the problem parameter space with low bandwidth and/or high number of processors, the family of algorithms described here is superior.
    [Show full text]
  • [Math.RA] 19 Jun 2003 Two Linear Transformations Each Tridiagonal with Respect to an Eigenbasis of the Ot
    Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array∗ Paul Terwilliger Abstract Let K denote a field. Let d denote a nonnegative integer and consider a sequence ∗ K p = (θi,θi , i = 0...d; ϕj , φj, j = 1...d) consisting of scalars taken from . We call p ∗ ∗ a parameter array whenever: (PA1) θi 6= θj, θi 6= θj if i 6= j, (0 ≤ i, j ≤ d); (PA2) i−1 θh−θd−h ∗ ∗ ϕi 6= 0, φi 6= 0 (1 ≤ i ≤ d); (PA3) ϕi = φ1 + (θ − θ )(θi−1 − θ ) h=0 θ0−θd i 0 d i−1 θh−θd−h ∗ ∗ (1 ≤ i ≤ d); (PA4) φi = ϕ1 + (Pθ − θ )(θd−i+1 − θ0) (1 ≤ i ≤ d); h=0 θ0−θd i 0 −1 ∗ ∗ ∗ ∗ −1 (PA5) (θi−2 − θi+1)(θi−1 − θi) P, (θi−2 − θi+1)(θi−1 − θi ) are equal and independent of i for 2 ≤ i ≤ d − 1. In [13] we showed the parameter arrays are in bijection with the isomorphism classes of Leonard systems. Using this bijection we obtain the following two characterizations of parameter arrays. Assume p satisfies PA1, PA2. Let ∗ ∗ A, B, A ,B denote the matrices in Matd+1(K) which have entries Aii = θi, Bii = θd−i, ∗ ∗ ∗ ∗ ∗ ∗ Aii = θi , Bii = θi (0 ≤ i ≤ d), Ai,i−1 = 1, Bi,i−1 = 1, Ai−1,i = ϕi, Bi−1,i = φi (1 ≤ i ≤ d), and all other entries 0. We show the following are equivalent: (i) p satisfies −1 PA3–PA5; (ii) there exists an invertible G ∈ Matd+1(K) such that G AG = B and G−1A∗G = B∗; (iii) for 0 ≤ i ≤ d the polynomial i ∗ ∗ ∗ ∗ ∗ ∗ (λ − θ0)(λ − θ1) · · · (λ − θn−1)(θi − θ0)(θi − θ1) · · · (θi − θn−1) ϕ1ϕ2 · · · ϕ nX=0 n is a scalar multiple of the polynomial i ∗ ∗ ∗ ∗ ∗ ∗ (λ − θd)(λ − θd−1) · · · (λ − θd−n+1)(θ − θ )(θ − θ ) · · · (θ − θ ) i 0 i 1 i n−1 .
    [Show full text]
  • Overview of Iterative Linear System Solver Packages
    Overview of Iterative Linear System Solver Packages Victor Eijkhout July, 1998 Abstract Description and comparison of several packages for the iterative solu- tion of linear systems of equations. 1 1 Intro duction There are several freely available packages for the iterative solution of linear systems of equations, typically derived from partial di erential equation prob- lems. In this rep ort I will give a brief description of a numberofpackages, and giveaninventory of their features and de ning characteristics. The most imp ortant features of the packages are which iterative metho ds and preconditioners supply; the most relevant de ning characteristics are the interface they present to the user's data structures, and their implementation language. 2 2 Discussion Iterative metho ds are sub ject to several design decisions that a ect ease of use of the software and the resulting p erformance. In this section I will give a global discussion of the issues involved, and how certain p oints are addressed in the packages under review. 2.1 Preconditioners A go o d preconditioner is necessary for the convergence of iterative metho ds as the problem to b e solved b ecomes more dicult. Go o d preconditioners are hard to design, and this esp ecially holds true in the case of parallel pro cessing. Here is a short inventory of the various kinds of preconditioners found in the packages reviewed. 2.1.1 Ab out incomplete factorisation preconditioners Incomplete factorisations are among the most successful preconditioners devel- op ed for single-pro cessor computers. Unfortunately, since they are implicit in nature, they cannot immediately b e used on parallel architectures.
    [Show full text]
  • Self-Interlacing Polynomials Ii: Matrices with Self-Interlacing Spectrum
    SELF-INTERLACING POLYNOMIALS II: MATRICES WITH SELF-INTERLACING SPECTRUM MIKHAIL TYAGLOV Abstract. An n × n matrix is said to have a self-interlacing spectrum if its eigenvalues λk, k = 1; : : : ; n, are distributed as follows n−1 λ1 > −λ2 > λ3 > ··· > (−1) λn > 0: A method for constructing sign definite matrices with self-interlacing spectra from totally nonnegative ones is presented. We apply this method to bidiagonal and tridiagonal matrices. In particular, we generalize a result by O. Holtz on the spectrum of real symmetric anti-bidiagonal matrices with positive nonzero entries. 1. Introduction In [5] there were introduced the so-called self-interlacing polynomials. A polynomial p(z) is called self- interlacing if all its roots are real, semple and interlacing the roots of the polynomial p(−z). It is easy to see that if λk, k = 1; : : : ; n, are the roots of a self-interlacing polynomial, then the are distributed as follows n−1 (1.1) λ1 > −λ2 > λ3 > ··· > (−1) λn > 0; or n (1.2) − λ1 > λ2 > −λ3 > ··· > (−1) λn > 0: The polynomials whose roots are distributed as in (1.1) (resp. in (1.2)) are called self-interlacing of kind I (resp. of kind II). It is clear that a polynomial p(z) is self-interlacing of kind I if, and only if, the polynomial p(−z) is self-interlacing of kind II. Thus, it is enough to study self-interlacing of kind I, since all the results for self-interlacing of kind II will be obtained automatically. Definition 1.1. An n × n matrix is said to possess a self-interlacing spectrum if its eigenvalues λk, k = 1; : : : ; n, are real, simple, are distributed as in (1.1).
    [Show full text]
  • Extremely Accurate Solutions Using Block Decomposition and Extended Precision for Solving Very Ill-Conditioned Equations
    Extremely accurate solutions using block decomposition and extended precision for solving very ill-conditioned equations †Kansa, E.J.1, Skala V.2, and Holoborodko, P.3 1Convergent Solutions, Livermore, CA 94550 USA 2Computer Science & Engineering Dept., Faculty of Applied Sciences, University of West Bohemia, University 8, CZ 301 00 Plzen, Czech Republic 3Advanpix LLC, Maison Takashima Bldg. 2F, Daimachi 10-15-201, Yokohama, Japan 221-0834 †Corresponding author: [email protected] Abstract Many authors have complained about the ill-conditioning associated the numerical solution of partial differential equations (PDEs) and integral equations (IEs) using as the continuously differentiable Gaussian and multiquadric continuously differentiable (C ) radial basis functions (RBFs). Unlike finite elements, finite difference, or finite volume methods that lave compact local support that give rise to sparse equations, the C -RBFs with simple collocation methods give rise to full, asymmetric systems of equations. Since C RBFs have adjustable constent or variable shape parameters, the resulting systems of equations that are solve on single or double precision computers can suffer from “ill-conditioning”. Condition numbers can be either the absolute or relative condition number, but in the context of linear equations, the absolute condition number will be understood. Results will be presented that demonstrates the combination of Block Gaussian elimination, arbitrary arithmetic precision, and iterative refinement can give remarkably accurate numerical salutations to large Hilbert and van der Monde equation systems. 1. Introduction An accurate definition of the condition number, , of the matrix, A, is the ratio of the largest to smallest absolute value of the singular values, { i}, obtained from the singular value decomposition (SVD) method, see [1]: (A) = maxjjminjj (1) This definition of condition number will be used in this study.
    [Show full text]
  • Accurate Singular Values of Bidiagonal Matrices
    d d Accurate Singular Values of Bidiagonal Matrices (Appeared in the SIAM J. Sci. Stat. Comput., v. 11, n. 5, pp. 873-912, 1990) James Demmel W. Kahan Courant Institute Computer Science Division 251 Mercer Str. University of California New York, NY 10012 Berkeley, CA 94720 Abstract Computing the singular values of a bidiagonal matrix is the ®nal phase of the standard algo- rithm for the singular value decomposition of a general matrix. We present a new algorithm which computes all the singular values of a bidiagonal matrix to high relative accuracy indepen- dent of their magnitudes. In contrast, the standard algorithm for bidiagonal matrices may com- pute sm all singular values with no relative accuracy at all. Numerical experiments show that the new algorithm is comparable in speed to the standard algorithm, and frequently faster. Keywords: singular value decomposition, bidiagonal matrix, QR iteration AMS(MOS) subject classi®cations: 65F20, 65G05, 65F35 1. Introduction The standard algorithm for computing the singular value decomposition (SVD ) of a gen- eral real matrix A has two phases [7]: = T 1) Compute orthogonal matrices P 11and Q such that B PAQ 11is in bidiagonal form, i.e. has nonzero entries only on its diagonal and ®rst superdiagonal. Σ= T 2) Compute orthogonal matrices P 22and Q such that PBQ 22is diagonal and nonnega- σ Σ tive. The diagonal entries i of are the singular values of A. We will take them to be σ≥σ = sorted in decreasing order: ii+112. The columns of Q QQ are the right singular vec- = tors,andthecolumnsofP PP12are the left singular vectors.
    [Show full text]
  • New Fast and Accurate Jacobi Svd Algorithm: I
    NEW FAST AND ACCURATE JACOBI SVD ALGORITHM: I. ZLATKO DRMAC· ¤ AND KRESIMIR· VESELIC¶ y Abstract. This paper is the result of contrived e®orts to break the barrier between numerical accuracy and run time e±ciency in computing the fundamental decomposition of numerical linear algebra { the singular value decomposition (SVD) of a general dense matrix. It is an unfortunate fact that the numerically most accurate one{sided Jacobi SVD algorithm is several times slower than generally less accurate bidiagonalization based methods such as the QR or the divide and conquer algorithm. Despite its sound numerical qualities, the Jacobi SVD is not included in the state of the art matrix computation libraries and it is even considered obsolete by some leading researches. Our quest for a highly accurate and e±cient SVD algorithm has led us to a new, superior variant of the Jacobi algorithm. The new algorithm has inherited all good high accuracy properties, and it outperforms not only the best implementations of the one{sided Jacobi algorithm but also the QR algorithm. Moreover, it seems that the potential of the new approach is yet to be fully exploited. Key words. Jacobi method, singular value decomposition, eigenvalues AMS subject classi¯cations. 15A09, 15A12, 15A18, 15A23, 65F15, 65F22, 65F35 1. Introduction. In der Theorie der SÄacularstÄorungenund der kleinen Oscil- lationen wird man auf ein System lineÄarerGleichungen gefÄurt,in welchem die Co- e±cienten der verschiedenen Unbekanten in Bezug auf die Diagonale symmetrisch sind, die ganz constanten Glieder fehlen und zu allen in der Diagonale be¯ndlichen Coe±cienten noch dieselbe GrÄo¼e ¡x addirt ist.
    [Show full text]
  • A Fast Method for Computing the Inverse of Symmetric Block Arrowhead Matrices
    Appl. Math. Inf. Sci. 9, No. 2L, 319-324 (2015) 319 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.12785/amis/092L06 A Fast Method for Computing the Inverse of Symmetric Block Arrowhead Matrices Waldemar Hołubowski1, Dariusz Kurzyk1,∗ and Tomasz Trawi´nski2 1 Institute of Mathematics, Silesian University of Technology, Kaszubska 23, Gliwice 44–100, Poland 2 Mechatronics Division, Silesian University of Technology, Akademicka 10a, Gliwice 44–100, Poland Received: 6 Jul. 2014, Revised: 7 Oct. 2014, Accepted: 8 Oct. 2014 Published online: 1 Apr. 2015 Abstract: We propose an effective method to find the inverse of symmetric block arrowhead matrices which often appear in areas of applied science and engineering such as head-positioning systems of hard disk drives or kinematic chains of industrial robots. Block arrowhead matrices can be considered as generalisation of arrowhead matrices occurring in physical problems and engineering. The proposed method is based on LDLT decomposition and we show that the inversion of the large block arrowhead matrices can be more effective when one uses our method. Numerical results are presented in the examples. Keywords: matrix inversion, block arrowhead matrices, LDLT decomposition, mechatronic systems 1 Introduction thermal and many others. Considered subsystems are highly differentiated, hence formulation of uniform and simple mathematical model describing their static and A square matrix which has entries equal zero except for dynamic states becomes problematic. The process of its main diagonal, a one row and a column, is called the preparing a proper mathematical model is often based on arrowhead matrix. Wide area of applications causes that the formulation of the equations associated with this type of matrices is popular subject of research related Lagrangian formalism [9], which is a convenient way to with mathematics, physics or engineering, such as describe the equations of mechanical, electromechanical computing spectral decomposition [1], solving inverse and other components.
    [Show full text]