Investigating the Disturbance of the Pugnacious Nudibranch Phidiana Hiltoni

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Disturbance of the Pugnacious Nudibranch Phidiana Hiltoni PUSHING BOUNDARIES: INVESTIGATING THE DISTURBANCE OF THE PUGNACIOUS NUDIBRANCH PHIDIANA HILTONI A Thesis submitted to the faculty of San Francisco State University In partial fulfillment of the requirements for the Degree Master of Science In Marine Science by Emily Elizaoeth Otstott San Francisco, California August 2019 Copyright by Emily Elizabeth Otstott 2019 CERTIFICATION OF APPROVAL I certify that I have read Pushing Boundaries: Investigating the Disturbance of the Pugnacious Nudibranch Phidiana hiltoni by Emily Elizabeth Otstott, and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirement for the degree Master of Science in Biology: Marine Biology at San Francisco State University. Terrence Gosliner, PhD Research Professor, San Francisco State University Angel Valdes, PhD Professor, California State Polytechnic University, Pomona Katharyn Boyer, PhD Professor, San Francisco State University Pushing boundaries: Investigating the disturbance of the pugnacious nudibranch Phidiana hiltoni Emily Elizabeth Otstott San Francisco, California 2019 Warming ocean conditions sparked the poleward range expansion of the pugnacious nudibranch Phidiana hiltoni, whose arrival to northern California in 1992 coincided with significant declines of resident nudibranchs. The nudibranch assemblage of Duxbury Reef was monitored to assess current impacts of P. hiltoni. The density of P. hiltoni at Duxbury Reef has increased by three-fourths since 2010, now reaching over 18 ind. hr' 1 observer'1. The pooled density of nudibranchs impacted by P. hiltoni at Duxbury Reef (11 individuals h r 1 observer'1) has increased by 40% since 2008-2010 but still falls short of its density before P. hiltoni. Since first being disturbed by P. hiltoni in 1992, the nudibranch assemblage of Duxbury Reef is in recovery. Other aspects of this disturbance are discussed, such as prey overlap and interactions with specific resident nudibranchs. I certify that the Abstract is a correct representation of the content of this thesis. OJXjXq 'V - 12/20/2019 Chair, Thesis Committee Date ACKNOWLEDGEMENTS I would like to thank the Gosliner Lab for helping me develop my project and for supporting my tide pool efforts. I am indebted to my committee members, each of whom offered valuable ideas and steered me on my path. The Steinhart Aquarium at the California Academy of Sciences graciously made space and time to help me perform feeding trials. Others helped with this project in various ways and I would like them to know my appreciation: Joren Nisiewicz, Jeff Goddard, and Eric Sanford. TABLE OF CONTENTS List of Table................................................................................................................................. vii List of Figures.............................................................................................................................viii List of Appendices........................................................................................................................ix Introduction..................................................................................................................................... 1 Background........................................................................................................................ 1 The Problem.......................................................................................................................2 Project Goals......................................................................................................................3 Methods........................................................................................................................................... 5 Timed Counts.....................................................................................................................5 Feeding Overlap................................................................................................................ 8 Feeding Trials—Testing Hermissenda spp. against P. hiltoni.................................. 9 Results..............................................................................................................................................9 Timed Counts...................................................................................................................11 Feeding Overlap.............................................................................................................. 15 Feeding Trials—Testing Hermissenda spp. against P. hiltoni.................................16 Discussion..................................................................................................................................... 16 Reference......................................................................................................................................27 Appendices....................................................................................................................................34 LIST OF TABLES Table Page 1. Nudibranch species density at Duxbury Reef throughout time..........................10 2. Proportion of nudibranch species that tended to increase or decrease in density at Duxbury Reef from 2008-10 to 2018-19................................................................13 3. Reactions of P. hiltoni to each of the Hermissenda spp. present at Duxbury Reef............................................................................................................................16 vii LIST OF FIGURES Figures Page 1. Phidiana hiltoni with Northern California nudibranchs and prey...................... 3 2. Study sites of reefs in Northern California............................................................5 3. Nudibranch densities at Duxbury Reef................................................................. 11 4. Population growth of P. hiltoni, exhibiting exponential growth......................... 11 5. Number of individuals and species found at Duxbury Reef............................... 12 6 . Regressions of the annual densities of P. hiltoni on Hermissenda spp., F. trilineata, D. amyra, and A. abronia...........................................................................................12 7. Regression of the pooled density of impacted species against the density of P. hiltoni from 2007-19. 2007-11, and 2018-19.........................................................13 8 . Comparison of methods.............................................................................................15 9. Hydroid species and the nudibranchs that eat them at Duxbury Reef...............15 10. Observations of P. hiltoni from online sources reveal range shifts with phases of ENSO............................................................................................................................ 32 LIST OF APPENDICES Appendix Page 1. Range Shift with Phases of ENSO............................................................................. 32 ix 1 Introduction The natural flux of Earth’s climate is being exacerbated by human activities, resulting in modification of the geographic ranges of species 1_4. Climate change is primarily expressed as environmental warming, which is pushing the ranges of species poleward 3,5,6. While even slight changes in temperature can greatly impact species composition and abundance 7, the California coastal ecosystem has been enduring temperature anomalies up to 6 °C 6’8,9. These marine heat waves are becoming more frequent and intense, with species responses matching this intensity 10,1 Since wind and ocean currents distribute heat over the globe, altering the amount of heat in places will impact the patterns of currents. Sea surface temperature in the North Pacific positively correlates with the Pacific decadal oscillation (PDO), which alters the positions of atmospheric circulations and cloud cover 4’5,12. Increased ocean temperatures are also associated with the El Nino Southern Oscillation, which reverses the flow of the California Current from southward and offshore to northward and onshore 4. These modifications directly affect the geographic ranges of marine species, particularly those with planktonic larvae. Nudibranchs, or sea slugs, have planktonic larvae whose recruitment is affected by climatic phases that alter larval advection 4_6>13. For example, upwelling relaxation events, such as during El Nino, allow high densities of larvae to potentially be delivered to shore as surface flow reverses 4’5,14. During positive or warm phases of El Nino and the PDO, the abundances of “warm water” species increase and the geographic ranges of some species shift poleward 4’5,15. With warm PDO phases increasing the flow of coastal waters northward and El Nino causing the California Current to flow northward and onshore, the overlap of these events would greatly promote northward dispersal of nudibranch larvae 4,5. Such an overlap did occur a few years ago. with a warm PDO phase occurring during the 2014-16 El Nino, resulting in the largest marine heat wave ever recorded 16. Aside from producing a destructive warm-water “blob” off the coast of 2 California that extended 300 m deep, this heat wave resulted in the poleward movement of at least 26 nudibranch species, 11 of which dispersed to new northernmost sites 6,1?. Since these are cycles, the population would likely move back south as the warming period ends; however, with the additional rising temperatures of long-term climate
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Australian Nudibranch News
    nudibranchNEWS 2:5 Feature Creature Editors Notes... ? Discodoris. sp (green) The Australasian part of the newsletters title has been dropped. With so much international input the old name was becoming limiting and confusing. Some small layout changes have also been made. As fig.1 always, our comments would be appreciated. Richard Willan and Julie Marshalls eagerly awaited new book, Nudibranchs of Heron Island,The Great Barrier Reef has been released. A review will appear in an upcoming issue. The book contains 280 pages with 35 colour plates (8 images to a plate). 262 species are covered in detail. Price is reportedly $60US. What is in a name? On page 19 of this issue is an article on Phidiana (or is it Caloria) indica. This is one of the many cases where differing views prevail. The name Phidiana has been used in the article as it is the most current name published, Rudman, 1999 fig.1. The colour is inaccurate in (The Sea Slug Forum). It is noted that reference is made to the this image. There is so much red. Fig. Australian Museums site by current researchers. That protocol is 2 is more accurate. continued here. An undescribed species first Neil Miller of Diveoz Web Services and I have merged our sighted (by myself) at Catherine Hill sites to offer a fast, clean and hopefully more user friendly resource. Bay, south of Newcastle, NSW, Australia The nudibranch site is now at http://www. diveoz.com.au. Links and again at Port Stephens, NSW. from the old pages will redirect visitors to the new site to avoid any Maximum length appears to be 50 inconvenience.
    [Show full text]
  • New Records of Two Dendronotid Nudibranchs from Korea
    Anim. Syst. Evol. Divers. Vol. 36, No. 4: 416-419, October 2020 https://doi.org/10.5635/ASED.2020.36.4.042 Short communication New Records of Two Dendronotid Nudibranchs from Korea Jongrak Lee1, Hyun Jong Kil2, Sa Heung Kim1,* 1Institute of the Sea Life Diversity (IN THE SEA), Seogwipo 63573, Korea 2National Institute of Biological Resources, Incheon 22689, Korea ABSTRACT Two cold water species of dendronotid nudibranchs are described for the first time in Korea: Dendronotus frondosus (Ascanius, 1774) and Dendronotus robilliardi Korshunova, Sanamyan, Zimina, Fletcher & Martynov, 2016. Dendronotus frondosus is characterized by the color pattern of deep dark-brown with white specks and mottles on the dorsum. Dendronotus robilliardi is distinguished by the body of translucent white with milky stripes and orange- brown markings in papillae, and D. robilliardi from Korean water is commonly examined with white dots on the anterior dorsum. Images of external morphology and brief re-descriptions of two species were provided. Further, we confirmed the opinion of Korshunova et al. that the KoreanD. albus image by Koh would be D. robilliardi. Keywords: ‌Nudibranchia, Dendronotidae, taxonomy, Dendronotus frondosus, Dendronotus robilliardi, Korea INTRODUCTION tographs were taken underwater and in an acrylic tray using a TG-5 camera (Olympus, Tokyo, Japan) equipped with a ring The family Dendronotidae Allman, 1845 is characterized by light. Samples were frozen in dry ice and then fixed in 10% the presence of an elongated body with numerous branching neutral-buffered formalin (Sigma, St. Louis, MO, USA) or appendages on the dorsal sides and a diverse color pattern. 95% ethanol (Samchun, Seoul, Korea).
    [Show full text]
  • A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
    RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae.
    [Show full text]
  • Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
    Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims.
    [Show full text]
  • Possible Anti-Predation Properties of the Egg Masses of the Marine Gastropods Dialula Sandiegensis, Doris Montereyensis and Haminoea Virescens (Mollusca, Gastropoda)
    Possible anti-predation properties of the egg masses of the marine gastropods Dialula sandiegensis, Doris montereyensis and Haminoea virescens (Mollusca, Gastropoda) E. Sally Chang1,2 Friday Harbor Laboratories Marine Invertebrate Zoology Summer Term 2014 1Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250 2University of Kansas, Department of Ecology and Evolutionary Biology, Lawrence, KS 66044 Contact information: E. Sally Chang Dept. of Ecology and Evolutionary Biology University of Kansas 1200 Sunnyside Avenue Lawrence, KS 66044 [email protected] Keywords: gastropods, nudibranchs, Cephalaspidea, predation, toxins, feedimg, crustaceans Chang 1 Abstract Many marine mollucs deposit their eggs on the substrate encapsulated in distinctive masses, thereby leaving the egg case and embryos vulnerable to possible predators and pathogens. Although it is apparent that many marine gastropods possess chemical anti-predation mechanisms as an adult, it is not known from many species whether or not these compounds are widespread in the egg masses. This study aims to expand our knowledge of egg mass predation examining the feeding behavior of three species of crab when offered egg mass material from three gastropods local to the San Juan Islands. The study includes the dorid nudibranchs Diaulula sandiegensis and Doris montereyensis and the cephalospidean Haminoea virescens. The results illustrate a clear rejection of the egg masses by all three of the crab species tested, suggesting anti- predation mechanisms in the egg masses for all three species of gastropod. Introduction Eggs that are laid and then left by the parents are vulnerable to a variety of environmental stressors, both biotic and abiotic. A common, possibly protective strategy among marine invertebrates is to lay encapsulated aggregations of embryos in jelly masses (Pechenik 1978), where embryos live for all or part of their development.
    [Show full text]
  • Portadas 24 (1)
    © Sociedad Española de Malacología Iberus , 24 (1): 5-12, 2006 Geitodoris pusae (Marcus, 1955) y Geitodoris bacalladoi Ortea, 1990, dos especies de Doridoidea (Mollusca: Nudibranchia) nuevas para el Mar Mediterráneo Geitodoris pusae (Marcus, 1955) and Geitodoris bacalladoi Ortea, 1990, two doridoidean species (Mollusca: Nudibranchia) new to the Mediterranean Sea Luis SÁNCHEZ TOCINO* , Amelia OCAÑA* y Juan Lucas CERVERA** Recibido el 9-III-2005. Aceptado el 20-X-2005 RESUMEN Se citan por primera vez en el Mediterráneo las especies Geitodoris pusae (Marcus, 1955) y Geitodoris bacalladoi Ortea, 1990 y se aportan nuevos datos sobre su anato - mía, comparándola con la de ejemplares recolectados en otras áreas geográficas. ABSTRACT Geitodoris pusae (Marcus, 1955) and Geitodoris bacalladoi Ortea, 1990 are recorded from the Mediterranean Sea for the first time. New anatomical data from these species are reported and compared with those from specimens from other geographical areas. PALABRAS CLAVE : Opisthobranchia, Nudibranchia, Geitodoris , Mediterráneo. KEY WORDS: Opisthobranchia, Nudibranchia, Geitodoris , Mediterranean. INTRODUCCIÓN El género Geitodoris Bergh, 1891 se costa atlántica francesa hasta Arcachon encuentra representado en el Medite - (BOUCHET Y TARDY , 1976 como Discodo - rráneo por cuatro especies válidas. Tres ris ), el Sur de la Península Ibérica ( CER - de ellas: Geitodoris joubini VERA , G ARCÍA Y GARCÍA , 1985) y Cana - (Vayssière, 1919 ), Geitodoris portmanni rias ( ORTEA , 1990). En el Mediterráneo (Schmekel, 1972) y Geitodoris bonosi Or - hay citas de Geitodoris planata en el Sur tea y Ballesteros, 1981 fueron descritas de la Península Ibérica ( SÁNCHEZ -T O- en el Mediterráneo y una cuarta, Geito - CINO , O CAÑA Y GARCÍA , 2000) y en las doris planata (Alder y Hancock, 1846), lo costa francesa ( PRUVOT -F OL , 1954), si fue en aguas escocesas.
    [Show full text]
  • Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska
    Metagenetic Analysis of 2017 Plankton Samples from Prince William Sound, Alaska. Report to Prince William Sound Regional Citizens’ Advisory Council (PWSRCAC) From Molecular Ecology Laboratory Moss Landing Marine Laboratory Dr. Jonathan Geller Melinda Wheelock Martin Guo Any opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. December 1, 2018 Revised August 15, 2019 Abstract This report describes the methods and findings of the metagenetic analysis of plankton samples from the waters of Prince William Sound (PWS), Alaska. The study was done to identify zooplankton, in particular the larvae of invasive benthic species. Plankton samples, collected by the Prince William Sound Science Center (PWSSC), were analyzed by the Molecular Ecology Laboratory at the Moss Landing Marine Laboratories. The samples were taken from five stations in May of 2017 in Port Valdez and elsewhere in PWS. DNA was extracted from bulk plankton and a portion of the mitochondrial Cytochrome c oxidase subunit 1 gene, the most commonly used DNA barcode for animals, was amplified by polymerase chain reaction (PCR). Products of PCR were sequenced using Illumina reagents and MiSeq instrument. 211 operational taxonomic units (an approximation of biological species) were found and 52 were identified to species. Most species were crustaceans and molluscs, and none were non-native. We also compared PWSRCAC samples taken in 2016 to the current set of samples. Fewer species were identified in 2017 than in 2016, but sampling methods varied across years. Standardization of methods and a longer time series are necessary to investigate temporal trends. Page 1 of 17 952.431.190815.MLMetagenetic Introduction Monitoring marine habitat for species of concern, including invasive species, can be costly and time-consuming, which limits the information available to resource managers, scientists, and the public.
    [Show full text]
  • A Blind Abyssal Corambidae (Mollusca, Nudibranchia) from the Norwegian Sea, with a Reevaluation of the Systematics of the Family
    A BLIND ABYSSAL CORAMBIDAE (MOLLUSCA, NUDIBRANCHIA) FROM THE NORWEGIAN SEA, WITH A REEVALUATION OF THE SYSTEMATICS OF THE FAMILY ÁNGEL VALDÉS & PHILIPPE BOUCHET VALDÉS, ÁNGEL & PHILIPPE BOUCHET 1998 03 13. A blind abyssal Corambidae (Mollusca, Nudibranchia) SARSIA from the Norwegian Sea, with a reevaluation of the systematics of the family. – Sarsia 83:15-20. Bergen. ISSN 0036-4827. Echinocorambe brattegardi gen. et sp. nov. is described based on five eyeless specimens collected between 2538 and 3016 m depth in the Norwegian Sea. This new monotypic genus differs from other confamilial taxa in having the dorsum covered with long papillae and a radula formula n.3.1.3.n. The posterior notch in the notum and gill morphology, which have traditionally been used as generic characters in the family Corambidae, are considered to have little or no taxonomical value above species level. Instead of the currently described 11 nominal genera, we recognize as valid only Corambe and Loy, to which is now added Echinocorambe. Loy differs from Corambe in the asym- metrical lobes of the posterior notal notch and the presence of spicules in the notum. All other nominal genera are objective or subjective synonyms of these two. Ángel Valdés, Departamento de Biología de Organismos y Sistemas, Laboratorio de Zoología, Universidad de Oviedo, E-33071 Oviedo, Spain (E-mail: [email protected]). – Philippe Bouchet, Muséum National d’Histoire Naturelle, Laboratoire de Biologie des Invertébrés Marins et Malacologie, 55 Rue de Buffon, F-75005 Paris, France. KEYWORDS: Mollusca; Nudibranchia; Corambidae; new genus and new species; abyssal waters; Norwegian Sea. cal with transverse lamellae.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Phidiana Lynceus Berghia Coerulescens Doto Koenneckeri
    Cuthona abronia Cuthona divae Austraeolis stearnsi Flabellina exoptata Flabellina fusca Calma glaucoides Hermosita hakunamatata Learchis poica Anteaeolidiella oliviae Aeolidiopsis ransoni Phidiana militaris Baeolidia moebii Facelina annulicornis Protaeolidiella juliae Moridilla brockii Noumeaella isa Cerberilla sp. 3 Cerberilla bernadettae Aeolidia sp. A Aeolidia sp. B Baeolidia sp. A Baeolidia sp. B Cerberilla sp. A Cerberilla sp. B Cerberilla sp. C Facelina sp. C Noumeaella sp. A Noumeaella sp. B Facelina sp. A Marionia blainvillea Aeolidia papillosa Hermissenda crassicornis Flabellina babai Dirona albolineata Doto sp. 15 Marionia sp. 10 Marionia sp. 5 Tritonia sp. 4 Lomanotus sp. E Piseinotecus sp. Dendronotus regius Favorinus elenalexiarum Janolus mirabilis Marionia levis Phyllodesmium horridum Tritonia pickensi Babakina indopacifica Marionia sp. B Godiva banyulensis Caloria elegans Favorinus brachialis Flabellina baetica 1 Facelinidae sp. A Godiva quadricolor 0.99 Limenandra fusiformis Limenandra sp. C 0.71 Limenandra sp. B 0.91 Limenandra sp. A Baeolidia nodosa 0.99 Crosslandia daedali Scyllaea pelagica Notobryon panamica Notobryon thompsoni 0.98 Notobryon sp. B Notobryon sp. C Notobryon sp. D Notobryon wardi 0.97 Tritonia sp. 3 Marionia arborescens 0.96 Hancockia cf. uncinata Hancockia californica 0.94 Spurilla chromosoma Pteraeolidia ianthina 0.92 Noumeaella sp. 3 Noumeaella rehderi 0.92 Nanuca sebastiani 0.97 Dondice occidentalis Dondice parguerensis 0.92 Pruvotfolia longicirrha Pruvotfolia pselliotes 0.88 Marionia sp. 14 Tritonia sp. G 0.87 Bonisa nakaza 0.87 Janolus sp. 2 0.82 Janolus sp. 1 Janolus sp. 7 Armina sp. 3 0.83 Armina neapolitana 0.58 Armina sp. 9 0.78 Dermatobranchus sp. 16 0.52 Dermatobranchus sp. 21 0.86 Dermatobranchus sp.
    [Show full text]
  • The Role of Body Size in Complex Food Webs: a Cold Case
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances in Ecological Research, Vol. 45 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Ute Jacob, Aaron Thierry, Ulrich Brose, Wolf E. Arntz, Sofia Berg, Thomas Brey, Ingo Fetzer, Tomas Jonsson, Katja Mintenbeck, Christian Möllmann, Owen Petchey, Jens O. Riede and Jennifer A. Dunne, The Role of Body Size in Complex Food Webs: A Cold Case. In Andrea Belgrano and Julia Reiss, editors: Advances in Ecological Research, Vol. 45, Amsterdam, The Netherlands, 2011, pp. 181-223. ISBN: 978-0-12-386475-8 © Copyright 2011 Elsevier Ltd. Academic press. Author's personal copy The Role of Body Size in Complex Food Webs: A Cold Case UTE JACOB,1,* AARON THIERRY,2,3 ULRICH BROSE,4 WOLF E. ARNTZ,5 SOFIA BERG,6 THOMAS BREY,5 INGO FETZER,7 TOMAS JONSSON,6 KATJA MINTENBECK,5 CHRISTIAN MO¨ LLMANN,1 OWEN L.
    [Show full text]