Introduction to Binary Logistic Regression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												![Arxiv:1910.08883V3 [Stat.ML] 2 Apr 2021 in Real Data [8,9]](https://docslib.b-cdn.net/cover/3763/arxiv-1910-08883v3-stat-ml-2-apr-2021-in-real-data-8-9-13763.webp)  Arxiv:1910.08883V3 [Stat.ML] 2 Apr 2021 in Real Data [8,9]Nonpar MANOVA via Independence Testing Sambit Panda1;2, Cencheng Shen3, Ronan Perry1, Jelle Zorn4, Antoine Lutz4, Carey E. Priebe5 and Joshua T. Vogelstein1;2;6∗ Abstract. The k-sample testing problem tests whether or not k groups of data points are sampled from the same distri- bution. Multivariate analysis of variance (Manova) is currently the gold standard for k-sample testing but makes strong, often inappropriate, parametric assumptions. Moreover, independence testing and k-sample testing are tightly related, and there are many nonparametric multivariate independence tests with strong theoretical and em- pirical properties, including distance correlation (Dcorr) and Hilbert-Schmidt-Independence-Criterion (Hsic). We prove that universally consistent independence tests achieve universally consistent k-sample testing, and that k- sample statistics like Energy and Maximum Mean Discrepancy (MMD) are exactly equivalent to Dcorr. Empirically evaluating these tests for k-sample-scenarios demonstrates that these nonparametric independence tests typically outperform Manova, even for Gaussian distributed settings. Finally, we extend these non-parametric k-sample- testing procedures to perform multiway and multilevel tests. Thus, we illustrate the existence of many theoretically motivated and empirically performant k-sample-tests. A Python package with all independence and k-sample tests called hyppo is available from https://hyppo.neurodata.io/. 1 Introduction A fundamental problem in statistics is the k-sample testing problem. Consider the p p two-sample problem: we obtain two datasets ui 2 R for i = 1; : : : ; n and vj 2 R for j = 1; : : : ; m. Assume each ui is sampled independently and identically (i.i.d.) from FU and that each vj is sampled i.i.d.
- 
												  Learn About ANCOVA in SPSS with Data from the Eurobarometer (63.1, Jan–Feb 2005)Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) © 2015 SAGE Publications, Ltd. All Rights Reserved. This PDF has been generated from SAGE Research Methods Datasets. SAGE SAGE Research Methods Datasets Part 2015 SAGE Publications, Ltd. All Rights Reserved. 1 Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) Student Guide Introduction This dataset example introduces ANCOVA (Analysis of Covariance). This method allows researchers to compare the means of a single variable for more than two subsets of the data to evaluate whether the means for each subset are statistically significantly different from each other or not, while adjusting for one or more covariates. This technique builds on one-way ANOVA but allows the researcher to make statistical adjustments using additional covariates in order to obtain more efficient and/or unbiased estimates of groups’ differences. This example describes ANCOVA, discusses the assumptions underlying it, and shows how to compute and interpret it. We illustrate this using a subset of data from the 2005 Eurobarometer: Europeans, Science and Technology (EB63.1). Specifically, we test whether attitudes to science and faith are different in different countries, after adjusting for differing levels of scientific knowledge between these countries. This is useful if we want to understand the extent of persistent differences in attitudes to science across countries, regardless of differing levels of information available to citizens. This page provides links to this sample dataset and a guide to producing an ANCOVA using statistical software. What Is ANCOVA? ANCOVA is a method for testing whether or not the means of a given variable are Page 2 of 14 Learn About ANCOVA in SPSS With Data From the Eurobarometer (63.1, Jan–Feb 2005) SAGE SAGE Research Methods Datasets Part 2015 SAGE Publications, Ltd.
- 
												  On the Meaning and Use of KurtosisPsychological Methods Copyright 1997 by the American Psychological Association, Inc. 1997, Vol. 2, No. 3,292-307 1082-989X/97/$3.00 On the Meaning and Use of Kurtosis Lawrence T. DeCarlo Fordham University For symmetric unimodal distributions, positive kurtosis indicates heavy tails and peakedness relative to the normal distribution, whereas negative kurtosis indicates light tails and flatness. Many textbooks, however, describe or illustrate kurtosis incompletely or incorrectly. In this article, kurtosis is illustrated with well-known distributions, and aspects of its interpretation and misinterpretation are discussed. The role of kurtosis in testing univariate and multivariate normality; as a measure of departures from normality; in issues of robustness, outliers, and bimodality; in generalized tests and estimators, as well as limitations of and alternatives to the kurtosis measure [32, are discussed. It is typically noted in introductory statistics standard deviation. The normal distribution has a kur- courses that distributions can be characterized in tosis of 3, and 132 - 3 is often used so that the refer- terms of central tendency, variability, and shape. With ence normal distribution has a kurtosis of zero (132 - respect to shape, virtually every textbook defines and 3 is sometimes denoted as Y2)- A sample counterpart illustrates skewness. On the other hand, another as- to 132 can be obtained by replacing the population pect of shape, which is kurtosis, is either not discussed moments with the sample moments, which gives or, worse yet, is often described or illustrated incor- rectly. Kurtosis is also frequently not reported in re- ~(X i -- S)4/n search articles, in spite of the fact that virtually every b2 (•(X i - ~')2/n)2' statistical package provides a measure of kurtosis.
- 
												  Univariate and Multivariate Skewness and Kurtosis 1Running head: UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 1 Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation Meghan K. Cain, Zhiyong Zhang, and Ke-Hai Yuan University of Notre Dame Author Note This research is supported by a grant from the U.S. Department of Education (R305D140037). However, the contents of the paper do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Correspondence concerning this article can be addressed to Meghan Cain ([email protected]), Ke-Hai Yuan ([email protected]), or Zhiyong Zhang ([email protected]), Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556. UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 2 Abstract Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74% of univariate distributions and 68% multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances.
- 
												  Multivariate Chemometrics As a Strategy to Predict the Allergenic Nature of Food ProteinsS S symmetry Article Multivariate Chemometrics as a Strategy to Predict the Allergenic Nature of Food Proteins Miroslava Nedyalkova 1 and Vasil Simeonov 2,* 1 Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; [email protected]fia.bg 2 Department of Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria * Correspondence: [email protected]fia.bg Received: 3 September 2020; Accepted: 21 September 2020; Published: 29 September 2020 Abstract: The purpose of the present study is to develop a simple method for the classification of food proteins with respect to their allerginicity. The methods applied to solve the problem are well-known multivariate statistical approaches (hierarchical and non-hierarchical cluster analysis, two-way clustering, principal components and factor analysis) being a substantial part of modern exploratory data analysis (chemometrics). The methods were applied to a data set consisting of 18 food proteins (allergenic and non-allergenic). The results obtained convincingly showed that a successful separation of the two types of food proteins could be easily achieved with the selection of simple and accessible physicochemical and structural descriptors. The results from the present study could be of significant importance for distinguishing allergenic from non-allergenic food proteins without engaging complicated software methods and resources. The present study corresponds entirely to the concept of the journal and of the Special issue for searching of advanced chemometric strategies in solving structural problems of biomolecules. Keywords: food proteins; allergenicity; multivariate statistics; structural and physicochemical descriptors; classification 1.
- 
												  In the Term Multivariate Analysis Has Been Defined Variously by Different Authors and Has No Single DefinitionNewsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2021 1 Multivariate Analyses The term "multivariate" in the term multivariate analysis has been defined variously by different authors and has no single definition. Most statistics books on multivariate statistics define multivariate statistics as tests that involve multiple dependent (or response) variables together (Pituch & Stevens, 2105; Tabachnick & Fidell, 2013; Tatsuoka, 1988). But common usage by some researchers and authors also include analysis with multiple independent variables, such as multiple regression, in their definition of multivariate statistics (e.g., Huberty, 1994). Some analyses, such as principal components analysis or canonical correlation, really have no independent or dependent variable as such, but could be conceived of as analyses of multiple responses. A more strict statistical definition would define multivariate analysis in terms of two or more random variables and their multivariate distributions (e.g., Timm, 2002), in which joint distributions must be considered to understand the statistical tests. I suspect the statistical definition is what underlies the selection of analyses that are included in most multivariate statistics books. Multivariate statistics texts nearly always focus on continuous dependent variables, but continuous variables would not be required to consider an analysis multivariate. Huberty (1994) describes the goals of multivariate statistical tests as including prediction (of continuous outcomes or
- 
												  Statistical Analysis in JASPCopyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. ..........................................................................
- 
												  Supporting Information Supporting Information Corrected September 30, 2013 Fredrickson Et AlSupporting Information Supporting Information Corrected September 30, 2013 Fredrickson et al. 10.1073/pnas.1305419110 SI Methods Analysis of Differential Gene Expression. Quantile-normalized gene Participants and Study Procedure. A total of 84 healthy adults were expression values derived from Illumina GenomeStudio software recruited from the Durham and Orange County regions of North were transformed to log2 for general linear model analyses to Carolina by community-posted flyers and e-mail advertisements produce a point estimate of the magnitude of association be- followed by telephone screening to assess eligibility criteria, in- tween each of the 34,592 assayed gene transcripts and (contin- cluding age 35 to 64 y, written and spoken English, and absence of uous z-score) measures of hedonic and eudaimonic well-being chronic illness or disability. Following written informed consent, (each adjusted for the other) after control for potential con- participants completed online assessments of hedonic and eudai- founders known to affect PBMC gene expression profiles (i.e., monic well-being [short flourishing scale, e.g., in the past week, how age, sex, race/ethnicity, BMI, alcohol consumption, smoking, often did you feel... happy? (hedonic), satisfied? (hedonic), that minor illness symptoms, and leukocyte subset distributions). Sex, your life has a sense of direction or meaning to it? (eudaimonic), race/ethnicity (white vs. nonwhite), alcohol consumption, and that you have experiences that challenge you to grow and become smoking were represented
- 
												  Nonparametric Multivariate Kurtosis and Tailweight MeasuresNonparametric Multivariate Kurtosis and Tailweight Measures Jin Wang1 Northern Arizona University and Robert Serfling2 University of Texas at Dallas November 2004 – final preprint version, to appear in Journal of Nonparametric Statistics, 2005 1Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona 86011-5717, USA. Email: [email protected]. 2Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75083- 0688, USA. Email: [email protected]. Website: www.utdallas.edu/∼serfling. Support by NSF Grant DMS-0103698 is gratefully acknowledged. Abstract For nonparametric exploration or description of a distribution, the treatment of location, spread, symmetry and skewness is followed by characterization of kurtosis. Classical moment- based kurtosis measures the dispersion of a distribution about its “shoulders”. Here we con- sider quantile-based kurtosis measures. These are robust, are defined more widely, and dis- criminate better among shapes. A univariate quantile-based kurtosis measure of Groeneveld and Meeden (1984) is extended to the multivariate case by representing it as a transform of a dispersion functional. A family of such kurtosis measures defined for a given distribution and taken together comprises a real-valued “kurtosis functional”, which has intuitive appeal as a convenient two-dimensional curve for description of the kurtosis of the distribution. Several multivariate distributions in any dimension may thus be compared with respect to their kurtosis in a single two-dimensional plot. Important properties of the new multivariate kurtosis measures are established. For example, for elliptically symmetric distributions, this measure determines the distribution within affine equivalence. Related tailweight measures, influence curves, and asymptotic behavior of sample versions are also discussed.
- 
												  Type I and Type III Sums of Squares Supplement to Section 8.3Type I and Type III Sums of Squares Supplement to Section 8.3 Brian Habing – University of South Carolina Last Updated: February 4, 2003 PROC REG, PROC GLM, and PROC INSIGHT all calculate three types of F tests: • The omnibus test: The omnibus test is the test that is found in the ANOVA table. Its F statistic is found by dividing the Sum of Squares for the Model (the SSR in the case of regression) by the SSE. It is called the Test for the Model by the text and is discussed on pages 355-356. • The Type III Tests: The Type III tests are the ones that the text calls the Tests for Individual Coefficients and describes on page 357. The p-values and F statistics for these tests are found in the box labeled Type III Sum of Squares on the output. • The Type I Tests: The Type I tests are also called the Sequential Tests. They are discussed briefly on page 372-374. The following code uses PROC GLM to analyze the data in Table 8.2 (pg. 346-347) and to produce the output discussed on pages 353-358. Notice that even though there are 59 observations in the data set, seven of them have missing values so there are only 52 observations used for the multiple regression. DATA fw08x02; INPUT Obs age bed bath size lot price; CARDS; 1 21 3 3.0 0.951 64.904 30.000 2 21 3 2.0 1.036 217.800 39.900 3 7 1 1.0 0.676 54.450 46.500 <snip rest of data as found on the book’s companion web-site> 58 1 3 2.0 2.510 .
- 
												  BASIC MULTIVARIATE THEMES and METHODS Lisa L. Harlow University of Rhode Island, United States [email protected] Much of Science IICOTS-7, 2006: Harlow (Refereed) BASIC MULTIVARIATE THEMES AND METHODS Lisa L. Harlow University of Rhode Island, United States [email protected] Much of science is concerned with finding latent order in a seemingly complex array of variables. Multivariate methods help uncover this order, revealing a meaningful pattern of relationships. To help illuminate several multivariate methods, a number of questions and themes are presented, asking: How is it similar to other methods? When to use? How much multiplicity is encompassed? What is the model? How are variance, covariance, ratios and linear combinations involved? How to assess at a macro- and micro-level? and How to consider an application? Multivariate methods are described as an extension of univariate methods. Three basic models are presented: Correlational (e.g., canonical correlation, factor analysis, structural equation modeling), Prediction (e.g., multiple regression, discriminant function analysis, logistic regression), and Group Difference (e.g., ANCOVA, MANOVA, with brief applications. INTRODUCTION Multivariate statistics is a useful set of methods for analyzing a large amount of information in an integrated framework, focusing on the simplicity (e.g., Simon, 1969) and latent order (Wheatley, 1994) in a seemingly complex array of variables. Benefits to using multivariate statistics include: Expanding your sense of knowing, allowing rich and realistic research designs, and having flexibility built on similar univariate methods. Several potential drawbacks include: needing large samples, a belief that multivariate methods are challenging to learn, and results that may seem more complex to interpret than those from univariate methods. Given these considerations, students may initially view the various multivariate methods (e.g., multiple regression, multivariate analysis of variance) as a set of complex and very different procedures.
- 
												  Multivariate Statistics Chapter 6: Cluster AnalysisMultivariate Statistics Chapter 6: Cluster Analysis Pedro Galeano Departamento de Estad´ıstica Universidad Carlos III de Madrid [email protected] Course 2017/2018 Master in Mathematical Engineering Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 6 Master in Mathematical Engineering 1 / 70 1 Introduction 2 The clustering problem 3 Hierarchical clustering 4 Partition clustering 5 Model-based clustering Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 6 Master in Mathematical Engineering 2 / 70 Introduction The purpose of cluster analysis is to group objects in a multivariate data set into different homogeneous groups. This is done by grouping individuals that are somehow similar according to some appropriate criterion. Once the clusters are obtained, it is generally useful to describe each group using some descriptive tools to create a better understanding of the differences that exists among the formulated groups. Cluster methods are also known as unsupervised classification methods. These are different than the supervised classification methods, or Classification Analysis, that will be presented in Chapter 7. Pedro Galeano (Course 2017/2018) Multivariate Statistics - Chapter 6 Master in Mathematical Engineering 3 / 70 Introduction Clustering techniques are applicable whenever a data set needs to be grouped into meaningful groups. In some situations we know that the data naturally fall into a certain number of groups, but usually the number of clusters is unknown. Some clustering methods requires the user to specify the number of clusters a priori. Thus, unless additional information exists about the number of clusters, it is reasonable to explore different values and looks at potential interpretation of the clustering results.