Recovery and Transmutation of Iodine-129 in an Accelerator-Driven Transmutation System

Total Page:16

File Type:pdf, Size:1020Kb

Recovery and Transmutation of Iodine-129 in an Accelerator-Driven Transmutation System WM’01 Conference, February 25-March 1, 2001, Tucson, AZ RECOVERY AND TRANSMUTATION OF IODINE-129 IN AN ACCELERATOR-DRIVEN TRANSMUTATION SYSTEM James C. Bresee U.S. Department of Energy James J. Laidler Argonne National Laboratory, Kimberly W. Thomas Los Alamos National Laboratory ABSTRACT Extensive repository system performance analyses have been carried out in the course of evaluating the feasibility of the proposed Yucca Mountain repository. These studies have shown that the primary contributors to public radiation dose as a consequence of release of radionuclides from the repository are isotopes of iodine, technetium and neptunium (129I, 99Tc, and 237Np). The United States Department of Energy is presently conducting a science-based R&D program, the Advanced Accelerator Applications Program, that addresses the technical issues associated with the transmutation of transuranic elements and long-lived fission products contained in the U.S. inventory of commercial Light Water Reactor (LWR) spent fuel. One of the main issues is the recovery and transmutation of iodine. The two fuels from which the iodine must be extracted are quite different, one (the LWR fuel) being an oxide fuel with zirconium alloy cladding, and the other most likely being a dispersion of metallic transuranics in a metallic zirconium matrix with stainless steel cladding. An aqueous solvent extraction process similar to the PUREX process will probably be used for LWR spent fuel processing, while a pyrochemical process seems to be most appropriate for the transmuter fuel. An overall system recovery target for iodine of 95% has been set as an initial goal of the program. Prior experience with iodine recovery in the PUREX process, both domestic and international, suggests that a satisfactory means can be developed for recovering the iodine contained in the LWR spent fuel. Iodine recovery in the less well-defined pyrochemical process for transmuter fuel appears to be feasible, but experimental verification and validation of the recovery steps is required. It is possible that the form of the recovered iodine from the two fuel types will be different, so it then remains to develop processes for incorporating the iodine in a standard target form, expected to be sodium iodide. Target design will also take into account means for accommodating the products of iodine and sodium transmutation. INTRODUCTION Transmutation by neutron irradiation has been studied for many years throughout the world and is currently under active investigation by the U.S. Department of Energy, within the Advanced Accelerator Applications (AAA) program of the Office of Nuclear WM’01 Conference, February 25-March 1, 2001, Tucson, AZ Energy, Science and Technology. The purpose of this paper is to describe the AAA transmutation work as applied to 129I. CURRENT U.S. HIGH-LEVEL NUCLEAR WASTE MANAGEMENT POLICY The current high-level nuclear waste management program in the United States is based on policies established by the Nuclear Waste Policy Act of 1982, as amended. The Act states that the long-term management of such high-level waste will be through deep geologic disposal. In the case of civilian power reactors, the disposal form is to be untreated spent fuel suitably packaged. The Act also describes a rather intricate process for identification and selection of a disposal site, which through the end of calendar year 1987 produced an initial selection of nine possible sites; this was subsequently reduced to five and finally to three possible sites. In December 1987, the process was modified through an amendment of the 1982 law, resulting in the identification of only one of the candidate sites, Yucca Mountain, Nevada, for study or “characterization”. The Yucca Mountain site is composed of welded and unwelded volcanic ash, called “tuff” to a very great depth. It lies in a desert region on Federal land approximately 170 kilometers northwest of Las Vegas, at the western edge of the Nevada Test Site. One characterization method has been “performance assessment”. The process involves the development of a series of mathematical models based on experimentation and natural analogues which describe the multistage process for movement of radioactivity from the disposal site to the accessible environment. In the case of Yucca Mountain, the accessible environment is defined as a region of marginal farming in Amargosa Valley some twenty to thirty miles southwest of the disposal site where agriculture based on irrigation is currently practiced by several thousand residents. Hydrologic studies have shown that ground water approximately 600 meters under Yucca Mountain flows very slowly to the southwest under Amargosa Valley and reaches the surface in Death Valley where it evaporates, depositing its dissolved minerals and salts in dry lake beds and other deposits. It is an important feature of the Yucca Mountain site that the regional hydrology is “closed”; that is, there is no connection to “open” systems like the Colorado River basin which reaches the ocean. Assuming that Yucca Mountain were selected and licensed for disposal (a process which, if successful, will take about a decade), the multistage process for radioactivity release would include the following steps. First, rain would fall on the mountain, 95% of which would evaporate or run off. The remaining 5% would seep approximately 300 meters through the unsaturated zone until it encounters corrosion-resistant waste packages. Over geologic time (tens of thousands of years) such packages would begin to fail and soluble radionuclides would migrate into the unsaturated flow, eventually reaching the water table some 300 meters below. During that transport, some or most of the radionuclides would be absorbed on the underlying rock. The subsequent saturated flow to Death Valley would also involve absorption as well as dilution from rainfall along its path. Quite complex and integrated models allow a prediction, within bounding limits, of the potential exposure of Amargosa Valley residents to the kind and concentrations of radionuclides in future irrigation waters. WM’01 Conference, February 25-March 1, 2001, Tucson, AZ A series of Total System Performance Assessments (or TSPA’s ) have been carried out for the Yucca Mountain site, in part to evaluate various repository design options but also to determine if the site can meet regulatory requirements. During 2001, the U.S. Department of Energy expects to issue a Site Recommendation Report for Yucca Mountain and an Environmental Impact Statement for the site, containing the latest TSPA information. Although not final at the time of this paper, the preliminary results show a continuation of the same trends that have been reported in previous TSPA’s. That is, from a potential human exposure standpoint, the most important radionuclides during the first 10,000 to 30,000 years of waste storage are 99Tc (213,000 year half- life) and 129I (15.7 million year half-life). Over the subsequent hundreds of thousands of years, 237Np (2.14 million year half-life) is the dominant radionuclide. The final approval of the Yucca Mountain site as a candidate for Nuclear Regulatory Commission licensing and the successful result of the licensing process will depend on whether the predicted performance of a Yucca Mountain repository is acceptable. The next few years will provide answers to that question. TRANSMUTATION In the future and as a possible improvement to current nuclear waste management practices, it is potentially possible to convert, through transmutation reactions, long-lived radionuclides such as radioiodine to short-lived or even stable isotopes. The process involves neutron irradiation, either in a nuclear reactor or in an accelerator-driven subcritical assembly. Long-lived actinides would be eliminated by fission, producing additional fission products for disposal or, if long-lived and mobile, for possible transmutation. Most iodine fission products have short half-lives. After several years, the only remaining iodine in spent nuclear fuel will be stable 127I and very long-lived 129I. The probability of neutron capture by either nucleus (its capture cross section) is a function of neutron energy. Assuming the proper energy is attained, capture in either isotope would produce an unstable nucleus which would decay by beta emission to xenon. Stable 127I would be transformed to 128I, which would beta-decay with a 25-minute half-life to stable 128Xe; 129I would be transformed to 130I, which would beta-decay with a 12-hour half-life to stable 130Xe. Designing a program to collect fission product iodine, transform it to a suitable irradiation target, irradiate it with neutrons of the proper energy, chemically process the targets to recover untransmuted iodine for recycle and stable xenon for release, and repeat the process as needed is a challenging undertaking. CHEMICAL PROCESSING OF SPENT FUEL AND THE RECOVERY OF IODINE FOR TRANSMUTATION Each metric ton of LWR spent fuel, upon discharge from a reactor, contains almost 200 grams of 129I, together with another 45 grams of the stable iodine isotope 127I and about 10 grams of 131I. The 131I isotope poses the greater health concern, should it be released as for example in the case of a reactor accident; but in the case of fuel processing the short half-life (~8 days) of 131I means that this isotope has decayed away before fuel WM’01 Conference, February 25-March 1, 2001, Tucson, AZ processing begins. In the early days of nuclear fuel reprocessing, radioiodine was vented to the atmosphere, and in the rare events when fuel was processed after only very short cooling times, on the order of 15-20 days, the impact to the environment was significant (1). In conventional aqueous solvent extraction reprocessing plants, a small fraction of gaseous iodine is released when the irradiated fuel rods are chopped prior to nitric acid leaching of the fuel. Upon dissolution, much of the iodine present in the fuel is oxidized to the elemental iodine state and appears as a gas; some is present as HI and some as HIO or HIO3.
Recommended publications
  • The Nuclear Waste Primer September 2016 What Is Nuclear Waste?
    The Nuclear Waste Primer September 2016 What is Nuclear Waste? Nuclear waste is the catch-all term for anything contaminated with radioactive material. Nuclear waste can be broadly divided into three categories: • Low-level waste (LLW), comprised of protective clothing, medical waste, and other lightly-contaminated items • Transuranic waste (TRU), comprised of long-lived isotopes heavier than uranium • High-level waste (HLW), comprised of spent nuclear fuel and other highly-radioactive materials Low-level waste is relatively short-lived and easy to handle. Currently, four locations for LLW disposal exist in the United States. Two of them, Energy Solutions in Clive, Utah and Waste Control Specialists in Andrews, Texas, accept waste from any U.S. state. Transuranic waste is often a byproduct of nuclear weapons production and contains long-lived radioactive elements heavier than uranium, like plutonium and americium. Currently, the U.S. stores TRU waste at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. High-level waste includes spent nuclear fuel and the most radioactive materials produced by nuclear weapons production. Yucca Mountain is the currently designated high-level waste repository for the United States. 1 | What is Spent Nuclear Fuel? Spent nuclear fuel (SNF), alternatively referred to as used nuclear fuel, is the primary byproduct of nuclear reactors. In commercial power reactors in the U.S., fuel begins as uranium oxide clad in a thin layer of zirconium-aluminum cladding. After several years inside of the reactor, around fi ve percent of the uranium has been converted in some way, ranging from short-lived and highly radioactive fi ssion products to long-lived actinides like plutonium, americium, and neptunium.
    [Show full text]
  • NUCLEAR Unwasted NUCLEAR Unwasted NEWS
    N ational Conference of State Legislatures NUCLEAR unWASTEd NEWS A QUARTERLY S UMMARY OF GENERATION, TRANSPORTATION, STORAGE AND DISPOSAL ISSUES JANUARY - MARCH 2008 V OL. 3, NO . 1 Headline CRS Report Assesses Global Access to Nuclear Power 2/29 With the heralding of a coming nuclear renaissance in the Energy Policy Act of 2005 and the Bush administration’s Global Nuclear Energy Partnership (GNEP), the Congressional Research Service released a report in January titled, Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power. The 2005 Energy Policy Act outlined provisions authorizing streamlined licensing for new nuclear plants, combining construction and operating permits, and providing tax credits for nuclear power. Thirty new applications or early site permits for reactors have been filed with the Nuclear Regulatory Commission, and 150 have been planned or proposed globally. Nearly a dozen are already under construction overseas. With the U.S. Department of Energy (DOE) planning to spend billions of dollars to advance nuclear technology in the U.S., other countries have similar ideas and want access to the benefits of nuclear power. Advances in nuclear technologies are attractive to those who seek to add energy options to the mostly fossil fuel genera- tion the world depends on today. Concerns about climate change, however, are complicated by fears that spreading enrichment and reprocessing technologies may lead to proliferation of weapons-grade nuclear material. Proposals of global access to nuclear power range from: offering countries access to nuclear power with a formal commit- ment to abstain from enrichment and reprocessing; to a de facto approach where a country does not operate fuel cycle facilities but makes no direct commitment to other nations; to nations having no restrictions at all.
    [Show full text]
  • Ards for the Uranium Fuel Cycle PART 191—ENVIRONMENTAL RADI
    § 190.10 40 CFR Ch. I (7–1–11 Edition) period in which he is engaged in car- ance, and the schedule for achieving rying out any operation which is part conformance with the standards. of a nuclear fuel cycle. (l) Regulatory agency means the gov- § 190.12 Effective date. ernment agency responsible for issuing (a) The standards in § 190.10(a) shall regulations governing the use of be effective December 1, 1979, except sources of radiation or radioactive ma- that for doses arising from operations terials or emissions therefrom and car- associated with the milling of uranium rying out inspection and enforcement ore the effective date shall be Decem- activities to assure compliance with ber 1, 1980. such regulations. (b) The standards in § 190.10(b) shall be effective December 1, 1979, except Subpart B—Environmental Stand- that the standards for krypton-85 and ards for the Uranium Fuel iodine-129 shall be effective January 1, Cycle 1983, for any such radioactive materials generated by the fission process after § 190.10 Standards for normal oper- these dates. ations. Operations covered by this subpart PART 191—ENVIRONMENTAL RADI- shall be conducted in such a manner as ATION PROTECTION STANDARDS to provide reasonable assurance that: FOR MANAGEMENT AND DIS- (a) The annual dose equivalent does POSAL OF SPENT NUCLEAR FUEL, not exceed 25 millirems to the whole body, 75 millirems to the thyroid, and HIGH-LEVEL AND TRANSURANIC 25 millirems to any other organ of any RADIOACTIVE WASTES member of the public as the result of exposures to planned discharges of ra- Subpart A—Environmental Standards for dioactive materials, radon and its Management and Storage daughters excepted, to the general en- Sec.
    [Show full text]
  • 5. Production, Import/Export, Use, and Disposal
    IODINE 227 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION Iodine, a halogen, occurs in low concentrations in nature in the form of iodides mainly in sea water, although there are a number of major sources iodine including the underground waters from certain deep- well boring and mineral springs (i.e., brines) and natural deposits of sodium nitrate ore (i.e., caliche) found in the northern part of Chile. Only a few marine organisms contain iodine in relatively large quantities including seaweeds, sponges, and corals. The different production processes for recovering iodine are based on the raw materials used. Approximately 54% of the iodine consumed in the world is obtained from Chile as a coproduct from surface mineral deposits used to produce nitrate fertilizers (USGS 2002). About 43% of the iodine consumed in the world comes from brines processed in Japan, the United States, and the former Soviet Union. The primary production process for recovery of iodine from brines is the blow-out process. The blow-out process for brines can be divided into brine clean-up, iodide oxidation followed by air blowing and recovery, and iodine finishing. In 2001, iodine was recovered from brines by the blow-out process by three companies operating in Oklahoma, which accounted for 100% of the U.S. elemental iodine production. These three companies are IOCHEM Corporation (Dewey County, Oklahoma), North American Brine Resources (Dover, Oklahoma), and Woodward Iodine Corporation (Woodward County, Oklahoma). Production of iodine in the United States has remained steady ranging from 1,270 to 1,620 metric tons between the years 1996 and 2000 (Lauterbach and Ober 1995; USGS 1998, 2002).
    [Show full text]
  • Modelling Transport and Deposition of Caesium and Iodine from the Chernobyl Accident Using the DREAM Model J
    Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model J. Brandt, J. H. Christensen, L. M. Frohn To cite this version: J. Brandt, J. H. Christensen, L. M. Frohn. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmospheric Chemistry and Physics, European Geosciences Union, 2002, 2 (5), pp.397-417. hal-00295217 HAL Id: hal-00295217 https://hal.archives-ouvertes.fr/hal-00295217 Submitted on 17 Dec 2002 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys., 2, 397–417, 2002 www.atmos-chem-phys.org/acp/2/397/ Atmospheric Chemistry and Physics Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model J. Brandt, J. H. Christensen, and L. M. Frohn National Environmental Research Institute, Department of Atmospheric Environment, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark Received: 11 April 2002 – Published in Atmos. Chem. Phys. Discuss.: 24 June 2002 Revised: 9 September 2002 – Accepted: 24 September 2002 – Published: 17 December 2002 Abstract. A tracer model, DREAM (the Danish Rimpuff and low cloud scavenging process for the submicron particles and Eulerian Accidental release Model), has been developed for that the precipitation rates are relatively uncertain in the me- modelling transport, dispersion and deposition (wet and dry) teorological model compared to the relative humidity.
    [Show full text]
  • New York State Department of Health Environmental Radiation Program Environmental Radiation Surveillance Site Readings
    New York State Department of Health Environmental Radiation Program Environmental Radiation Surveillance Site Readings Glossary This glossary has been added in order to define technical terms that are used in the various supporting documents for this data set. Please refer to the Data Dictionary for explanation of the meaning of the column headings in the data set. 1. Alpha particles- a positively charged particle made up of two neutrons and two protons emitted by certain radioactive nuclei. a. Gross alpha radioactivity- a measurement of all alpha activity present, regardless of specific radionuclide source. 2. Americium (chemical symbol Am) - is a man-made radioactive metal, with Atomic Number 95. The most important isotope of Americium is Am-241. 3. Background radiation- is radiation that results from natural sources such as cosmic radiation and naturally-occurring radioactive materials in the ground and the earth’s atmosphere including radon. 4. Beta particles- an electron or positron emitted by certain radioactive nuclei. Beta particles can be stopped by aluminum. a. Gross beta radioactivity- measurement of all beta activity present, regardless of specific radionuclide source. 5. Cerium (chemical symbol Ce) - an iron-gray, lustrous metal. Cerium-141, -143, and - 144 are radioisotopes of cerium. 6. Cesium (chemical symbol Cs) - is a metal that may be stable (nonradioactive) or unstable (radioactive). The most common radioactive form of cesium is cesium-137. Another fairly common radioisotope is cesium-134. 7. Cobalt (chemical symbol Co) - is a metal that may be stable (non-radioactive, as found in nature), or unstable (radioactive, man-made). The most common radioactive isotope of cobalt is cobalt-60.
    [Show full text]
  • 12 Natural Isotopes of Elements Other Than H, C, O
    12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al).
    [Show full text]
  • Correspondence Continuing Education for Nuclear Pharmacists
    THE UNIVERSITY OF NEW MEXICO COLLEGE OF PHARMACY ALBUQUERQUE, NEW MEXICO The University of New Mexico Correspondence Continuing Education Courses for Nuclear Pharmacists and Nuclear Medicine Professionals VOLUME II, NUMBER 1 Radionuclide Therapy of Painful Osseous Metastasis by: Jay A. Spicer, M.S. Co-sponsored by: mpi pharmc~ services inc an mersham company The University of New Mexico College of Phamcy is approved by the American Council on Pharmaceutical Education as a provider of continuing pharmaceutical education. Program No. 180-039-93-M6. 2.5 Contact Hours or ,25 CEU’S H m Edtior William B. Hladik III, M. S., R.Ph., University of New Mexico Director of Pharmacy Continuing Education Hugh F. Kabat, Ph. D., University of New Mexico While the advice and information in this publication are believed to be true and accurate at press time, neither the author(s) nor the editor nor the publisher ean accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implid, with res~t to the matetial contained herein. The UNMPharmacy Contittutiig Educatwn Stifl and the Edtior WOUUlike to gratefully achnowkdge Sharon I, Ramirez for her technical suppoti and assktince in the producttin of this pubtiation. Copyright 1993 University of New Mexico Pharmacy Continuing Education Albuquerque, New Mexico HIONUCLIDE THERAPY OF PAINFUL OSSEOUS METASTASIS STATEMENT OF OBJECTIVES This correspondence course is intended to increase tie reader’s knowledge of radiophmaceuticals that are used in the treatment of pain associated with bone metastasis from different types of cancer. A variety of aspects regarding the agents currently being usti or tested are discussed.
    [Show full text]
  • Nuclear-Spent Fuel and High-Level Radioactive Waste Disposal Preface and Acknowledgments 5
    Nuclear-Spent Science Matters, LLC Science Matters, Bethesda, Maryland Fuel and High-Level Radioactive December 2019 Waste Disposal A Review of Options Considered in the United States An independent report Deepcommissioned Inc. Isolation, by Arjun Makhijani, Ph.D. Table of Contents Preface and Acknowledgments 4 Executive Summary 8 i. Early considerations 9 ii. The 1980 Environmental Impact Statement and geologic disposal 11 iii. Retrospective on the geologic disposal decision 13 iv. The 1982 Nuclear Waste Policy Act 14 v. The Continued Storage Rule 15 vi. Conclusions 16 I. From the 1950s to the mid-1970s 18 i. The 1957 National Research Council Report 20 ii. Lyons, Kansas 26 II. The changing framework in the 1970s 33 i. The energy front 34 ii. A change in nuclear power prospects 35 iii. The Indian nuclear test 38 III. Options for spent-fuel and high-level waste disposal 41 i. Transmutation 45 ii. Disposal in space 48 iii. Ice-sheet disposal 54 iv. Sub-seabed disposal 58 v. Island disposal 61 vi. Well injection 61 vii. Rock melt 64 viii. Disposal in very deep holes 66 ix. Disposal in a mined geologic repository 69 IV. Retrospective on disposal options 78 i. Breeder reactors and reprocessing 80 ii. Reprocessing-dependent disposal approaches 83 iii. Non-reprocessing dependent disposal concepts 88 iv. Deep-vertical borehole disposal 93 v. Horizontal borehole disposal 95 V. The Nuclear Waste Policy Act 98 VI. The NRC’s Continued Storage Rule and geologic isolation 106 i. The Continued Storage Rule 107 ii. Comments on continued storage and geologic isolation 108 VII.
    [Show full text]
  • Nuclear Reactor Realities
    Page 1 of 26 Nuclear Reactor Realities NUCLEAR REACTOR REALITIES (An Australian viewpoint) PREFACE Now that steam ships are no longer common, people tend to forget that nuclear power is just a replacement of coal, oil or gas for heating water to form steam to drive turbines, or of water (hydro) to do so directly. As will be shown in this tract, it is by far the safest way of doing so to generate electricity economically in large quantities – as a marine engineer of my acquaintance is fond of saying. Recently Quantum Market Research released its latest Australian Scan (The Advertiser, Saturday April 17, 2012, p 17). It has been tracking social change by interviewing 2000 Australians annually since 1992. In the concerns in the environment category, “[a]t the top of the list is nuclear accidents and waste disposal” (44.4 per cent), while “global warming” was well down the list of priorities at No 15, with only 27.7 per cent of people surveyed rating the issue as “extremely serious.” Part of the cause of such information must be that people are slowly realising that they have been deluded by publicity about unverified computer models which indicate that man’s emissions of CO2 play a major part in global warming. They have not yet realised that the history of the dangers of civilian nuclear power generation shows the reverse of their images. The topic of nuclear waste disposal is also shrouded in reactor physics mysteries, leading to a mis-placed general fear of the unknown. In this article only nuclear reactors are considered.
    [Show full text]
  • Externalities As the Status Quo: Federal Application of Environmental Charges in the United States
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2020 Externalities as the Status Quo: Federal Application of Environmental Charges in the United States Robert Zupko Michigan Technological University, [email protected] Copyright 2020 Robert Zupko Recommended Citation Zupko, Robert, "Externalities as the Status Quo: Federal Application of Environmental Charges in the United States", Open Access Master's Report, Michigan Technological University, 2020. https://doi.org/10.37099/mtu.dc.etdr/1052 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Environmental Law Commons, and the Environmental Studies Commons EXTERNALITIES AS THE STATUS QUO: FEDERAL APPLICATION OF ENVIRONMENTAL CHARGES IN THE UNITED STATES By Robert J. Zupko II A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Environmental and Energy Policy MICHIGAN TECHNOLOGICAL UNIVERSITY 2020 © 2020 Robert J. Zupko II This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Environmental and Energy Policy Department of Social Sciences Report Advisor: Dr. Adam Wellstead Committee Member: Dr. Shan Zhou Committee Member: Dr. Audrey Mayer Department Chair: Dr. Hugh Gorman Contents Contents ............................................................................................................................. 3 Acknowledgements ..........................................................................................................
    [Show full text]
  • Reinterpretation of High-Level Waste Subcommittee White Paper 1 I. INTRODUCTION a Federal Register Notice Was Published by the U
    Reinterpretation of High-Level Waste Subcommittee White Paper I. INTRODUCTION A Federal Register notice was published by the U.S. Department of Energy (DOE) requesting public comment on the DOE’s definition of the statutory term “high-level radioactive waste”(HLW).1 Current definitions of HLW are set forth in the Atomic Energy Act (AEA) of 1954 and the Nuclear Waste Policy Act (NWPA) of 1982. DOE is requesting stakeholders submit comments on the HLW and non-HLW interpretation to explore waste disposition decisions. There is increased interest from stakeholders at Idaho National Laboratory (INL), Savannah River Site (SRS), and Hanford Site due to the large inventory of reprocessing waste managed as HLW at each site. A subcommittee was formed during the October 2018 meeting of the Idaho Cleanup Project (ICP) Citizens Advisory Board (CAB) to evaluate the HLW reinterpretation issue. The subcommittee was tasked to provide an overview to the CAB members on the DOE Request for Public Comment on the U.S. DOE Interpretation of HLW and develop recommendations for the reinterpretation of HLW with respect to the waste at INL. Recommendation development included review of various pertinent documents, some of which are discussed below, and verification of some factual information through relevant DOE representatives. The documents that we reviewed are presented in chronological order below. II. BACKGROUND a. Energy Communities Alliance September 2017 Report The Energy Communities Alliance (ECA) published a report titled, “Waste Disposition: A New Approach to DOE’s Waste Management Must Be Pursued”, in September 2017. The ECA report evaluates DOE’s environmental liability and risk from legacy waste cleanup efforts and waste management, specifically their management and classification of HLW throughout DOE sites.
    [Show full text]