Internal Enriched Categories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2001.09075V1 [Math.AG] 24 Jan 2020
A topos-theoretic view of difference algebra Ivan Tomašić Ivan Tomašić, School of Mathematical Sciences, Queen Mary Uni- versity of London, London, E1 4NS, United Kingdom E-mail address: [email protected] arXiv:2001.09075v1 [math.AG] 24 Jan 2020 2000 Mathematics Subject Classification. Primary . Secondary . Key words and phrases. difference algebra, topos theory, cohomology, enriched category Contents Introduction iv Part I. E GA 1 1. Category theory essentials 2 2. Topoi 7 3. Enriched category theory 13 4. Internal category theory 25 5. Algebraic structures in enriched categories and topoi 41 6. Topos cohomology 51 7. Enriched homological algebra 56 8. Algebraicgeometryoverabasetopos 64 9. Relative Galois theory 70 10. Cohomologyinrelativealgebraicgeometry 74 11. Group cohomology 76 Part II. σGA 87 12. Difference categories 88 13. The topos of difference sets 96 14. Generalised difference categories 111 15. Enriched difference presheaves 121 16. Difference algebra 126 17. Difference homological algebra 136 18. Difference algebraic geometry 142 19. Difference Galois theory 148 20. Cohomologyofdifferenceschemes 151 21. Cohomologyofdifferencealgebraicgroups 157 22. Comparison to literature 168 Bibliography 171 iii Introduction 0.1. The origins of difference algebra. Difference algebra can be traced back to considerations involving recurrence relations, recursively defined sequences, rudi- mentary dynamical systems, functional equations and the study of associated dif- ference equations. Let k be a commutative ring with identity, and let us write R = kN for the ring (k-algebra) of k-valued sequences, and let σ : R R be the shift endomorphism given by → σ(x0, x1,...) = (x1, x2,...). The first difference operator ∆ : R R is defined as → ∆= σ id, − and, for r N, the r-th difference operator ∆r : R R is the r-th compositional power/iterate∈ of ∆, i.e., → r r ∆r = (σ id)r = ( 1)r−iσi. -
1.Introduction Given a Class Σ of Morphisms of a Category X, We Can Construct a Cat- Egory of Fractions X[Σ−1] Where All Morphisms of Σ Are Invertible
Pre-Publicac¸´ oes˜ do Departamento de Matematica´ Universidade de Coimbra Preprint Number 15–41 A CALCULUS OF LAX FRACTIONS LURDES SOUSA Abstract: We present a notion of category of lax fractions, where lax fraction stands for a formal composition s∗f with s∗s = id and ss∗ ≤ id, and a corresponding calculus of lax fractions which generalizes the Gabriel-Zisman calculus of frac- tions. 1.Introduction Given a class Σ of morphisms of a category X, we can construct a cat- egory of fractions X[Σ−1] where all morphisms of Σ are invertible. More X X Σ−1 precisely, we can define a functor PΣ : → [ ] which takes the mor- Σ phisms of to isomorphisms, and, moreover, PΣ is universal with respect to this property. As shown in [13], if Σ admits a calculus of fractions, then the morphisms of X[Σ−1] can be expressed by equivalence classes of cospans (f,g) of morphisms of X with g ∈ Σ, which correspond to the for- mal compositions g−1f . We recall that categories of fractions are closely related to reflective sub- categories and orthogonality. In particular, if A is a full reflective subcat- egory of X, the class Σ of all morphisms inverted by the corresponding reflector functor – equivalently, the class of all morphisms with respect to which A is orthogonal – admits a left calculus of fractions; and A is, up to equivalence of categories, a category of fractions of X for Σ. In [3] we presented a Finitary Orthogonality Deduction System inspired by the left calculus of fractions, which can be looked as a generalization of the Implicational Logic of [20], see [4]. -
SHORT INTRODUCTION to ENRICHED CATEGORIES FRANCIS BORCEUX and ISAR STUBBE Département De Mathématique, Université Catholique
SHORT INTRODUCTION TO ENRICHED CATEGORIES FRANCIS BORCEUX and ISAR STUBBE Departement de Mathematique, Universite Catholique de Louvain, 2 Ch. du Cyclotron, B-1348 Louvain-la-Neuve, Belgium. e-mail: [email protected] — [email protected] This text aims to be a short introduction to some of the basic notions in ordinary and enriched category theory. With reasonable detail but always in a compact fashion, we have brought together in the rst part of this paper the denitions and basic properties of such notions as limit and colimit constructions in a category, adjoint functors between categories, equivalences and monads. In the second part we pass on to enriched category theory: it is explained how one can “replace” the category of sets and mappings, which plays a crucial role in ordinary category theory, by a more general symmetric monoidal closed category, and how most results of ordinary category theory can be translated to this more general setting. For a lack of space we had to omit detailed proofs, but instead we have included lots of examples which we hope will be helpful. In any case, the interested reader will nd his way to the references, given at the end of the paper. 1. Ordinary categories When working with vector spaces over a eld K, one proves such theorems as: for all vector spaces there exists a base; every vector space V is canonically included in its bidual V ; every linear map between nite dimensional based vector spaces can be represented as a matrix; and so on. But where do the universal quantiers take their value? What precisely does “canonical” mean? How can we formally “compare” vector spaces with matrices? What is so special about vector spaces that they can be based? An answer to these questions, and many more, can be formulated in a very precise way using the language of category theory. -
Abelian Categories
Abelian Categories Lemma. In an Ab-enriched category with zero object every finite product is coproduct and conversely. π1 Proof. Suppose A × B //A; B is a product. Define ι1 : A ! A × B and π2 ι2 : B ! A × B by π1ι1 = id; π2ι1 = 0; π1ι2 = 0; π2ι2 = id: It follows that ι1π1+ι2π2 = id (both sides are equal upon applying π1 and π2). To show that ι1; ι2 are a coproduct suppose given ' : A ! C; : B ! C. It φ : A × B ! C has the properties φι1 = ' and φι2 = then we must have φ = φid = φ(ι1π1 + ι2π2) = ϕπ1 + π2: Conversely, the formula ϕπ1 + π2 yields the desired map on A × B. An additive category is an Ab-enriched category with a zero object and finite products (or coproducts). In such a category, a kernel of a morphism f : A ! B is an equalizer k in the diagram k f ker(f) / A / B: 0 Dually, a cokernel of f is a coequalizer c in the diagram f c A / B / coker(f): 0 An Abelian category is an additive category such that 1. every map has a kernel and a cokernel, 2. every mono is a kernel, and every epi is a cokernel. In fact, it then follows immediatly that a mono is the kernel of its cokernel, while an epi is the cokernel of its kernel. 1 Proof of last statement. Suppose f : B ! C is epi and the cokernel of some g : A ! B. Write k : ker(f) ! B for the kernel of f. Since f ◦ g = 0 the map g¯ indicated in the diagram exists. -
10. Algebra Theories II 10.1 Essentially Algebraic Theory Idea: A
Page 1 of 7 10. Algebra Theories II 10.1 essentially algebraic theory Idea: A mathematical structure is essentially algebraic if its definition involves partially defined operations satisfying equational laws, where the domain of any given operation is a subset where various other operations happen to be equal. An actual algebraic theory is one where all operations are total functions. The most familiar example may be the (strict) notion of category: a small category consists of a set C0of objects, a set C1 of morphisms, source and target maps s,t:C1→C0 and so on, but composition is only defined for pairs of morphisms where the source of one happens to equal the target of the other. Essentially algebraic theories can be understood through category theory at least when they are finitary, so that all operations have only finitely many arguments. This gives a generalization of Lawvere theories, which describe finitary algebraic theories. As the domains of the operations are given by the solutions to equations, they may be understood using the notion of equalizer. So, just as a Lawvere theory is defined using a category with finite products, a finitary essentially algebraic theory is defined using a category with finite limits — or in other words, finite products and also equalizers (from which all other finite limits, including pullbacks, may be derived). Definition As alluded to above, the most concise and elegant definition is through category theory. The traditional definition is this: Definition. An essentially algebraic theory or finite limits theory is a category that is finitely complete, i.e., has all finite limits. -
All (,1)-Toposes Have Strict Univalent Universes
All (1; 1)-toposes have strict univalent universes Mike Shulman University of San Diego HoTT 2019 Carnegie Mellon University August 13, 2019 One model is not enough A (Grothendieck{Rezk{Lurie)( 1; 1)-topos is: • The category of objects obtained by \homotopically gluing together" copies of some collection of \model objects" in specified ways. • The free cocompletion of a small (1; 1)-category preserving certain well-behaved colimits. • An accessible left exact localization of an (1; 1)-category of presheaves. They are a powerful tool for studying all kinds of \geometry" (topological, algebraic, differential, cohesive, etc.). It has long been expected that (1; 1)-toposes are models of HoTT, but coherence problems have proven difficult to overcome. Main Theorem Theorem (S.) Every (1; 1)-topos can be given the structure of a model of \Book" HoTT with strict univalent universes, closed under Σs, Πs, coproducts, and identity types. Caveats for experts: 1 Classical metatheory: ZFC with inaccessible cardinals. 2 We assume the initiality principle. 3 Only an interpretation, not an equivalence. 4 HITs also exist, but remains to show universes are closed under them. Towards killer apps Example 1 Hou{Finster{Licata{Lumsdaine formalized a proof of the Blakers{Massey theorem in HoTT. 2 Later, Rezk and Anel{Biedermann{Finster{Joyal unwound this manually into a new( 1; 1)-topos-theoretic proof, with a generalization applicable to Goodwillie calculus. 3 We can now say that the HFLL proof already implies the (1; 1)-topos-theoretic result, without manual translation. (Modulo closure under HITs.) Outline 1 Type-theoretic model toposes 2 Left exact localizations 3 Injective model structures 4 Remarks Review of model-categorical semantics We can interpret type theory in a well-behaved model category E : Type theory Model category Type Γ ` A Fibration ΓA Γ Term Γ ` a : A Section Γ ! ΓA over Γ Id-type Path object . -
Enriched Categories
Enriched Categories Ross Tate May 16, 2018 Definition (Enriched Category over a Multicategory). For a multicategory M, an M-enriched category is made of: Objects A set Ob of objects Morphisms For each A and B in Ob, an object Hom(A; B) of M Identities For each A in Ob, a nullary multimorphism idA :[] !M Hom(A; A) Compositions For each A, B, and C in Ob, a multimorphism compA;B;C : [Hom(A; B); Hom(B; C)] !M Hom(A; C) Identity With the property that comp and comp equal id aidA;idHom(A;B) A;B;C aid Hom(A;B);idB A;B;C Hom(A;B) Associativity And the property that comp equals comp acompA;B;C ;idHom(C;D) A;C;D aidHom(A;B);compB;C;D A;B;D Example. A Set-enriched category is simply a category. Ob is the set of objects of the category, and Hom(A; B) is the set of morphisms from A to B. idA is the identity morphism id A, and compA;B;C is the composition function mapping f : A ! B and g : B ! C to f ; g : A ! C. The identity and associativity requirements of Set-enriched categories are exactly the identity and associativity requirements of categories. Example. Many examples of enriched categories are enriched over a multicategory M with an obvious faithful functor to Set. In such cases, M-enriched categories can be viewed as categories whose sets of morphisms are enriched with additional M-structure, and whose identities and compositions respect that structure. -
Locally Cartesian Closed Categories, Coalgebras, and Containers
U.U.D.M. Project Report 2013:5 Locally cartesian closed categories, coalgebras, and containers Tilo Wiklund Examensarbete i matematik, 15 hp Handledare: Erik Palmgren, Stockholms universitet Examinator: Vera Koponen Mars 2013 Department of Mathematics Uppsala University Contents 1 Algebras and Coalgebras 1 1.1 Morphisms .................................... 2 1.2 Initial and terminal structures ........................... 4 1.3 Functoriality .................................... 6 1.4 (Co)recursion ................................... 7 1.5 Building final coalgebras ............................. 9 2 Bundles 13 2.1 Sums and products ................................ 14 2.2 Exponentials, fibre-wise ............................. 18 2.3 Bundles, fibre-wise ................................ 19 2.4 Lifting functors .................................. 21 2.5 A choice theorem ................................. 22 3 Enriching bundles 25 3.1 Enriched categories ................................ 26 3.2 Underlying categories ............................... 29 3.3 Enriched functors ................................. 31 3.4 Convenient strengths ............................... 33 3.5 Natural transformations .............................. 41 4 Containers 45 4.1 Container functors ................................ 45 4.2 Natural transformations .............................. 47 4.3 Strengths, revisited ................................ 50 4.4 Using shapes ................................... 53 4.5 Final remarks ................................... 56 i Introduction -
Exercise Sheet
Exercises on Higher Categories Paolo Capriotti and Nicolai Kraus Midlands Graduate School, April 2017 Our course should be seen as a very first introduction to the idea of higher categories. This exercise sheet is a guide for the topics that we discuss in our four lectures, and some exercises simply consist of recalling or making precise concepts and constructions discussed in the lectures. The notion of a higher category is not one which has a single clean def- inition. There are numerous different approaches, of which we can only discuss a tiny fraction. In general, a very good reference is the nLab at https://ncatlab.org/nlab/show/HomePage. Apart from that, a very incomplete list for suggested further reading is the following (all available online). For an overview over many approaches: – Eugenia Cheng and Aaron Lauda, Higher-Dimensional Categories: an illustrated guide book available online, cheng.staff.shef.ac.uk/guidebook Introductions to simplicial sets: – Greg Friedman, An Elementary Illustrated Introduction to Simplicial Sets very gentle introduction, arXiv:0809.4221. – Emily Riehl, A Leisurely Introduction to Simplicial Sets a slightly more advanced introduction, www.math.jhu.edu/~eriehl/ssets.pdf Quasicategories: – Jacob Lurie, Higher Topos Theory available as paperback (ISBN-10: 0691140499) and online, arXiv:math/0608040 Operads (not discussed in our lectures): – Tom Leinster, Higher Operads, Higher Categories available as paperback (ISBN-10: 0521532159) and online, 1 arXiv:math/0305049 Note: Exercises are ordered by topic and can be done in any order, unless an exercise explicitly refers to a previous one. We recommend to do the exercises marked with an arrow ⇒ first. -
Change of Base for Locally Internal Categories
Journal of Pure and Applied Algebra 61 (1989) 233-242 233 North-Holland CHANGE OF BASE FOR LOCALLY INTERNAL CATEGORIES Renato BETTI Universitb di Torino, Dipartimento di Matematica, via Principe Amedeo 8, IO123 Torino, Italy Communicated by G.M. Kelly Received 4 August 1988 Locally internal categories over an elementary topos 9 are regarded as categories enriched in the bicategory Span g. The change of base is considered with respect to a geometric morphism S-r 8. Cocompleteness is preserved, and the topos S can be regarded as a cocomplete, locally internal category over 6. This allows one in particular to prove an analogue of Diaconescu’s theorem in terms of general properties of categories. Introduction Locally internal categories over a topos & can be regarded as categories enriched in the bicategory Span& and in many cases their properties can be usefully dealt with in terms of standard notions of enriched category theory. From this point of view Betti and Walters [2,3] study completeness, ends, functor categories, and prove an adjoint functor theorem. Here we consider a change of the base topos, i.e. a geometric morphismp : 9-t CF. In particular 9 itself can be regarded as locally internal over 8. Again, properties of p can be expressed by the enrichment (both in Spangand in Span 8) and the relevant module calculus of enriched category theory applies directly to most calculations. Our notion of locally internal category is equivalent to that given by Lawvere [6] under the name of large category with an &-atlas, and to Benabou’s locally small fibrations [l]. -
Simplicially Enriched Categories and Relative Categories
Simplicially enriched categories and relative categories Talk by Alex Rolle, notes by Luis Scoccola Reading seminar on Higher Category Theory University of Western Ontario, Fall 2016 Classical homotopy theory usually deals with topological spaces and simplicial sets, so it is natural to ask if there is a way to construct quasicategories that model these homotopy theories. The goal of this presentation is to describe methods that let us construct quasicategories out of other objects that also present homotopy theories. In particular we want to be able to turn simplicially enriched categories and model categories into quasicategories. References are: • [Lur09] for an introduction and a many of applications of simplicially enriched categories. • [Ber07] for details about the model structure on the category of simplicially enriched cat- egories. • [GZ12] for the general theory of localization of relative categories. • [DK80] for the simplicial localization of relative categories. 1 Simplicially enriched categories Notation 1. We denote the category of (small) simplicially enriched categories by SCat. We want to define a functor that turns simplicially enriched categories into simplicial sets. As usual it is easier to start defining its right adjoint. Definition 2. Start by defining the functor C : ∆ ,! SCat on objects. For every natural number n construct the category C(n) that has as objects the set f0 : : : ng and as morphisms: ( ; if i > j Hom(i; j) = N(Pi;j) if i ≤ j where Pi;j is the poset of subintervals of [i : : : j] that contain both -
Cyclic Multicategories, Multivariable Adjunctions and Mates
J. K-Theory 13 (2014), 337–396 ©2013 ISOPP doi:10.1017/is013012007jkt250 Cyclic multicategories, multivariable adjunctions and mates by EUGENIA CHENG,NICK GURSKI AND EMILY RIEHL Abstract A multivariable adjunction is the generalisation of the notion of a 2-variable adjunction, the classical example being the hom/tensor/cotensor trio of functors, to n C 1 functors of n variables. In the presence of multivariable adjunctions, natural transformations between certain composites built from multivariable functors have “dual” forms. We refer to corresponding natural transformations as multivariable or parametrised mates, generalising the mates correspondence for ordinary adjunctions, which enables one to pass between natural transformations involving left adjoints to those involving right adjoints. A central problem is how to express the naturality (or functoriality) of the parametrised mates, giving a precise characterization of the dualities so-encoded. We present the notion of “cyclic double multicategory” as a structure in which to organise multivariable adjunctions and mates. While the standard mates correspondence is described using an isomorphism of double categories, the multivariable version requires the framework of “double multicategories”. Moreover, we show that the analogous isomorphisms of double multicate- gories give a cyclic action on the multimaps, yielding the notion of “cyclic double multicategory”. The work is motivated by and applied to Riehl’s approach to algebraic monoidal model categories. Key Words: Adjunctions, mates, multicategories. Mathematics Subject Classification 2010: 18A40, 18D99. Contents 1 Mates 343 2 Multivariable adjunctions 350 2.1 Definition of multivariable adjunctions . ............. 351 2.2 Amotivatingexample........................ 358 2.3 Composition ............................. 359 2.4 Multivariablemates.......................... 365 338 E. CHENG,N.GURSKI &E.RIEHL 3 Cyclic double multicategories 374 3.1 Plainmulticategories........................