New Data Оn Minerals

Total Page:16

File Type:pdf, Size:1020Kb

New Data Оn Minerals RUSSIAN ACADEMY OF SCIENCE FERSMAN MINERALOGICAL MUSEM volume 46 New Data оn Minerals FOUNDED IN 1907 MOSCOW 2011 ISSN 5-900395-62-6 New Data on Minerals. 2011. Volume 46. 168 pages, 138 photos, drawings and schemes. Publication of Institution of Russian Academy of Science, Fersman Mineralogical Museum RAS. This issue includes the articles about new mineral species found from rocks of the Dara-i-Pioz alkaline massif, Tajikistan: byzantievite, Ba, Ca, REE, Ti, and Nb silico-phospho-borate with complex structure and orlovite, titanium analogue of polylithionite, which is a new member of mica group. Rare minerals, rooseveltite and preisingerite from the Oranzhevoye ore f ield, Verkhne-Kalganinsky massif, Magadan region, Russia, mannardite from carbonaceous-siliceous schists, South Kirgizstan and Kazakhstan, and palladoarsenide and mayakite from sulfide of ores of Norilsk field are described. The new data of fahlores and secondary minerals at the Labedinoe deposit, Central Aldan, Li mineralization from the Glubostrovskoye granitic pegmatite, South Urals, and mineralogy of wood tin at the Dzhalinda deposit, Khingan-Oloi tin district are given. The published and novel data of uranium oxides and hydroxides are reviewed. The experimental study of crystallization products of chalcopyrite solid solution was carried out. In section “Mineralogical museums and collections”, stone-cutting articles of the Peterhof lapidary factory in the collection of the Fersman Mineralogical Museum, Russian Academy of Sciences are described. The other two articles are devoted to the history of first catalogues of the museum collections and the attribution of marble specimens of Florentine marble mosaic and ruin marble involved in the first Mineral catalogue by M.V. Lomonosov. The exhibition “Amazing stone” held in 2011 in the Fersman Mineralogical Museum and the new acquisitions to the museum 2009–2010 are also reported in this section. An article about Yu.L. Orlov, talented mineralogist, the head of the Fersman Mineralogical Museum from 1976 to 1980, is placed in section “Persons”. A section “Mineralogical notes” briefly informs about the new data of the process of formation of skeletal crystals of calcite from carst cavities, reports bilibinskite from the cementation zone of gold-telluride deposits (Aginskoe, Kamchatka and Pionerskoe, Syan Mountains), and the minerals from metakimberlites of the Udachnaya-Vostochnaya Pipe, Northern Yakutia. This journal is interest for mineralogists, geochemists, geologists, workers of natural history museums, collectors, and ama- teurs of stone. Editor in Chief Victor K. Garanin, Doctor in Science, Professor Executive Editor Elena A. Borisova, Ph.D. Editorial Board Margarita I. Novgorodova, Doctor in Science, Professor, Eugeny I. Semenov, Doctor in Science, Svetlana N. Nenasheva, Ph.D., Elena N. Matvienko, Ph.D., Marianna B. Chistyakova, Ph.D., Mikhail E. Generalov, Ph.D. Photo Michael B. Leybov Leader of Publishing group Michael B. Leybov Managing Editor Ludmila A. Cheshko Art Director Nikolay O. Parlashkevich Editor Andrey L. Cheshko Design and Layout Ivan A. Glazov Translators Maria S. Alferova, Il'ya A. Anisimov, Ivan A. Baksheev, Mark Fed’kun Valerii V. Gerasimovskii, Mikhail Povarennykh Editors (English Style) Patricia Gray, Frank C. Hawthorne, Peter Modreski Authorized for printing by Institution of Russian Academy of Science, Fersman Mineralogical Museum RAS У text, photo, drawings and schemes, Institution of Russian Academy of Science, Fersman Mineralogical Museum RAS, 2011 У Design BRITAN Ltd, 2011 Published by Institution of Russian Academy of Science, BRITAN Ltd Fersman Mineralogical Museum RAS Box 71 Moscow 117556 Bld. 18/2 Leninsky Prospekt Moscow 119071 Russia Phone/fax +7(495) 6294812 Phone +7(495) 952-00-67; fax +7(495) 952-48-50 email: [email protected] email: [email protected] www.minbook.com www.fmm.ru Circulation 300 copies Printed in Russian СОNTENT New Minerals and Their Varieties, New Finds of Rare Minerals, Mineral Paragenesis Pautov L.A., Agakhanov A.A., Sokolova E.V., Hawthorne F., Karpenko V.Yu. Byzantievite, Ba5(Ca,REE,Y)22(Ti,Nb)18(SiO4)4[(PO4),(SiO4)]4(BO3)9O21[(OH),F]43(H2O)1.5, a new mineral . .5 Agakhanov A.A., Pautov L.A., Karpenko V.Yu., Bekenova G.K., Uvarova Y.A. Orlovite, KLi2TiSi4O11F, a new mineral of the mica group . .13 Krinov D.I., Azarova Y.V., Struzhkov S.F., Natalenko M.V., Radchenko Y.I. On the Discovery of Rooseveltite, Preisingerite, Troegerite, and Zeunerite In Bi-As-Cu-U-mineralization from the Oranzhevoye Ore Field, Verkhne-Kalganinsky Massif, Magadan Region, Russia . .20 Karpenko V.Yu., Pautov L.A., Agakhanov A.A., Bekenova G.K. Mannardite from vanadium-bearing schists of Kazakhstan and Central Asia . .25 Nenasheva S.N., Pautov L.A., Karpenko V.Y. The variety of fahlores and the epigenetic minerals from the Lebedinoe Deposit . .34 Spiridonov E.M., Korotayeva N.N., Kulikova I.M., Mashkina A.A., Zhukov N.N. Palladoarsenide Pd2As – a Product of Mayakite PdNiAs Destruction in Norilsk Sulfide Ores . .48 Petrochenkov D.A.,Chistyakova N.I. Mineralogical features of wood tin from the Dzhalinda deposit, Russia . .55 Popova V.I., Kolisnichenko S.V., Muftakhov V.A. Mineralogy of the Glubostrovskoye occurrence of masutomilite on the Southern Urals . .61 Chernikov A.A. Simple uranium oxides, hydroxides U4+ + U6+, simple and complex uranyl hydroxides in ores . .71 Crystal Chemistry, Minerals as Prototypes of New Materials, Physical and Chemical Properties of Minerals Kravchenko T.A. Experimental study of crystallization products of cнalcopyrite solid solution . .86 Mineralogical Museums and Collections Chistyakova M.B. Masterpieces of the Peterhof Cutting Factory in the Fersman Mineralogical Museum of the Russian Academy of Sciences . .94 Novgorodova D.D. Three catalogues from the Fersman Mineralogical Museum Archive . .114 Novgorodova D.D. Samples of Marble Florentine mosaic and Ruin Marbles from collections of the Fersman Mineralogical Museum in the Kunstkamera’s Mineral Catalogue (1745) . .123 Sokolova E.N., Matvienko E.N., Evseev A.A. Exhibition «Wonders in the stone» – 2011 . .135 Belakovskiy D.I. New acquisitions to the Fersman Mineralogical museum RAS: the review for 2009–2010 . .139 Persons Pavlova T.M. On 85th Anniversary of Yuriy L. Orlov . .153 Mineralogical Notes Krinov D.I., Azarova Y.V. The new data of the formation of calcite skeletal crystals in karst cavities . .158 Spiridonov E.M. Bilibinskite, (Au5-6Cu3-2)8(Te,Pb,Sb)5, from the cementation zone of the Aginskoe, Kamchatka and Pionerskoe, Sayan Mountains gold-telluride deposits . .162 Sokolova E.L., Vorob’ev S.A. Pyrrhotite, pentlandite and hibbingite from metakimberlites of Udachnaya-Vostochnaya Pipe, Northern Yakutia . .165 New Minerals and Their Varieties, New Finds of Rare Minerals, Mineral Paragenesis New Data on Minerals. 2011. Vol. 46 5 BYZANTIEVITE, Ba5(Ca,REE,Y)22(Ti,Nb)18(SiO4)4[(PO4),(SiO4)]4(BO3)9O21[(OH),F]43(H2O)1.5, A NEW MINERAL1 Leonid A. Pautov Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, [email protected] Atali A. Agakhanov Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, [email protected] Elena V. Sokolova Department of Geological Sciences, University of Manitoba, Winnipeg, Canada, [email protected] Frank Hawthorne Geology Department, University of Manitoba, Winnipeg, Canada Vladimir Yu. Karpenko Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, [email protected] A new silico-phosphate of Ba, Ca, REE, Ti, and Nb found in the Darai-Pioz alkaline massif, Tajikistan, has been named byzantievite because of its complex chemical composition and structure, reminiscent of the complex, but well-organized structure of the Byzantine Empire. The new mineral was discovered on a rock composed of micro- cline, quartz, aegirine and ferrileakeite; accessory minerals are: calcybeborosilite-(Y), pyrophanite, stillwellite- (Ce), danburite, thorite and pyrochlore. The new mineral occurs as tabular grains up to 0.5 x 1.8 mm in size and aggregates of these grains up to 2.5 mm in size. Byzantievite is brown with a pale-yellow streak. Luster is vitre- ous, slightly greasy on fracture surfaces. Cleavage is not observable; fracture is conchoidal. The Mohs’ hardness is 4.5–5. The mean (10 measurements) microhardness VHN is 486 kg/mm2. The measured density is 4.10(3) g/cm3, calculated density is 4.15 g/cm3. Byzantievite is optically negative, uniaxial, w = 1.940, e = 1.860 ± 0.005. The new mi neral is pleochroic from light brown along e to very pale brown along w; ab sorp - tion is e >> w. Th e sym met ry is h exagon al, space gr oup R3, a = 9.128(5); c = 102.1(1) Å; V = 7363 3 (15) Å , Z = 3. The crystal structure was solved to R1 = 13.14%. The strong reflections in the X-ray powder – dif- fraction pattern are (d, Å; I; hkl): 4.02(2)(1 2 12); 3.95(2)(222); 3.112(10)(1 1 24; 1 2 24); 2.982(4)(321; 231); 2.908(2)(1 1 27; 138; 128); 2.885(2)(3 2 10; 2 3 10); 2.632(2)(030); 2.127(2)(0 0 48). The chemical composition is as follows (electron microprobe, average value and range of content of 60 point analyses; B2O3 was determined by SIMS; H2O on the basis of structural data; wt.%): SiO2 4.73(3.15–5.84), Nb2O5 10.97 (10.35–12.82), P2O5 3.83(2.64–4.88), TiO2 15.21(13.84–16.56), ThO2 1.48(1.48–1.88), UO2 0.55(0.29–0.35), La2O3 4.01(3.27–4.41), Ce2O3 9.19(6.76–9.73), Nd2O3 3.35(3.42–4.42), Pr2O3 1.02(0.17–1.77), Sm2O3 0.71 (0.58–1.23), Dy2O3 1.25(1.05–1.30), Gd2O3 0.95(0.68–1.49), Y2O3 7.39(5.21–9.00), B2O3 5.09(4.38–6.12), FeO 0.49(0.48–0.73), BaO 13.30(12.76–14.91), CaO 8.01(5.41–10.31), SrO 1.95(1.08–2.17), Na2O 0.16 (0.00–0.22), H2O 6.00, F 1.80(1.30–2.08), O=F (0.76), total is 100.68.
Recommended publications
  • Françoisite-(Ce)
    American Mineralogist, Volume 95, pages 1527–1532, 2010 Françoisite-(Ce), a new mineral species from La Creusaz uranium deposit (Valais, Switzerland) and from Radium Ridge (Flinders Ranges, South Australia): Description and genesis NICOLAS MEISSER,1,* JOËL BRUGGER,2,3 STEFA N AN SER M ET ,1 PHILI pp E THÉLI N ,4 A N D FRA N ÇOIS BUSSY 5 1Musée de Géologie and Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, UNIL, Anthropole, CH-1015 Lausanne-Dorigny, Switzerland 2South Australian Museum, North Terrace, 5000 Adelaide, Australia 3TRaX, School of Earth and Environmental Sciences, University of Adelaide, 5005 Adelaide, Australia 4Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, UNIL, Anthropole, CH-1015 Lausanne-Dorigny, Switzerland 5Laboratoire de la microsonde électronique, Institut de Minéralogie et de Géochimie, UNIL, Anthropole, CH-1015 Lausanne-Dorigny, Switzerland AB STRACT The new mineral françoisite-(Ce), (Ce,Nd,Ca)[(UO2)3O(OH)(PO4)2]·6H2O is the Ce-analog of françoisite-(Nd). It has been discovered simultaneously at the La Creusaz uranium deposit near Les Marécottes in Valais, Switzerland, and at the Number 2 uranium Workings, Radium Ridge near Mt. Painter, Arkaroola area, Northern Flinders Ranges in South Australia. Françoisite-(Ce) is a uranyl- bearing supergene mineral that results from the alteration under oxidative conditions of REE- and U4+- bearing hypogene minerals: allanite-(Ce), monazite-(Ce), ±uraninite at Les Marécottes; monazite-(Ce), ishikawaite-samarskite, and an unknown primary U-mineral at Radium Ridge. The REE composition of françoisite-(Ce) results from a short aqueous transport of REE leached out of primary minerals [most likely monazite-(Ce) at Radium Ridge and allanite-(Ce) at La Creusaz], with fractionation among REE resulting mainly from aqueous transport, with only limited Ce loss due to oxidation to Ce4+ during transport.
    [Show full text]
  • Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: “Dehydrated Schoepite” Is a Mineral After All
    American Mineralogist, Volume 96, pages 229–240, 2011 Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: “Dehydrated schoepite” is a mineral after all JOËL BRUGGER,1,2,* NICOLAS MEISSER,3 BAR B ARA ETSCH M A nn ,1 STEFA N AN SER M ET ,3 A N D ALLA N PRI N G 2 1Tectonics, Resources and Exploration (TRaX), School of Earth and Environmental Sciences, University of Adelaide, SA-5005 Adelaide, Australia 2Division of Mineralogy, South Australian Museum, SA-5000 Adelaide, Australia 3Musée Géologique and Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, UNIL—Anthropole, CH-1015 Lausanne-Dorigny, Switzerland AB STRACT Paulscherrerite, UO2(OH)2, occurs as an abundant dehydration product of metaschoepite at the Number 2 Workings at Radium Ridge, Northern Flinders Ranges, South Australia. The mineral name honors the contribution of Swiss physicist Paul Scherrer (1890–1969) to mineralogy and nuclear physics. Individual paulscherrerite crystals are tabular, reaching a maximum of 500 nm in length. Paulscherrerite has a canary yellow color and displays no fluorescence under UV light. Chemically, paulscherrerite is a pure uranyl hydroxide/hydrate, containing only traces of other metals (<1 wt% in total). Bulk (mg) samples always contain admixtures of metaschoepite (purest samples have ~80 wt% paulscherrerite). A thermogravimetric analysis corrected for the presence of metaschoepite contamina- tion leads to the empirical formula UO3·1.02H2O, and the simplified structural formula UO2(OH)2. Powder diffraction shows that the crystal structure of paulscherrerite is closely related to that of synthetic orthorhombic α-UO2(OH)2. However, splitting of some X-ray diffraction lines suggests a monoclinic symmetry for type paulscherrerite, with a = 4.288(2), b = 10.270(6), c = 6.885(5) Å, β = 3 90.39(4)°, V = 303.2(2) Å , Z = 4, and possible space groups P2, P21, P2/m, or P21/m.
    [Show full text]
  • Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization
    materials Review Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization Albina I. Orlova 1 and Michael I. Ojovan 2,3,* 1 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603950 Nizhny Novgorod, Russian Federation 2 Department of Radiochemistry, Lomonosov Moscow State University, Moscow 119991, Russia 3 Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK * Correspondence: [email protected] Received: 31 May 2019; Accepted: 12 August 2019; Published: 19 August 2019 Abstract: Crystalline ceramics are intensively investigated as effective materials in various nuclear energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization. This paper presents an analysis of the current status of work in this field of material sciences. We have considered inorganic materials characterized by different structures, including simple oxides with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite, garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite (sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite, micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure. These materials can contain in their composition various cations in different combinations and ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce, rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk) ceramics.
    [Show full text]
  • New Mineral Names*
    American Mineralogist, Volume 68, pages 280-2E3, 1983 NEW MINERAL NAMES* MrcnnBr- FrelscHen AND ADoLF Pnnsr Arsendescloizite* The mineral occurs at Uchucchacua,Peru, in acicular crystals up to 2fi) x 20 microns, associatedwith galena, manganoan (1982) Paul Keller and P. J. Dunn Arsendescloizite, a new sphalerite, pyrite, pyrrhotite, and alabandite, with gangue of mineral from Tsumeb. Mineralog. Record, 13, 155-157. quartz, bustamite, rhodonite, and calcite. Also found at Stitra, pyrite-pyrrhotite in rhyo- Microprobe analysis (HzO by TGA) gave AszOs 26.5, PbO Sweden,in a metamorphosed deposit 52.3,ZnO1E.5, FeO 0.3, Il2O2.9, sum 100.5%,corresponding to litic and dacitic rocks; in roundedgrains up to 50 fl.min diameter, associated with galena, freibergite, gudmundite, manganoan Pb1.s6(Zn1.63Fe6.oJ(AsOaXOH)1a or PbZn(AsO+XOH), the ar- senateanalogue ofdescloizite. The mineral is slightly soluble in sphalerite,bismuth, and spessartine. hot HNO3. The name is for A. Benavides, for his contribution to the Weissenbergand precessionmeasurements show the mineral development of mining in Peru. Type material is at the Ecole (Uchucchacua)and at the Free to be orthorhombic, space group F212121,a : 6.075, b = 9.358, Natl. Superieuredes Mines, Paris (SAtra). c = 7.$44, Z = 4, D. calc. 6.57. The strongestX-ray lines University, Amsterdam, Netherlands M.F. (31 eiven) are 4.23(6)(lll); 3.23(lOXl02);2.88(10)(210,031); 2.60 Kolfanite* (E)(13 I ) ; 2.W6)Q3r) ; I .65(6X33I, 143,233); r.559 (EX3I 3,060,25I ). Crystalsare tabular up to 1.0 x 0.4 x 0.5 mm in size, on {001}, A.
    [Show full text]
  • Glasses and Glass Ceramics for Medical Applications
    Glasses and Glass Ceramics for Medical Applications Emad El-Meliegy Richard van Noort Glasses and Glass Ceramics for Medical Applications Emad El-Meliegy Richard van Noort Department of Biomaterials Department of Adult Dental Care National Research centre School of Clinical Dentistry Dokki Cairo, Egypt Sheffi eld University [email protected] Claremont Crescent Sheffi eld, UK r.vannoort@sheffi eld.ac.uk ISBN 978-1-4614-1227-4 e-ISBN 978-1-4614-1228-1 DOI 10.1007/978-1-4614-1228-1 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011939570 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Glass-ceramics are a special group of materials whereby a base glass can crystallize under carefully controlled conditions. Glass-ceramics consist of at least one crystalline phase dispersed in at least one glassy phase created through the controlled crystallization of a base glass.
    [Show full text]
  • SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE and COMPLEX URANYL HYDROXIDES in ORES Andrey A
    New Data on Minerals. 2011. Vol. 46 71 SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE AND COMPLEX URANYL HYDROXIDES IN ORES Andrey A. Chernikov Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, [email protected], [email protected] The review of published and new own data of simple uranium oxides revealed that the formation of five simple oxides is probable: nasturan, sooty pitchblende, uraninite, uranothorianite, and cerianite. Among simple oxides, nasturan, sooty pitchblende, and uraninite are the most abundant in ores varied in genesis and mineralogy. Uranothorianite or thorium uraninite (aldanite) is occasional in the ores, while cerianite is believed in U-P deposits of Northern Kazakhstan. Hydrated nasturan is the most abundant among three uranium (IV+VI) hydroxides in uranium ores. Insignificant ianthinite was found in few deposits, whereas cleusonite was indentified only in one deposit. Simple uranyl hydroxides, schoepite, metaschoepite, and paraschoepite, are widespread in the oxidized ores of the near-surface part of the Schinkolobwe deposit. They are less frequent at the deeper levels and other deposits. Studtite and metastudtite are of insignificant industrial importance, but are of great inter- est to establish genesis of mineral assemblages in which they are observed, because they are typical of strongly oxidized conditions of formation of mineral assemblages and ores. The X-ray amorphous urhite associated with hydrated nasturan and the X-ray amorphous hydrated matter containing ferric iron and U6+ described for the first time at the Lastochka deposit, Khabarovsk krai, Russia are sufficiently abundant uranyl hydroxides in the oxidized uranium ores. Significant complex uranyl hydroxides with interlayer K, Na, Ca, Ba, Cu, Pb, and Bi were found basically at a few deposits: Schinkolobwe, Margnac, Wölsendorf, Sernyi, and Tulukuevo, and are less frequent at the other deposits, where quite large monomineralic segregations of nasturan and crystals of uraninite were identified.
    [Show full text]
  • Uranium Metallogeny in the North Flinders Ranges Region of South Australia
    Uranium metallogeny in the North Flinders Ranges region of South Australia Pierre-Alain Wülser Department of Geology and Geophysics Adelaide University This thesis is submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, Adelaide University June 2009 170 REFERENCES A Allen, S. R., McPhie, J., Ferris, G. & Simpson, C. (2008). Evolution and architecture of a large felsic Igneous Province in western Laurentia: the 1.6 Ga Gawler Range Volcanics, South Australia. Journal of Volcanology and Geothermal Research 172, 132-147. Alley, N. F. & Frakes, L. A. (2003). First known Cretaceous glaciation: Livingston Tillite Member of the Cadna-owie Formation, South Australia. Australian Journal of Earth Sciences 50, 139-144. Alpers, C. N., Rye, R. O., Nordstrom, D. K., White, L. D. & King, B.-S. (1992). Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-hypersaline Australian lakes. Chemical Geology 96, 203-226. An, Z., Bowler, J. M., Opdyke, N. D., Macumber, N. D. & Firman, J. B. (1986). Paleomagnetic stratigraphy of Lake Bungunnia: Plio-Pleistocene precursor of aridity in the Murray basin, southeastern Australia. Paleogeography, Paleoclimatology, Paleoecology 54, 219-239. Andersen, T. (2002). Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 59- 79. Arancibia, G., Matthews, S. J. & Arce, C. P. d. (2006). K-Ar and 40Ar/39Ar geochronology of supergene processes in the Atacama Desert, Northern Chile: tectonic and climatic relations. Journal of the Geological Society, London 163, 107- 118. B Bajo, C., Rybach, L. & Weibel, M. (1983a). Extraction of uranium and thorium from Swiss granites and their microdistribution - 1.
    [Show full text]
  • Glossary of Obsolete Mineral Names
    Uaranpecherz = uraninite, László 282 (1995). überbasisches Cuprinitrat = gerhardtite, Hintze I.3, 2741 (1916). überbrannter Amethyst = heated 560ºC red-brown Fe-rich quartz, László 11 (1995). Überschwefelblei = galena + anglesite + sulphur-α, Chudoba RI, 67 (1939); [I.3,3980]. uchucchacuaïte = uchucchacuaite, MR 39, 134 (2008). uddervallite = pseudorutile, Hey 88 (1963). uddevallite = pseudorutile, Dana 6th, 218 (1892). uddewallite = pseudorutile, Des Cloizeaux II, 224 (1893). udokanite = antlerite, AM 56, 2156 (1971); MM 43, 1055 (1980). uduminelite (questionable) = Ca-Al-P-O-H, AM 58, 806 (1973). Ueberschwefelblei = galena + anglesite + sulphur-α, Egleston 132 (1892). Uekfildit = wakefieldite-(Y), Chudoba EIV, 100 (1974). ufalit = upalite, László 280 (1995). uferite = davidite-(La), AM 42, 307 (1957). ufertite = davidite-(La), AM 49, 447 (1964); 50, 1142 (1965). U-free thorite = huttonite, Clark 303 (1993). U-galena = U-rich galena, AM 20, 443 (1935). ugandite = bismutotantalite, MM 22, 187 (1929). ughvarite = nontronite ± opal-C, MAC catalog 10 (1998). ugol = coal, Thrush 1179 (1968). ugrandite subgroup = uvarovite + grossular + andradite ± goldmanite ± katoite ± kimzeyite ± schorlomite, MM 21, 579 (1928). uhel = coal, Thrush 1179 (1968). Uhligit (Cornu) = colloidal variscite or wavellite, MM 18, 388 (1919). Uhligit (Hauser) = perovskite or zirkelite, CM 44, 1560 (2006). U-hyalite = U-rich opal, MA 15, 460 (1962). Uickenbergit = wickenburgite, Chudoba EIV, 100 (1974). uigite = thomsonite-Ca + gyrolite, MM 32, 340 (1959); AM 49, 223 (1964). Uillemseit = willemseite, Chudoba EIV, 100 (1974). uingvárite = green Ni-rich opal-CT, Bukanov 151 (2006). uintahite = hard bitumen, Dana 6th, 1020 (1892). uintaite = hard bitumen, Dana 6th, 1132 (1892). újjade = antigorite, László 117 (1995). újkrizotil = chrysotile-2Mcl + lizardite, Papp 37 (2004). új-zéalandijade = actinolite, László 117 (1995).
    [Show full text]
  • Joëlbruggerite, Pb3zn3(Sb5+,Te6+)
    American Mineralogist, Volume 94, pages 1012–1017, 2009 5+ 6+ 5+ Joëlbruggerite, Pb3Zn3(Sb ,Te )As2O13(OH,O), the Sb analog of dugganite, from the Black Pine mine, Montana STUART J. MILLS ,1,* UWE KOLITSCH ,2 RITSURO MIYAWAKI ,3 LEE A. GROAT ,1 AND GLENN POIRIER 4 1Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4, Canada 2Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum Wien, Burgring 7, A-1010 Wien, Austria 3Department of Geology, National Museum of Nature and Science, 3-23-1, Hyakunin-cho, Shinjuku, Tokyo 169-0073, Japan 4Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ABSTRACT 5+ 6+ Joëlbruggerite, ideally Pb3Zn3(Sb ,Te )As2O13(OH,O), is a new arsenate mineral (IMA 2008-034) and the Sb5+ analog of dugganite, from the Black Pine mine, 14.5 km northwest of Philipsburg, Granite County, Montana. It is usually found perched on mimetite; other species that may be present include malachite, azurite, pseudomalachite, chalcocite, beudantite-corkite, duftite, dugganite, and kuksite, in milky quartz veins. Joëlbruggerite occurs as barrel-shaped or prismatic crystals up to about 50 µm across in various shades of purple. The crystals have an adamantine luster and a white streak. Mohs hardness is about 3. The fracture is irregular, and the tenacity is brittle. Joëlbruggerite crystals are uniaxial (–), with a calculated refractive index of n = 1.993, and weakly pleochroic: X = Y = gray, Z = purple; absorption: Z > X = Y. Crystals show straight extinction and are length-fast. The empirical chemical formula (mean of 5 electron microprobe analyses) calculated on the basis of 14 [O + OH] 2+ 5+ 6+ anions is Pb3.112(Zn2.689Fe0.185)Σ2.874(Sb0.650Te 0.451)Σ1.101(As1.551P0.203Si0.160)Σ1.914O13.335(OH)0.665.
    [Show full text]
  • Characterisation of Fluorine Containing Glasses and Glass-Ceramics
    Available online at www.sciencedirect.com Journal of the European Ceramic Society 29 (2009) 2185–2191 Characterisation of fluorine containing glasses and glass-ceramics by 19F magic angle spinning nuclear magnetic resonance spectroscopy R.G. Hill a, R.V. Law b, M.D. O’Donnell a,b,∗,J.Hawesb, N.L. Bubb c, D.J. Wood c, C.A. Miller d, M. Mirsaneh e, I. Reaney e a Department of Materials, Imperial College, London SW7 2BP, UK b Department of Chemistry, Imperial College, London SW7 2BP, UK c Leeds Dental Institute, University of Leeds, Leeds LS2 9LU, UK d The School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK e Department of Engineering Materials, The University of Sheffield, Sheffield S1 3JD, UK Received 10 July 2008; received in revised form 18 December 2008; accepted 13 January 2009 Available online 28 February 2009 Abstract 19F magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was used to characterise the local environment of fluorine in three types of fluorine containing glass-ceramics. The glass-ceramic compositions studied included four that crystallised to fluorcanasite, one which crystallised to barium fluorphlogopite and one which crystallised to fluorrichterite. In the fluorcanasite glasses, prior to crystallisation, the fluorine was present solely as an F–Ca(n) species whilst following crystallisation it was also present as an F–Ca(n) species in the fluorcanasite phase and in those glasses containing AlPO4 it was also present as an F–Ca(n) species in fluorapatite. In the fluorrichterite and fluorphlogopite glasses the fluorine was present predominantly as F–Mg(3) and following crystallisation it was also present as F–Mg(3) in the fluorrichterite and fluorphlogopite phases.
    [Show full text]
  • HEPHAISTOSITE, Tipb2cls, a NEW THALLIUM MINERAL SPECIES from LA FOSSA CRATER, VULCANO, AEOLIAN ISLANDS, ITALY
    701 The Canadian Mineralogist Vol. 46, pp. 701-708 (2008) DOl: 1O.3749/canmin.46.3.701 HEPHAISTOSITE, TIPb2Cls, A NEW THALLIUM MINERAL SPECIES FROM LA FOSSA CRATER, VULCANO, AEOLIAN ISLANDS, ITALY ITALO CAMPOSTRINI, FRANCESCO DEMARTIN§ AND CARLO MARIA GRAMACCIOLI Dipartimento di Chimiea Strutturale e Stereoehimiea Inorganiea, Universita degli Studi di Milano, via Venezian 21,1-20133 Milano, Italy PAOLO ORLANDI Dipartimento di Scien;e della Terra, Universita degli Studi di Pisa, Via S. Maria 53, 1-56126 Pisa, Italy ABSTRACT Hephaistosite, TIPb2CIs, a newly discovered species of thallium lead chloride, was found in a high-temperature fumarole (~400°C) at the rim of La Fossa crater, Vulcano Island, Aeolian archipelago, Sicily, Italy. The mineral occurs as aggregates of pale yellow-green crystals tabular on {01O} up to 0.1 mm in length on fragments of altered pyroclastic breccia, in association with bismuthinite (Bi2S3), cotunnite (PbCh), challacolloite (KPb2CIs) and pseudocotunnite (K2PbCI4). The mineral is mono- clinic, space group P21/e. Cell parameters refined from powder-diffraction data are: a 8.9477(6), b 7.9218(7), e 12.4955(5) A, 13 90.092(4t, V 885.70(7) A3, with Z = 4. The strongest six reflections in the X-ray powder-diffraction data [d (in A)(l)(hkl)] are: 3.696(100)(013),3.971(83)(020), 2.109(45)(402,215), 2.569(42)(204),1.848(41)(142,026), and 2.851(38)(213). Crystals of hephaistosite show the forms {01O}, {101}, {110}, {100}, {001}, and {011}. Chemical analyses obtained by EDS microprobe gave, on average, in wt.%, TI23.78, K 0.01, Pb 51.78, CI21.40, Br 1.34, F 0.17, for a total of98.48, corresponding to an empirical formula (based on 8 apfu) of Tl094Pb201(CI48SBr014Fo07)1506.
    [Show full text]
  • Investigating the Validity of the ISO 6872:2015 'Dentistry
    Investigating the Validity of the ISO 6872:2015 ‘Dentistry - Ceramic Materials’ for Chemical Solubility By: Rayan Hawsawi A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Academic Unit of Restorative Dentistry School of Clinical Dentistry The University of Sheffield December 2018 Summary Most research regarding dental ceramics focuses on the mechanical, physical and optical properties. These properties are important; however, the chemical durability of dental ceramics is also significant. The oral cavity is a complex environment, ‘in vitro’ studies have not succeeded in replicating the solubility measurements of dental ceramics perfectly. The International Organization for Standardisation has published revised chemical solubility testing methods for dental ceramics ISO 6872. These methods failed to improve the reproducibility of the chemical solubility findings (Stokes et al., 2002), which led many researchers to develop alternative methods. Nevertheless, these ISO methods have received limited criticism in the literature. Therefore, the aim of this research was to investigate the validity of the ISO 6872 (BS ISO, 2015) ‘Dentistry: Ceramic materials’ for chemical solubility, and if required design a superior method. The current standard ISO 6872 (BS ISO, 2015) specifies the total surface area of the test specimens only. Therefore, the research hypothesis is that any alteration of the specimens’ geometry will affect the chemical solubility value of the same material. II The initial findings showed that chemical solubility can be manipulated by altering the geometry of individual test specimens whilst still complying with the current standard. Characterisation tests such as SEM, EDS, XRD, ICP and Vickers hardness were performed to investigate the effects of the test environment on the specimens.
    [Show full text]