Replicating Sequences (Minchromosome Instability/Cell Cyle-Dependent Nuclear Lctlon/Protein Family Involved in DNA Replication) YANRU CHEN*, KEVIN M

Total Page:16

File Type:pdf, Size:1020Kb

Replicating Sequences (Minchromosome Instability/Cell Cyle-Dependent Nuclear Lctlon/Protein Family Involved in DNA Replication) YANRU CHEN*, KEVIN M Proc. Nati. Acad. Sci. USA Vol. 89, pp. 10459-10463, November 1992 Biochemistry CDC46/MCM5, a yeast protein whose subcellular localization is cell cycle-regulated, is involved in DNA replication at autonomously replicating sequences (minchromosome instability/cell cyle-dependent nuclear lctlon/protein family Involved in DNA replication) YANRU CHEN*, KEVIN M. HENNESSYt, DAVID BOTSTEINt, AND BIK-KWOON TYE* *Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853; and tDepartment of Genetics, Stanford University, Stanford, CA 94305 Contributed by David Botstein, July 31, 1992 ABSTRACT Saccharomyces cerevisiae cells containing mu- With this approach, a number of minichromosome main- tations in the cell-division-cycle gene CDC46 arrest with a large tenance mutants were isolated. Mutants in several comple- bud and a single nucleus with unreplicated DNA at the non- mentation groups were of particular interest because they permissive temperature. This G1/S arrest, together with the show an ARS-specific minichromosome maintenance defect. increased rates of mitotic chromosome loss and recombination These mutants have an effect on the stability of all minichro- phenotype, suggests that these mutants are defective in DNA mosomes tested, but those carrying certain ARSs are much replication. The subcellular localization of the CDC46 protein more affected than others (3). Although minichromosome changes with the cell cycle; it is nuclear between the end of M instability seems to be a general property of replication- phase and the G1/S transition but is cytoplasmic in other defective mutants, this ARS specificity is unique to the mcm phases of the cell cycle. Here we show that CDC46 is identical mutants, suggesting that they harbor defects in DNA repli- to MCM5, based on complementation analysis of the mcm5-1 cation targeted at ARSs (4). Three of these MCM genes, and cdc46-1 alleles, complementation of the minichromosome MCMI, MCM2, and MCM3, have been cloned and further maintenance defect of mcm5-1 by CDC46, and the genetic characterized. Mutants in MCMJ (4), MCM2 (5), and MCM3 linkage of these two genes. Like mcm5-1, cdc46-1 and cdc46-5 (6) all show increased chromosome loss and recombination, also show a mimchromosome maintenance defect thought to be characteristic of mutants defective in DNA replication (7). associated with DNA replication initiation at autonomously Furthermore, instability of minichromosomes in the mcm2-1 replicating sequences. Taken together, these observations sug- mutant has been shown to be due to plasmid loss or nonrep- gest that CDC46/MCM5 acts during a very narrow window at lication rather than missegregation (5). the G,/S transition or the inning of S phase by virtue of its MCMJ encodes a DNA-binding protein that acts both as a nuclear localization to effect the initiation of DNA replication transcription factor (8, 9) and a replication initiator (10) by at autonomously replicating sequences. binding to regulatory sequences upstream of a number of mating type-specific genes (11-13) and to ARSs (C. Christ, V. The eukaryotic genome is replicated once and only once Chang, and B.-K.T., unpublished results). Genetic analysis within a defined period ofthe cell cycle. Replication requires indicates that MCM2 and MCM3 carry out related functions the coordinated initiation ofDNA synthesis at multiple sites. (14). Double mutants ofmcm2 and mcm3 result in a synthetic These initiation events are under cell cycle control such that lethal phenotype. Furthermore, overproduction of MCM2 DNA synthesis occurs only during S phase and reinitiation is complements the mcm3-J mutation while overproduction of prevented until the next cell cycle. Molecular events that lead MCM3 is lethal to the mcm2-1 mutant. Interestingly, MCM2 to and MCM3 show striking similarity in their protein sequences replication initiations in response to cell cycle signals are (14). This homology extends to other known proteins, CDC46 largely unknown. of S. cerevisiae and CDC21 of Schizosaccharomyces pombe The genome of the budding yeast Saccharomyces cerevi- (A. Coxon and S. Kearsey, personal communication). Phe- siae is estimated to contain 200-400 replication origins that notypes of cdc46 and Cdc21- mutant strains are consistent can be cloned on plasmids as autonomously replicating with defects in DNA replication. This finding led us to sequences (ARSs) (1, 2). The cloning of ARSs on plasmids postulate that these proteins constitute a family of at least provides a convenient means to identify gene products in- four members, all of which play important roles in the early volved in ARS function by screening for mutants that desta- steps of DNA replication (14, 15). bilize minichromosomes containing one of these ARSs (3). Conditional mutations that completely block the initiation The most attractive feature of this approach is that it allows step of all DNA synthesis are expected to have a Gl-arrest one to isolate viable mutants with a defect in a specific phenotype. The cdc46 mutations were originally identified as function without relying on general phenotypes, such as cell allele-specific suppressors ofcdc45 and cdc54 mutations (16). cycle arrest, which often give no information on the execu- These cdc mutants arrest at the G1/S transition or the tion point of the lesion. This feature is particularly important beginning of the S phase of the cell cycle. The subcellular if replication origins are coordinately regulated in groups via localization of CDC46 has been shown to be under cell cycle shared initiator proteins. Thus, elimination of a particular control: it appears in the nucleus at late M phase and persists initiator protein that is responsible for the initiation of only a in the nucleus until the G1/S transition (17). In addition to the subset ofARSs may not necessarily be lethal to the cell since striking homology of CDC46 to the MCM2 and MCM3 replication of inactive replicons by merging neighboring proteins, the cdc46-1 mutant exhibits phenotypes similar to replicons would be expected. those of the mcm2 and mcm3 mutants, showing high rates of mitotic chromosome loss and recombination (15). If MCM2, The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviations: ARS, autonomously replicating sequence; FOA, in accordance with 18 U.S.C. §1734 solely to indicate this fact. 5-fluoroorotic acid; Cm-ura, complete medium lacking urocil. 10459 10460 Biochemistry: Chen et al. Proc. Nat!. Acad. Sci. USA 89 (1992) MCM3, and CDC46 are members of a protein family related fluoroorotic acid) plates were made according to Boeke et al. in structure and function, it seems likely that cdc46 mutants (22). should also show an ARS-specific minichromosome mainte- Construction of Heterozygous Diploids from Haploids with nance defect. In fact, we surmised that CDC46 may corre- Simfiar Genetic Markers. To cross strains, such as RM11-2A spond to one of the original ARS-specific MCM genes and 8534-8C, that contain many of the same selectable identified by Maine et al. (3). markers, 8534-8C was transformed with YCp1O1 (carrying In this paper, we show that CDC46 is identical to MCMS. LEU2). Diploids were selected on complete medium lacking We further present data to show that CDC46 is required for histidine and leucine (Cm-his-leu). Diploids were con- minichromosome maintenance in an ARS-specific manner. firmed by their ability to sporulate and their inability to mate. Genetic Techniques and DNA Transformation. Mating, MATERIALS AND METHODS sporulation, and meiotic tetrad analysis were carried out as Strains and Plasmids. Escherichia coli strain DH5a (BRL) described (21). Transformation of yeast cells with plasmids was used for plasmid construction and amplification. Yeast was carried out by a modified lithium acetate method (23). strain 8534-8C (MATa leu2-3,112 ura3-52 his4-A34) is the Mitotic Stability Assay for Plsmids. The stability assay parent strain of the mcm mutants (3, 18). The mcmS-1 strain measured the cumulative loss of minichromosomes from a is strain 1-11 described by Maine et al. (3). Two strains of yeast culture after 10-12 generations of nonselective growth mcmS-1 that resulted from backcross were used in this study: at specified temperatures (3). Complete medium lacking RM11-2A (MATa leu2-3,112 ura3-52 mcmS-1) and RM11-2B uracil (Cm-ura) served as the selective medium for retaining (MATa leu2-3,112 his4-A34 mcmS-1). R61-2B (MATa, leu2-3, YCp5OCDC46 and YCp5O in the cells, while Cm-ura-leu 112 ura3-S2 his3-11,lS mcm3-1) has been described (6). The additionally selected for the test plasmid. The final stability double mutant mcm2-1 mcm4-1 (MATa leu2-3,112 ura3-52 (F) of the test plasmid was calculated as the percentage of his4A34 mcm2 mcm4) was constructed by H. Yan (Cornell cells growing on Cm-ura-leu after 10-12 generations of University, Ithaca, NY). DBY2028 (MATa ura3-52 ade2-1 nonselective growth on Cm-ura plates. The minichromo- lys2-801 leu2-3,112 cdc46-1) and YRC1 (MATa lys2-801 some loss rate is defined as the rate of plasmid loss per cell ade2-101 his3-A200 leu2-Al ura3-52 cdc46-5) have two dif- division. It is expressed as 1-(F/l)1/N, where I is the initial ferent cdc46 alleles that suppress cdc45-1 and cdc54-1, re- percentage of plasmid-containing cells and F is the percent- spectively (17). The strain YPH500 (MATa ura3-52 lys2-801 age of plasmid-containing cells after N generations of non- ade2-101 trpl-A63 his3A200 leu2-AJ) used for genetic map- selective growth. ping was obtained from the Yeast Genetic Stock Center (Berkeley, CA). RESULTS The plasmids used in this study are listed in Table 1. CDC46 Complements mcmS but Not mcm2, mcm3, mcm4, or YCp5OCDC46 has a 15.6-kilobase (kb) fragment containing the mcm7.
Recommended publications
  • Pan-Cancer Analysis of Alternative Lengthening of Telomere Activity
    cancers Article Pan-Cancer Analysis of Alternative Lengthening of Telomere Activity Ji-Yong Sung 1,2, Hee-Woong Lim 3, Je-Gun Joung 1,* and Woong-Yang Park 1,2,4,* 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; [email protected] 2 Department of Health Science and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea 3 Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; [email protected] 4 Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Seoul 06351, Korea * Correspondence: [email protected] (J.-G.J.); [email protected] (W.-Y.P.); Tel.: +82-2-3410-1706 (J.-G.J.); +82-2-3410-6128 (W.-Y.P.); Fax: +82-2-2148-9819 (W.-Y.P.) Received: 30 June 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: Alternative lengthening of telomeres (ALT) is a telomerase-independent mechanism that extends telomeres in cancer cells. It influences tumorigenesis and patient survival. Despite the clinical significance of ALT in tumors, the manner in which ALT is activated and influences prognostic outcomes in distinct cancer types is unclear. In this work, we profiled distinct telomere maintenance mechanisms (TMMs) using 8953 transcriptomes of 31 different cancer types from The Cancer Genome Atlas (TCGA). Our results demonstrated that approximately 29% of cancer types display high ALT activity with low telomerase activity in the telomere-lengthening group. Among the distinct ALT mechanisms, homologous recombination was frequently observed in sarcoma, adrenocortical carcinoma, and kidney chromophobe. Five cancer types showed a significant difference in survival in the presence of high ALT activity.
    [Show full text]
  • Differential Inhibition of the Initiation of DNA Replication in Stringent and Relaxed Strains of Escherichia Coli
    Genet. Res., Comb. (1988), 51, pp. 173-177 With 5 text-figures Printed in Great Britain 173 Differential inhibition of the initiation of DNA replication in stringent and relaxed strains of Escherichia coli ELENA C. GUZMAN, FRANCISCO J. CARRILLO AND ALFONSO JIMENEZ-SANCHEZ Departamento de Bioquimica y Biologia Molecular y Genetica, Laboratorio de Genetica, Universidad de Extremadura, 06080 Badajoz, Spain (Received I May 1987 and in revised form 30 October 1987) Summary Starvation for isoleucine inhibits chromosome, minichromosome and pBR322 DNA replication in a stringent strain of E. coli, but does not do so in a relaxed mutant. Starvation for other amino acids inhibits either chromosome and minichromosome replication in both strains. From these results we conclude that oriC and pBR322 replication are stringently regulated and that isoleucine seems not to be essential for the protein synthesis required at the initiation of oriC replication. Deprivation of isoleucine in a Rel~ strain gives rise to amplification of minichromosome and pBR322 with a better yield of the latter plasmid than that following treatment with chloramphenicol. 1. Introduction amino acid inhibits the rate of RNA synthesis only in the stringent strain, as previously reported (Cashel, Initiation of chromosome replication requires RNA 1975; Gallant, 1979), whereas protein synthesis is and protein synthesis (Maaloe & Hanawalt, 1961; fully inhibited in both stringent and relaxed strains Messer, 1972) and inhibition of the synthesis of either after starvation for either isoleucine or arginine. From of these macromolecules has long been used to inhibit these results we conclude that initiation of oriC and the initiation step without affecting elongation (Bre- pBR322 replication is stringently regulated and that mer & Churchward, 1977, Maaloe & Hanawalt, isoleucine seems not to be essential for the protein 1961).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S5. Differentially Expressed Gene Lists of PD-1High CD39+ CD8 Tils According to 4-1BB Expression Compared to PD-1+ CD39- CD8 Tils
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Supplementary Table S5. Differentially expressed gene lists of PD-1high CD39+ CD8 TILs according to 4-1BB expression compared to PD-1+ CD39- CD8 TILs Up- or down- regulated genes in Up- or down- regulated genes Up- or down- regulated genes only PD-1high CD39+ CD8 TILs only in 4-1BBneg PD-1high CD39+ in 4-1BBpos PD-1high CD39+ CD8 compared to PD-1+ CD39- CD8 CD8 TILs compared to PD-1+ TILs compared to PD-1+ CD39- TILs CD39- CD8 TILs CD8 TILs IL7R KLRG1 TNFSF4 ENTPD1 DHRS3 LEF1 ITGA5 MKI67 PZP KLF3 RYR2 SIK1B ANK3 LYST PPP1R3B ETV1 ADAM28 H2AC13 CCR7 GFOD1 RASGRP2 ITGAX MAST4 RAD51AP1 MYO1E CLCF1 NEBL S1PR5 VCL MPP7 MS4A6A PHLDB1 GFPT2 TNF RPL3 SPRY4 VCAM1 B4GALT5 TIPARP TNS3 PDCD1 POLQ AKAP5 IL6ST LY9 PLXND1 PLEKHA1 NEU1 DGKH SPRY2 PLEKHG3 IKZF4 MTX3 PARK7 ATP8B4 SYT11 PTGER4 SORL1 RAB11FIP5 BRCA1 MAP4K3 NCR1 CCR4 S1PR1 PDE8A IFIT2 EPHA4 ARHGEF12 PAICS PELI2 LAT2 GPRASP1 TTN RPLP0 IL4I1 AUTS2 RPS3 CDCA3 NHS LONRF2 CDC42EP3 SLCO3A1 RRM2 ADAMTSL4 INPP5F ARHGAP31 ESCO2 ADRB2 CSF1 WDHD1 GOLIM4 CDK5RAP1 CD69 GLUL HJURP SHC4 GNLY TTC9 HELLS DPP4 IL23A PITPNC1 TOX ARHGEF9 EXO1 SLC4A4 CKAP4 CARMIL3 NHSL2 DZIP3 GINS1 FUT8 UBASH3B CDCA5 PDE7B SOGA1 CDC45 NR3C2 TRIB1 KIF14 TRAF5 LIMS1 PPP1R2C TNFRSF9 KLRC2 POLA1 CD80 ATP10D CDCA8 SETD7 IER2 PATL2 CCDC141 CD84 HSPA6 CYB561 MPHOSPH9 CLSPN KLRC1 PTMS SCML4 ZBTB10 CCL3 CA5B PIP5K1B WNT9A CCNH GEM IL18RAP GGH SARDH B3GNT7 C13orf46 SBF2 IKZF3 ZMAT1 TCF7 NECTIN1 H3C7 FOS PAG1 HECA SLC4A10 SLC35G2 PER1 P2RY1 NFKBIA WDR76 PLAUR KDM1A H1-5 TSHZ2 FAM102B HMMR GPR132 CCRL2 PARP8 A2M ST8SIA1 NUF2 IL5RA RBPMS UBE2T USP53 EEF1A1 PLAC8 LGR6 TMEM123 NEK2 SNAP47 PTGIS SH2B3 P2RY8 S100PBP PLEKHA7 CLNK CRIM1 MGAT5 YBX3 TP53INP1 DTL CFH FEZ1 MYB FRMD4B TSPAN5 STIL ITGA2 GOLGA6L10 MYBL2 AHI1 CAND2 GZMB RBPJ PELI1 HSPA1B KCNK5 GOLGA6L9 TICRR TPRG1 UBE2C AURKA Leem G, et al.
    [Show full text]
  • Pul21a-Cyclin A2 Interaction Is Required to Protect Human Cytomegalovirus-Infected Cells from the Deleterious Consequences of Mitotic Entry
    PUL21a-Cyclin A2 Interaction is Required to Protect Human Cytomegalovirus-Infected Cells from the Deleterious Consequences of Mitotic Entry Martin Eifler1¤a, Ralf Uecker1, Henry Weisbach1, Boris Bogdanow1¤b, Ellen Richter1¤c, Lydia Ko¨ nig1, Barbara Vetter1, Tihana Lenac-Rovis2, Stipan Jonjic2, Heidemarie Neitzel3, Christian Hagemeier1*, Lu¨ der Wiebusch1* 1 Labor fu¨rPa¨diatrische Molekularbiologie, Charite´ Universita¨tsmedizin Berlin, Berlin, Germany, 2 Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia, 3 Institut fu¨r Medizinische Genetik und Humangenetik, Charite´ Universita¨tsmedizin Berlin, Berlin, Germany Abstract Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV) what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a), has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C) inhibitory function of pUL21a.
    [Show full text]
  • Bioinformatics-Based Screening of Key Genes for Transformation of Liver
    Jiang et al. J Transl Med (2020) 18:40 https://doi.org/10.1186/s12967-020-02229-8 Journal of Translational Medicine RESEARCH Open Access Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma Chen Hao Jiang1,2, Xin Yuan1,2, Jiang Fen Li1,2, Yu Fang Xie1,2, An Zhi Zhang1,2, Xue Li Wang1,2, Lan Yang1,2, Chun Xia Liu1,2, Wei Hua Liang1,2, Li Juan Pang1,2, Hong Zou1,2, Xiao Bin Cui1,2, Xi Hua Shen1,2, Yan Qi1,2, Jin Fang Jiang1,2, Wen Yi Gu4, Feng Li1,2,3 and Jian Ming Hu1,2* Abstract Background: Hepatocellular carcinoma (HCC) is the most common type of liver tumour, and is closely related to liver cirrhosis. Previous studies have focussed on the pathogenesis of liver cirrhosis developing into HCC, but the molecular mechanism remains unclear. The aims of the present study were to identify key genes related to the transformation of cirrhosis into HCC, and explore the associated molecular mechanisms. Methods: GSE89377, GSE17548, GSE63898 and GSE54236 mRNA microarray datasets from Gene Expression Omni- bus (GEO) were analysed to obtain diferentially expressed genes (DEGs) between HCC and liver cirrhosis tissues, and network analysis of protein–protein interactions (PPIs) was carried out. String and Cytoscape were used to analyse modules and identify hub genes, Kaplan–Meier Plotter and Oncomine databases were used to explore relationships between hub genes and disease occurrence, development and prognosis of HCC, and the molecular mechanism of the main hub gene was probed using Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis.
    [Show full text]
  • Gene Expression Profiling Analysis Contributes to Understanding the Association Between Non-Syndromic Cleft Lip and Palate, and Cancer
    2110 MOLECULAR MEDICINE REPORTS 13: 2110-2116, 2016 Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer HONGYI WANG, TAO QIU, JIE SHI, JIULONG LIANG, YANG WANG, LIANGLIANG QUAN, YU ZHANG, QIAN ZHANG and KAI TAO Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China Received March 10, 2015; Accepted December 18, 2015 DOI: 10.3892/mmr.2016.4802 Abstract. The present study aimed to investigate the for NSCL/P were implicated predominantly in the TGF-β molecular mechanisms underlying non-syndromic cleft lip, signaling pathway, the cell cycle and in viral carcinogenesis. with or without cleft palate (NSCL/P), and the association The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were between this disease and cancer. The GSE42589 data set found to be associated, not only with NSCL/P, but also with was downloaded from the Gene Expression Omnibus data- cancer. These results may contribute to a better understanding base, and contained seven dental pulp stem cell samples of the molecular mechanisms of NSCL/P. from children with NSCL/P in the exfoliation period, and six controls. Differentially expressed genes (DEGs) were Introduction screened using the RankProd method, and their potential functions were revealed by pathway enrichment analysis and Non-syndromic cleft lip, with or without cleft palate (NSCL/P) construction of a pathway interaction network. Subsequently, is one of the most common types of congenital defect and cancer genes were obtained from six cancer databases, and affects 3.4-22.9/10,000 individuals worldwide (1).
    [Show full text]
  • Polymerase Δ Deficiency Causes Syndromic Immunodeficiency with Replicative Stress
    Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde, … , Mirjam van der Burg, Kaan Boztug J Clin Invest. 2019. https://doi.org/10.1172/JCI128903. Research Article Genetics Immunology Graphical abstract Find the latest version: https://jci.me/128903/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde,1,2 Özlem Yüce Petronczki,1,2,3 Safa Baris,4,5 Katharina L. Willmann,1,2 Enrico Girardi,2 Elisabeth Salzer,1,2,3,6 Stefan Weitzer,7 Rico Chandra Ardy,1,2,3 Ana Krolo,1,2,3 Hanna Ijspeert,8 Ayca Kiykim,4,5 Elif Karakoc-Aydiner,4,5 Elisabeth Förster-Waldl,9 Leo Kager,6 Winfried F. Pickl,10 Giulio Superti-Furga,2,11 Javier Martínez,7 Joanna I. Loizou,2 Ahmet Ozen,4,5 Mirjam van der Burg,8 and Kaan Boztug1,2,3,6 1Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 2CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and 3St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria. 4Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey. 5Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey. 6St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria. 7Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria. 8Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands. 9Department of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, 10Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, and 11Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
    [Show full text]
  • Prognostic Significance of Minichromosome Maintenance Mrna Expression in Human Lung Adenocarcinoma
    ONCOLOGY REPORTS 42: 2279-2292, 2019 Prognostic significance of minichromosome maintenance mRNA expression in human lung adenocarcinoma SHU LI1,2, ZHOU JIANG2, YIRUN LI3 and YANG XU1 1Department of Hematology, 2Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009; 3Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China Received February 20, 2019; Accepted August 9, 2019 DOI: 10.3892/or.2019.7330 Abstract. The minichromosome maintenance (MCM) gene protein-like 4 and anaplastic lymphoma kinase, respec- family plays an essential role in DNA replication and cell cycle tively (4-7). More recently, immunotherapy has been developed progression. However, MCM gene expression has not been and increasingly used in patients with lung cancer, including well-studied in lung adenocarcinoma (LUAD). In the present immune checkpoint inhibitors that target programmed cell study, the expression, prognostic value and functions of MCMs death 1 ligand 1 (PD-L1)-expressing tumor cells by blocking in LUAD were investigated using several databases and PD-L1/PD-1 signaling (8,9). Despite recent advances in bioinformatic tools, including Oncomine, GEPIA, cBioPortal, targeted therapy and immunotherapy, the prognosis of LUAD CancerSEA and Kaplan-Meier plotter. It was demonstrated remains poor (10). It has become a research trend to explore that the mRNA expression of MCM2, MCM4 and MCM10 novel molecular biomarkers or therapeutic targets in the era of were significantly increased in patients with LUAD. High precision medicine (11). In fact, databases based on large-scale, mRNA expression of MCM2-5, MCM8 and MCM10 were genome-wide association studies have facilitated the discovery associated with poor overall survival and progression-free of new biomarkers for cancer management (12).
    [Show full text]
  • Working on Genomic Stability: from the S-Phase to Mitosis
    G C A T T A C G G C A T genes Review Working on Genomic Stability: From the S-Phase to Mitosis Sara Ovejero 1,2,3,* , Avelino Bueno 1,4 and María P. Sacristán 1,4,* 1 Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain; [email protected] 2 Institute of Human Genetics, CNRS, University of Montpellier, 34000 Montpellier, France 3 Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France 4 Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain * Correspondence: [email protected] (S.O.); [email protected] (M.P.S.); Tel.: +34-923-294808 (M.P.S.) Received: 31 January 2020; Accepted: 18 February 2020; Published: 20 February 2020 Abstract: Fidelity in chromosome duplication and segregation is indispensable for maintaining genomic stability and the perpetuation of life. Challenges to genome integrity jeopardize cell survival and are at the root of different types of pathologies, such as cancer. The following three main sources of genomic instability exist: DNA damage, replicative stress, and chromosome segregation defects. In response to these challenges, eukaryotic cells have evolved control mechanisms, also known as checkpoint systems, which sense under-replicated or damaged DNA and activate specialized DNA repair machineries. Cells make use of these checkpoints throughout interphase to shield genome integrity before mitosis. Later on, when the cells enter into mitosis, the spindle assembly checkpoint (SAC) is activated and remains active until the chromosomes are properly attached to the spindle apparatus to ensure an equal segregation among daughter cells.
    [Show full text]
  • Arsenic Hexoxide Has Differential Effects on Cell Proliferation And
    www.nature.com/scientificreports OPEN Arsenic hexoxide has diferential efects on cell proliferation and genome‑wide gene expression in human primary mammary epithelial and MCF7 cells Donguk Kim1,7, Na Yeon Park2,7, Keunsoo Kang3, Stuart K. Calderwood4, Dong‑Hyung Cho2, Ill Ju Bae5* & Heeyoun Bunch1,6* Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer efects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA‑sequencing and bioinformatics analyses, diferentially expressed genes in signifcantly afected biological pathways in these cell types were validated by real‑time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly diferential efects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without afecting the growth of HUMEC in a dose‑dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are signifcantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6‑treated MCF7 cells.
    [Show full text]
  • Minichromosomes: the Second Generation Genetic Engineering Tool
    Invited Micro Review Plant Omics Journal Southern Cross Journals©2009 2(1):1-8 (2009) www.pomics.com ISSN: 1836-3644 Minichromosomes: The second generation genetic engineering tool Aakash Goyal 1, Pankaj Kumar Bhowmik 2 and Saikat Kumar Basu 2,3* 1Sustaiable Production Systems; 2Bioproducts and Bioprocesses, Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, AB Canada T1J 4B1; 3Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4 *corresponding author: [email protected] Abstract Genetic engineering is a scientific tool used in every field of science like plant, animal and human sciences. Plant genetic engineering technology has changed the face of plant sciences and the first generation of transgenic crops has become the most rapidly adopted technology in modern agriculture. But genetic engineering has some limitations and therefore still there is a clear need of new technologies to overcome issues like gene stacking, transgene position effects and insertion-site complexity. The recent strategy that researchers have developed to overcome those limitations is the development of plant artificial minichromosomes for delivery of large DNA sequences, including large genes, multigene complexes, or even complete metabolic pathways. A minichromosome is an extremely small version of a chromosome that have been produced by de novo construction using cloned components of chromosomes or through telomere-mediated truncation of endogenous chromosomes. After a successful experiment in maize with the help of minichromsomes by J. Birchler and colleagues (Yu et al., 2007a), a new paradigm have been set for all the agricultural researchers to use the minichromosome techniques for crop improvement. Engineered minichromosomes also offer an enormous opportunity to improve crop performance, as discussed by Houben and Schubert (2007).
    [Show full text]