Exploring Gamma-Ray Bursts, Their Immediate Environment and Host Galaxies C 2015 Mette Friis
Total Page:16
File Type:pdf, Size:1020Kb
RH-10-2015 Dissertation for the degree of doctor of philosophy Exploring Gamma-Ray Bursts, Their Immediate Environment and Host Galaxies Mette Friis arXiv:1512.03205v1 [astro-ph.HE] 10 Dec 2015 School of Engineering and Natural Sciences Faculty of Physical Sciences Reykjavík, October 2015 A dissertation presented to the University of Iceland, School of Engineering and Natural Sciences, in candidacy for the degree of doctor of philosophy Doctoral committee Gunnlaugur Björnsson, Research Professor Science Institute, University of Iceland Páll Jakobsson, Professor University of Iceland Einar H. Guðmundsson, Professor University of Iceland Opponents Professor Sandra Savaglio Physics Department University of Calabria Via P. Bucci I-87036 Arcavacata di Rende Italy Dr. Stefano Covino INAF / Brera Astronomical Observatory Via Bianchi 46 23807 Merate (LC) Italy Exploring Gamma-Ray Bursts, Their Immediate Environment and Host Galaxies c 2015 Mette Friis Printed in Denmark by Reklamernes Fællestryk Science Institute Report RH-10-2015 ISBN 978-9935-9263-6-4 Dedicated to You. Thank you for reading. iii iv Contents Abstract xii Acknowledgements xiv 1 Gamma-Ray Bursts 1 1.1 InShort:WhatisaGamma-RayBurst? . 1 1.2 Classification ................................ 2 1.2.1 ShortGamma-RayBursts . 3 1.2.2 LongGamma-RayBursts . 3 1.2.3 UltraLongGamma-RayBursts. 5 1.2.4 X-RayFlashes ........................... 5 1.3 TheGamma-RayBurstModel . .. .. .. .. .. .. .. .. .. 6 1.3.1 TheFireballModel......................... 6 1.3.2 TheJetModel ........................... 8 1.3.3 TheAfterglow ........................... 10 1.3.4 ShortGamma-RayBursts . 13 1.3.5 AlternativeModels. 14 1.4 Progenitor.................................. 14 1.4.1 TheCollapsarModel. 14 1.4.2 PotentialProblems. 15 1.4.3 ShortGamma-RayBursts . 16 1.5 HostGalaxies................................ 17 1.5.1 GalacticEnvironment . 19 1.5.2 Methods for Determining Redshift . 20 1.5.2.1 Line-of-sightabsorption . 20 1.5.2.2 Nebular-lineemission . 21 1.5.2.3 Photometricredshift. 21 v vi CONTENTS 1.6 ProspectsforAstronomy. 23 1.6.1 TracersofStar-Formation . 23 1.6.2 ProbingtheEpochofRe-ionisation. 25 1.7 Gamma-RayBurstsObservatories . 27 2 The Gamma-Ray Burst Spectrum 31 2.1 ThePromptSpectrum........................... 31 2.2 RadiativeProcesses............................. 34 2.2.1 SynchrotronRadiation. 34 2.2.2 InverseComptonemission . 39 2.2.3 Thermalemission.. .. .. .. .. .. .. .. .. .. .. 40 2.3 TheAfterglowSpectrum.. .. .. .. .. .. .. .. .. .. .. 43 2.4 SupernovaConnection . .. .. .. .. .. .. .. .. .. .. .. 44 2.5 ASNshockbreakout............................ 45 2.6 TheCocoonmodel ............................. 46 3 Thermal Emission in the Early X-ray Afterglows of GRBs: Following the Prompt Phase to Late Times. 49 3.1 Introduction................................. 50 3.2 Observationaldataandmethods . 51 3.3 Results.................................... 52 3.3.1 GRB061007............................. 54 3.3.2 GRB090424............................. 56 3.3.3 GRB061121,060202and060418 . 56 3.3.4 Previousdetections. 56 3.4 Originofthethermalcomponent . 58 3.4.1 SNshockbreakout ......................... 58 3.4.2 Alternativemodels . 61 3.5 Conclusions ................................. 64 3.6 Acknowledgements ............................. 65 4 Characterising the Environment 67 4.1 Voigt-ProfileFitting ............................ 67 4.1.1 Oscillatorstrength . 68 4.1.2 Numberdensity........................... 68 4.1.3 Dopplerbroadening . 68 4.1.4 Naturalbroadening. 70 CONTENTS vii 4.1.5 Instrumentalbroadening. 70 4.1.6 TheVoigtprofile .......................... 70 4.1.7 Determiningcolumndensity. 72 4.2 FittingEmissionLines ........................... 75 4.3 Nebular-LineDiagnostics . 75 4.3.1 R23 ................................. 76 4.3.2 O3N2 ................................ 77 4.3.3 N2.................................. 77 4.3.4 Calibrationissues. 78 4.4 Fitting the Stellar Population . .. 79 4.4.1 TheInitialMassFunction . 80 4.4.2 Age ................................. 81 4.4.3 Mass-loss .............................. 83 4.4.4 Gasanddust ............................ 83 4.5 Methods for Determining the Star Formation Rate . .... 83 4.5.1 UVluminosity ........................... 83 4.5.2 Emissionlinefluxes . .. .. .. .. .. .. .. .. .. .. 84 4.5.3 FIRluminosity ........................... 85 4.5.4 RadioEmission........................... 86 4.5.5 X-rayemission ........................... 86 4.6 TheX-ShooterSample........................... 86 5 The Warm, the Excited, and the Molecular Gas: GRB121024A Shining Through its Star-Forming Galaxy. 91 5.1 Introduction................................. 93 5.2 ObservationsandDataReduction . 95 5.2.1 X-shooter NIR/Optical/UV Spectroscopy . 96 5.2.2 NOT,GTCandVLT/HAWK-Iimaging . 96 5.2.3 GRONDandSkynetPhotometry. 97 5.3 AnalysisandResults ............................ 98 5.3.1 AbsorptionLines .......................... 98 5.3.2 DustDepletion ........................... 106 5.3.3 Distance between GRB and Absorbing Gas . 108 5.3.4 MolecularHydrogen . 110 5.3.5 EmissionLines ........................... 113 5.3.6 Star-FormationRate . 114 viii CONTENTS 5.3.7 MetallicityfromEmissionLines. 116 5.3.8 BalmerDecrement . 117 5.3.9 Broad-Band Spectral Energy Distribution . 117 5.3.10 Stellar Population Synthesis Modelling . .. 118 5.3.11 Kinematics ............................. 119 5.3.12 InterveningSystems . 120 5.4 DiscussionandImplications . 120 5.4.1 Abundance Measurements from Absorption and Emission Lines 120 5.4.2 The Mass-Metallicity Relation at z 2 ............. 122 ∼ 5.4.3 GreyDustExtinction?. 122 5.4.4 MolecularHydrogeninGRB-DLAs. 125 5.4.5 Gas kinematics: dissecting the host components . 126 5.5 Appendix .................................. 129 5.5.1 Skynetmagnitudetables. 129 6 Interstellar Dust 133 6.1 PropertiesofDust ............................. 134 6.1.1 AbsorptionFeatures . 134 6.1.1.1 The2175Åbump . 134 6.1.1.2 Mid-IRsilicatefeatures . 135 6.1.1.3 DIBs ........................... 135 6.1.2 EmissionFeatures . 136 6.2 DustFormation............................... 137 6.3 DustEmission ............................... 139 6.4 DustAbsorptionandScattering. 139 6.5 ExtinctionandAttenuationCurves . 141 6.6 Methods of Determining Dust Extinction . 143 6.6.1 BalmerDecrement . 143 6.6.2 IRX-β Relation........................... 144 6.6.3 DusttoGas/MetalRatio . 145 6.6.4 AbundancePatterns . 146 6.7 Gamma-RayBurstsExtinctionCurves . 147 6.8 GreyDust.................................. 149 7 IsGreyDustCommonintheUniverse? 153 7.1 Introduction................................. 154 7.2 GRB121024A................................ 156 CONTENTS ix 7.2.1 Metallicity and dust depletion of the birth site of GRB 121024A 156 7.2.2 ExtinctionCurve. 158 7.2.3 AdifferentoriginfortheX-rays? . 159 7.2.4 A differential dust destruction by the GRB? . 161 7.3 GRBextinctioncurvesamples . 162 7.4 GreyDust.................................. 164 7.4.1 Theoriginofgreydust . 164 7.4.2 Ubiquityofgreydust . 166 7.4.3 Consequences of applying the wrong extinction curve . ..... 167 7.5 Conclusions ................................. 169 8 Summary and Prospects 171 Bibliography 196 x CONTENTS Abstract The Universe has always been the source of wonder and the home to many mysteries. What goes on in distant parts, great beyond our own solar system, is difficult to decipher, even with the enormous technological progress of the last hundred years. One opportunity to study the distant, young Universe, is presented through observa- tions of Gamma-Ray Bursts (GRBs). GRBs are extremely bright transient objects, in principle observable out to cosmological redshifts or z > 10. Not only are they extremely bright in γ-rays, GRBs also have powerful afterglows, with bursts such as GRB 080319B, dubbed the ’naked-eye’ burst, as it was bright enough to be visible with the human eye, despite a redshift of z =0.9. Much work has been done on these objects, but there are still open questions to explore. In the first paper of this thesis I present work on the radiative mechanisms of GRBs. In particular, the work concerns the interpretation of the soft X-ray com- ponents observed in the early afterglow. To examine this component, we selected a sample of the X-ray brightest bursts observed by the Swift telescope XRT, on which we performed a systematic search for a thermal component. The results show that this emission is more ubiquitous than previously thought. Most of the afterglows show signs of a thermal component, with about one fourth having a statistical sig- nificant detection. Previously, these components have often been interpreted as the supernova (SN) shock break-out. Model calculations show that the total energy from the break-out will never be more than 1047 ergs. This result fits poorly with the already discovered thermal components, and is even more difficult to reconcile with the new-found additions from our search. The energetics are simply too large. The blackbody temperatures and luminosities are so high that a physical origin is diffi- cult to construct. On that background, and because thermal emission is frequently observed in the prompt (γ- and hard X-ray) emission of the GRBs, we propose the model of late photospheric emission. In this model, the emission originates within the jet, from material moving at relativistic speed. This is supported by the evolution of xi xii Abstract the simple blackbody radius, seen to evolve with an apparent velocity faster than the speed of light. Compared with the results from the prompt phase,