Supporting information

SI # 1: Composition, historical and terrestrial provenience, and cosmo-origin of .

The composition of the meteorites studied is here reported as Appendix to Table 1 of the Text. A glossary of the relevant less common mineralogical terms is at the end of this Item.

Iron meteorites (#1) Canyon Diablo [1,2]. IA type hexaoctahedrite. Composition: Fe 93.02%, Ni 6.98%, Ga 81.8 ppm, Ge 324 ppm, Ir 1.9 ppm. Contains silicates (olivine), graphite and (FeS, a pyrrhotite with 1:1 ratio Fe/S). (#2) Campo del Cielo [1,3-4]. IAB type coarse hexaoctahedrite. Composition: Fe 93.38%, Ni 6.62%, Ga 90.0 ppm, Ge 392 ppm, Ir 3.2 ppm. Contains silicates. Modal composition, in multilayered system [1]: mainly silicates and winonaites, with inclusions.

Stony iron meteorites (#3) NWA 4482 [5]. Class: . Group: Main Group Pallasite. Made of large olivine grains (Fa 12.2-13.0) (FeO/MnO = 41.1-42.5). Contains iron as iron hydroxides and accessory chromite, scheibersite (Fe, Ni) 3P and metal (both and tainite -(Fe,Ni)). Stony anomalous.

Chondrites Chrondrites are classified as: (i) enstatites, (ii) ordinary , (iii) carbonaceous chondrites. (i) Enstatites. (#4) NWA2828 [6]. Essentially pure enstatite with ~ 15 vol% oligoclase, iron sulphate pseudomorphs after troilite and grains of graphite. Enstatite materials are also present in NW1465 (# 8) and Al Haggounia (# 10). (ii) Ordinary chondrites. (#5) Gold Basin [7]. L4 stone olivine hypersthene . Composition: olivine Fa mol % 24±1, pyroxene and kamacite containing 0.72± 0.09 wt % Co. (#6) Dhofar 959 [8]. L6 type. Composition: 24.2% fayalite, 20.3% ferrosilite, 1.7% wollastonite (CaSiO3). (#7) Chelyabinsk [9]. LL5 type. Composition: 18.3%, 0.053% Ti, 1.12% Al, 0.40% Cr, 19.8% Fe, 0.26% Mn, 1.43% Ca, 0.74% Na, 0.11% K, 0.10% P, 1.06% Ni, 0.046% Co, 1.7% S. (iii) Carbonaceous chondrites. Carbonaceous chondrites are rare [10]. (#7) . CI type 1 characterized by the complete absence of and refractory inclusions and high degree of hydration [11-13]. It mainly contains serpentine, smectite, carbonates (dolomite, breunnerite and calcite), magnetite, olivine, sulphates and Fe-Ni sulphides. (#8) NWA1465[14]. CV3-An, one of only three anomalous CV3 meteorites found. Composition: Fe-rich olivine (Fa43-57.6), Ca-rich pyroxene, enstatite, forsterite, troilite, magnetite, (Fe, Ni) metal.

Achondrites It is largely accepted that non-chondritic precursors were derived from a wide range of precursor chondrites, probably wider than that of known chondrites [1]. (#9) NWA5357 [15]. type, of the sub-group HED meteorites (achondritic stony meteorites).

Contains Mg-rich orthopyroxene, low amounts of plagioclase (Na, Ca) (Al,Si)4O8 and olivine. (#10) Al Haggounia 001 [16]. type. are brecciated piroxenites made of FeO-free enstatite and reassembled in igneous lithologies. Al Haggounia 001 is a breccia cemented by iron oxide and carbonate. The composition is dominated by enstatite and plagioclase. Contains troilite, graphite, oldhamite CaS, Si-rich kamacite and schreibersite.

The origin of meteorites is a complex, far reaching issue. In general: iron meteorites derive from cores of disrupted asteroids [1]; stony iron meteorites are from differentiated asteroids, from core-mantle boundaries [17]; chondrites have solar-like compositions (minus the highly volatile elements), derive from asteroids that did not experience planetary differentiation, are of many different origins, several with secondary processing histories [17]; are also of different origin, i.e: NWA1465 is from the early solar Nebula[14] while NWA5357 diogenite is from deep within the crust of Asteorid 4 Vesta. A detailed and critical classification of achondrites is in [18].

Mineralogy glossary Aubrites are brecciated piroxanites made of FeO-free enstatite and reassembled in igneous lithologies, formed in highly reducing conditions and containing minerals unknown from Earth.

Diogenites are polymict breccias composed of orthopyroxenite (Mg,Fe)SiO3 and harzburgite. The orthopyroxenite component represents subsurface accumulations of orthopyroxene from basaltic magmas.

Enstatite is the Mg-end member of the pyroxene silicate mineral series enstatite (MgSiO3) –ferrosilite

(FeSiO3), (Mg,Fe)SiO3 is hypersthene. Hexahedrites: iron meteorites with Ni contents below 6% consisting almost entirely of kamacite showing no Windmanstätten pattern (lamellae of kamacite, separated by Ni-rich lamellae composed of several phases). The name hexahedrite refers to cubic (hexahedral) cleavage of -Fe, Ni single crystals. Kamacite is known in metallurgy as ferrite and the -Fe,Ni phase in meteorites, forming extensive lamellae with a Ni content < 6%. Mesosiderites are story-iron meteorites, made of mixtures of roughly equal proportions of metal and silicates phases, possibly representing surface-derived breccias of disrupted differentiated asteroids. They are thought to represent early superficial processes on asteroids. Octahedrites: meteorites that show a structure made of kamacite lamellae oriented along octahedral planes. Oldhamite is CaS, typically a minor phase in aubrites, occurring as grains within the brecciated matrix. Pallasites are stony irons composed of roughly equal amounts of silicate. Some iron meteorites are breccias of group IAB and contain as much silicate as mesoderites, while some pallasites contain large silicate-free areas of metal. Troilite is the hexagonal stoichiometric (Fe:S mole ratio ≥ 0.98) modification of FeS, thus differing structurally from terrestrial pyrrhotite [11].

Schreibersite (Fe,Ni)3P occurs in meteorites either as coarse irregular or skeletal inclusions or as small enhedral crystal. When in equilibrium schreibersite contains more Ni than the host metal.

SI # 2: Reaction scheme, original chromatogram and m/z fragmentation spectra of products of FA irradiation without meteorites.

N HO

HO protons 3(OH)pyridine 2-propanol O (170 MeV) O

H NH2 meteorite OH O N FA 243 K O N,N-diethylformamide pyruvic acid

Figure SI # 2: a, 3-hydroxy pyridine; b, N,N- diethylformamide; c, 2-propanol; d, pyruvic acid.

Table: Mass-to-charge ratio (m/z) value and the abundance of mass spectra peaks of products of FA irradiation without meteorites. Products[a] m/z (%) [b] 3-Hydroxy pyridine (13) 167 (10) [M], 152 (100) [M-CH3], 137 (6) [M-(CH3)2], 122 [M-(CH3)3] N,N-diethylformamide 101 (60) [M], 86 (25) [M-CH3] [b] 2-propanol 131 (2) [M-1], 117 (75) [M-CH3] [b] Piruvic acid 160 (10) [M], 145 (7) [M-CH3], 88 (14) [M-Si(CH3)3], 71 (12) [M-Si(CH3)3-OH], 43 (100) [M-HSi(CH3)3- CO2]

[a] Mass spectroscopy was performed by using a GC-MS. Samples were analyzed after treatment with N,N-bis- trimethylsilyltrifluoroacetamide and pyridine. The peak abundance is reported in parenthesis. [b] Product analyzed as the monosilyl derivative.

SI # 3: Mass-to-charge ratio (m/z) value and the abundance of mass spectra peaks of products.

Table: Mass-to-charge ratio (m/z) value and the abundance of mass spectra peaks of compounds (1-50).

Products[a] m/z (%) [c] Uracil (1) 256 (35) [M], 241 (100) [M-CH3], 225 (15) [M-CH3-CH4], 182 (7) [M-Si(CH3)3-H2], 142 (70), 113 (55) [c] Cytosine (2) 255 (49) [M], 254 (100) [M-H], 240 (72) [M-CH3], 182 (5) [M-HSi(CH3)3] [c] Thymine (3) 270 (40) [M], 255 (100) [M-CH3], 239 (3) [M-(CH3)2-H], 197 (3) [M-HSi(CH3)3], 73 (80) [Si(CH3)3] [c] Adenine (4) 279 (27) [M], 264 (100) [M-CH3], 249 (1) [M-(CH3)2], 192 (17) Guanine (5) 367 (20) [M], 352 (70) [M-CH3], 336 (2) [M- 2xCH3], 322 (2) [M- 3xCH3], 293 (2) [M-Si(CH3)3], 278 (2) [M-SiO(CH3)3], 221 (1) [M-2xSi(CH3)3], 206 [M-SiO(CH3)3- Si(CH3)3], 190 (1) [M-2xSiO(CH3)3] [b] Purine (6) 192 (79) [M], 177 (100) [M-CH3], 120 (10) [M-Si(CH3)3] [d] Isocytosine (7) 327 (18) [M], 312 (100) [M-CH3], 282 (9) [M-(CH3)3], 255 (6) [M-Si(CH3)3], 240 (7) [M-HSi(CH3)3-CH3], 183 (2) [M-2xSi(CH3)3] [c] Hypoxanthine (8) 280 (49) [M], 265 (100) [M-CH3], 193 (8), 182 (80) [d] 2,6-DAP (9) 366 (5) [M], 351 (100) [M-CH3], 336 (12) [M-(CH3)2], 294 (5) [M-Si(CH3)3], 279 (8) [M-Si(CH3)3-CH3], 263 (15) [M-Si(CH3)3-(CH3)2-H], 221 (3) [M-Si(CH3)3- HSi(CH3)3], 73 (70) [Si(CH3)3] [d] Orotic acid (10) 372 (10) [M], 357 (40) [M-CH3], 327 (5) [M-(CH3)3], 269 (11) [M-HSi(CH3)3-CH3], 255 (65) [M-Si(CH3)3- (CH3)3], 73 (100) [Si(CH3)3] [c] 4,6-DHP (11) 255 (70) [M-H], 241 (100) [M-CH3], 211 (2) [M-(CH3)3], 169 (2) [M-Si(CH3)3-CH3], 73 (38) [Si(CH3)3] [b] 4(3H)pyrimidinone (12) 168 (25) [M], 153 (100) [M-CH3], 123 (5) [M-(CH3)3], 99 (100) [b] 3-Hydroxy pyridine (13) 167 (10) [M], 152 (100) [M-CH3], 137 (6) [M-(CH3)2], 122 [M-(CH3)3] [d] AHMN (14) 314 (100) [M], 201 (10) [M-Si(CH3)3-CN-CH3], 115 (90) [M-N[Si(CH3)3]2-CN- CH3] [c] DAMN (15) 252 (5) [M], 153 (18) [M-Si(CH3)3-HCN], 138 (3) [M-NHSi(CH3)3-HCN], 73 (100) [Si(CH3)3] [d] 4-AMI (16) 300 (100) [M], 212 (14) [M-HSi(CH3)3-CH3], 156 (5) [M-2xSi(CH3)3], 73 (100) [Si(CH3)3] [e] Ribose (17) 333 (3) [M-SiO(CH3)3-CH3], 317 (2) ) [M-SiO(CH3)3-2xCH3], 259 (2) [M-2xSiO(CH3)3], 243 (3) [M- h h h 2xSiO(CH3)3-CH3], 217 (100), 204 (5), 191 (8) [d] h h 2’-Deoxyribose (18) 307 (1) [M- 3xCH3], 260 (12) [M-SiO(CH3)3], 245 (8) [M-SiO(CH3)3- CH3], 217 (35), 204 (4), 171 (5) [M- h 2xSiO(CH3)3], 191 (5) [f] h h Glucose (19) 437 (5) [M-Si(CH3)3-2xCH3], 394 (4) [M-2xSi(CH3)3], 305 (5) [M-OSi(CH3)3-2xSi(CH3)3], 217 (30), 204 (100), 191h (75) [e] h h 2’-Deoxyglucose (20) 451 (3) [M-1], 437 (3) [M- CH3], 349 (10) [M-Si(CH3)3-(CH3)2], 305 (2) [M-2x[Si(CH3)3-H], 217 (30), 204 (45), 191 h (20) [f] Galactose (21) 437 (4) [M-Si(CH3)3-2xCH3], 394 (4) [M-2xSi(CH3)3], 305 (5) [M-OSi(CH3)3-2xSi(CH3)3], 289 (4) [M- h h h 2xOSi(CH3)3-Si(CH3)3], 217 (35), 204 (100), 191 (75) [f] Mannose (22) 437 (5) [M-Si(CH3)3-2xCH3], 394 (4) [M-2xSi(CH3)3], 319 (4) [M-3xSi(CH3)3-H2], 305 (5) [M-OSi(CH3)3- h h h 2xSi(CH3)3], 289 (4) [M-2xOSi(CH3)3-Si(CH3)3], 217 (30), 204 (100), 191 (75) [g] Inositol (23) 612 (2) [M], 507 (3) [M-HOSi(CH3)3- CH3], 433 (5) [M-2xOSi(CH3)3-H], 393 (3) [M-3xSi(CH3)3], 318 (45) h h h [M-4xSi(CH3)3-H2], 217 (40), 204 (10), 191 (28) [f] Arabitol (24) 497 (5) [M-CH3], 422 (3) [M-HOSi(CH3)3], 408 (2) [M-OSi(CH3)3- CH3], 243 (10) [M-3xOSi(CH3)3-H2], 217h (80), 204h (20) [d] h h Uridine (25) 460 (5) [M], 445 (20) [M-CH3], 315 (5) [M-2xSi(CH3)3], 300 (4) [M-2xSi(CH3)3- CH3], 217 (100), 191 (10), 184i (8), 169j (25) [d] Cytidine (26) 459 (10) [M], 444 (15) [M-CH3], 355 (10) [M-OSi(CH3)3- CH3], 296 [M-OSi(CH3)3-HSi(CH3)3], 281 (25) h h k l [M-2xOSi(CH3)3], 208 (35) [M-2xOSi(CH3)3-Si(CH3)3], 217 (100), 191 (50), 184 (60), 169 (50) [d] Adenosine (27) 483 (5) [M], 468 (10) [M-(CH3)3], 394 (3) [M- OSi(CH3)3], 378 (5) [M- HOSi(CH3)3-CH3], 321 (5) [M- m 2xSi(CH3)3-O], 290 (8) [M-2xOSi(CH3)3-CH3], 259 (20) [M-2xOSi(CH3)3-(CH3)3], 207 (25) [c] Thymidine (28) 386 (3) [M], 371 (2) [M-CH3], 341 (3) [M-(CH3)3], 296 (3) [M- HOSi(CH3)3], 281 (5) [M- HOSi(CH3)3-CH3], 217h (8), 183n (15) [c] Oxalic acid (29) 219 (3) [M-CH3], 189 (5) [M-(CH3)3], 147 (78) [M-Si(CH3)3-CH3], 117 (1) [M-Si(CH3)3-3xCH3], 73 (100) Glycolic acid (30) 205 (8) [M-CH3], 190 (1) [M-(CH3)2], 148 (10) [M-Si(CH3)3], 147 (74) [M-HSi(CH3)3], 133 (9) [M-CH3- Si(CH3)3], 117 (4) [M-(CH3)2-HSi(CH3)3], 103 (5) [M-(CH3)3-Si(CH3)3] [c] Piruvic acid (31) 160 (10) [M], 145 (7) [M-CH3], 88 (14) [M-Si(CH3)3], 71 (12) [M-Si(CH3)3-OH], 43 (100) [M-HSi(CH3)3- CO2] [c] Lactic acid (32) 219 (6) [M-CH3], 190 (14) [M-CO2] , 147 (71) [M-Si(CH3)3-CH3], 133 (7), 117 (76) [M-Si(CH3)3-(CH3)3] Malonic acid[c] (33) 246 (3) [M], 147 (95), 73 (100) [c] Succinic acid (34) 247 (16) [M-CH3], 173 (5) [M-HOSi(CH3)3], 147 (100), 73 (80) [d] Oxaloacetic acid (35) 333 (10) [M-CH3], 231 (11) [M-HOSi(CH3)3-CO], 158 (7), 147 (80), 73 (100) [d] Ketoglutaric acid (36) 347 (6) [M-CH3], 273 (4) [M-HOSi(CH3)3], 245 (7) [M-HOSi(CH3)3-CO], 147 (50), 73 (100) [b] Hexanoic acid (37) 188 (3) [M], 173 (70) [M-CH3], 159 (3) [M-2xCH3], 73 (100) [b] Ketoisocaproic acid (38) 202 (45) [M], 187 (55) [M-CH3], 159 (75) [M-(CH3)3], 131 (15) [M-Si(CH3)3], 117 (10) [M-Si(CH3)3- CH3], 103 (9) [M-Si(CH3)3- 2xCH3], 91 (100) ) [M-Si(CH3)3- 2xCH3-CH2] [e] Citric acid (39) 465 (10) [M-CH3], 375 (12) [M-OSi(CH3)3- CH3], 347 (9) ) [M-OSi(CH3)3- 3xCH3], 333 (2) [M-2xSi(CH3)3], 319 (2) [M-OSi(CH3)3- Si(CH3)3], 273 (45) [M-2xOSi(CH3)3- 2xCH3], 257 (5) [M-2xOSi(CH3)3- 3xCH3]] [c] Pimelic acid (40) 289 (21) [M-CH3], 187 (8) [M-HOSi(CH3)3-CO], 173 (18), 147 (45), 73 (100) [b] Octanoic acid (41) 201 (33) [M-CH3], 99 (3) [M-HOSi(CH3)3-CO], 73 (100) [b] Nonanoic acid (42) 215 (47) [M-CH3], 171 (5) [M-Si(CH3)2], 73 (100) [c] Azelaic acid (43) 317 (25) [M-CH3], 302 (3) [M-2xCH3], 243 (2) [M-OSi(CH3)3], 201 (15) [M-Si(CH3)3-CO2- CH3], 186 (3) [M-2xSi(CH3)3], 170 (4) ) [M-OSi(CH3)3- Si(CH3)3], 73 (100) [b] Lauric acid (44) 272 (3) [M], 257 (50) [M-CH3], 211 (2) [M-OSi(CH3)3], 73 (100) [b] Myristic acid (45) 300 (10) [M], 285 (95) [M-CH3], 257 (3) [M-2xCH3], 73 (100) [b] Palmitic acid (46) 328 (20) [M], 313 (100) [M-CH3], 73 (100) [b] Heptadecanoic acid (47) 342 (5) [M], 327 (40) [M-CH3], 73 (100) [b] Stearic acid (48) 356 (20) [M], 341 (90) [M-CH3], 327 (2) [M-CH3- CH2], 313 (50) [M-CH3-2xCH2] [b] Arachidic acid (49) 384 (10) [M], 369 (35) [M-CH3], 73 (100) [d] Glycerol (50) 293 (3) [M-CH3], 263 (2) [M-3xCH3], 218 (20) [M-OSi(CH3)3], 205 (60) [M-OSi(CH3)3- CH3], 191 (3) [M- OSi(CH3)3-2xCH3], 171 (4) [M-OSi(CH3)3-3xCH3] [b] Glycine (51) 147 (11) [M], 132 (28) [M-CH3], 88 (9),73 (100) [b] N-Formylglycine (52) 160 (38) [M-CH3], 147 (5) [M-CO], 131 (22) [M-CONH2], 102 (11) [M-Si(CH3)3], 73 (100) [c] Alanine (53) 218 (4) [M- CH3], 190 (6), 147 (13), 116 (100) [M-HOSi(CH3)3-CO], 73 (60) [b] N-Formylalanine (54) 189 (2) [M], 174 (55) [M-CH3], 156 (2) [M-2xCH3], 115 (15) ) [M-Si(CH3)3], 100 (5) [M-OSi(CH3)3], 73 (100) [c] 2-Methylalanine (55) 232 (3) [M-CH3], 204 (16), 147 (15), 130 (100) [M-HOSi(CH3)3-CO], 114 (10), 73 (100) Hydroxyproline[d] (56) 230 (48) [M-HOSi(CH3)3-CO], 140 (13), 73 (100) [b] Pyroglutamic acid (57) 258 (5) [M-CH3], 230 (10) [M-3xCH3], 156 (100) [M-Si(CH3)3- CO2] [d] β -AIBA (58) 304 (3) [M-CH3], 290 (18) [M-CH3-CH4], 248 (81), 174 (100), 147 147 (50), 73 (80) [b] 2-Pyrrolidone (59) 157 (32) [M], 142 (100) [M-CH3], 126 (2) [M-2xCH3], 112 (2) [M-3xCH3], 84 (2) [M-Si(CH3)3] [c] Urea (60) 204 (7) [M], 189 (73) [M-CH3], 147 (100), 73 (35) [c] Guanidine (61) 188 (11) [M-CH3], 173 (10) [M-2xCH3], 171 (100), 73 (33)

[a] Mass spectroscopy was performed by using a GC-MS. Samples were analyzed after treatment with N,N-bis- trimethylsilyltrifluoroacetamide and pyridine. The peak abundance is reported in parenthesis. [b] Product analyzed as the monosilyl derivative; [c] Product analyzed as the bis-silyl derivative; [d] Product analyzed as the tris-silyl derivative, [e] Product analyzed as the tetra- silyl derivative; [f] Product analyzed as the penta-silyl derivative; [g] Product analyzed as the hexa-silyl derivative [h] Ions characteristic for ┐+ ┐+• EI/MS sugar degradation: m/z 217 [(CH3)3SiOCH=CH-CH=OSi(CH3)3 , m/z 204 [(CH3)3SiOCH=CHOSi(CH3)3 , m/z 191 ┐+ [(CH3)3SiOCH=OSi(CH3)3 . Since the known fragmentation pattern for trimethylsilyl derivatives of sugars, the assignment was confirmed by the retention time and comparison with authentic samples. [i] Peak corresponding to mono-silylated uracil; [j] peak corresponding to mono-silylated uracil -CH3. [k] Peak corresponding to mono-silylated cytosine; [l] peak corresponding to mono-silylated cytosine -CH3. [m] Peak corresponding to mono-silylated adenine. [n] Peak corresponding to mono-silylated thymine.

SI # 4: Representative selected chromatograms for the protons irradiation of NH2CHO in the presence of Campo del Cielo, NWA 4482, Gold Basin, Dhofar 959 and Al Haggounia.

GC-MS profile: Campo del cielo

a, guanidine; b, hexanoic acid; c, oxaloacetic acid; d, alanine; e, formyl alanine; f, oxalic acid; g, pyruvic acid; h, hypoxanthine; i, glycine; j, 2(Me)alanine; k, octanoic acid; l, 4,6-DHP; m, formyl glycine; n, cytosine; o, isocytosine; p, citric acid; q, ketoisocaproic acid; r, malonic acid; s, stearic acid.

GC-MS profile: NWA 4482

a, glycolic acid; b, malonic acid; c, oxalic acid; d, lactic acid; e, alanine; f, formyl alanine; g, glycine; h, pyruvic acid; i, 3(OH) pyridine; j, formyl glycine; k, oxaloacetic acid; l, ketoglutaric acid; m, glycerol; n, 4-AMI; o, DAMN; p, succinic acid; q, citric acid; r, uracil; s, proline; t, uridine; u, nonanoic acid; v, azelaic acid; w, inositol; x, myristic acid; y, lauric acid; z, α-2’-deoxy-ribose; z*, β-2’-deoxy-ribose; a’, palmitic acid; b’, α- ribose; c’, α- 2’-deoxy-glucose; b’*, β-ribose; c’*, β-2’-deoxy-glucose; d’, cytosine; e’, isocytosine; f’, purine; g’, thymine; h’, adenine; i’, heptadecanoic acid.

GC-MS profile: Gold Basin

a, glycine; b, lactic acid; c, pyruvic acid; d, oxalic acid; e, hypoxanthine; f, 4(3H)pyrimidine; g, thymine; h, urea; i, purine; j, glycerol; k, 4-AMI; l, pyroglutamic acid; m, uracil; n, isocytosine; o, cytosine; p, N- formylglycine; q, DAMN; r, AHMN; s, succinic acid; t, mannose; u, citric acid; v, azelaic acid; w, α-2’- deoxy-ribose; w*, β-2’-deoxy-ribose; x, α-ribose; x*, β-ribose; y, malonic acid; z, palmitic acid; a’,2,6- DAP; b’, stearic acid; c’, guanine; d’, arachidic acid; e’, uridine; f’, adenine.

GC-MS profile: Al Haggounia

a, lactic acid; b, pyruvic acid; c, oxalic acid; d, hypoxanthine; e, DAMN; f, 4-AMI; g, glycine; h, 4,6- DHP; i, isocytosine; j, uracil; k, AHMN; l, N-formylglycine; m, pyroglutamic acid; n, cytosine; o, lauric acid; p, succinic acid; q, orotic acid; r, α-2’-deoxy-ribose; r*, β- 2’-deoxy-ribose; s, α-ribose; s*, β-ribose; t, urea; u, 2,6-DAP; v, palmitic acid; w, malonic acid; x, stearic acid; y, thymidine; z, arachidic acid; a’, guanine; b’, uridine; c’, adenosine; d’, adenine. Note: unmarked peaks were not identified.

SI # 5: Spectra of the compounds (1-) identified in meteorite catalysed synthesis according to Figure 2. All products have been recognized with a similarity index (S.I.) greater than 98% compared to reference standards.

SI # 6: Synthesis of N-formyl glycine.

Guanidine acetic acid, produced by the reaction of carbodiimide and glycine (51) [19], is a reactive electrophilic intermediate which can add with the excess of NH2CHO to yield (52) and (61) (as a leaving group). The known transformation of (61) into (60) [20], and the dehydration of (60) to carbodiimide [21], can close the catalytic cycle to yield (52).

Scheme. Catalytic cycle for the formation of N-formyl glycine (52).

O O

NH NH2 OH HN C NH HO

NH2 carbodiimide NH 51 guanidine acetic acid

O

O NH2 H2N H H2N NH2 H2N NH2 formamide 60 61

O N O H OH 52

References 1. Mittlefehldt D W, McCoy T J, Goodrich C A, Kracher A. (1998) Non-chondritic meteorites from asteroidal bodies. Rev Mineralogy and Geochemistry 36 (1), 4.1-4.195 2. Buchwald V F (1973) in Handbook of Iron Meteorites, Vol. III, University of California Press, Berkeley, California. 3. Cassidy W A, Villar L M, Bunch T E, Kohman T P, Milton D J. (1965) Meteorites and craters of Campo del Cielo, Argentina Science 149:1055-1064. 4. Vinogradov A P, Nefedov V I, Urusov V S, Zhavoronkov N M. (1972) ESCA- investigation of lunar regolith from the Seas of Fertility and Tranquility Geochim Cosmochim Acta 2:1421- 1427. 5. Irving A J, Kuehner S M (2007) in Meteoritical Bulletin MAPS 42, 92:1647-1684. 6. Kuehner S M, Irving A J, Bunch T E, Wittke J H, Hupé G M. (2006) EL3 chondrite (not aubrite) Northwest Africa 2828: An unusual paleo-meteorite occurring as cobbles in a terrestrial conglomerate. Eos, Trans Amer Geophys Union 87:P51E-1247 7. Welten K C, Hillegonds D J, A J T Jull, Kring. (2005) Atmospheric Fragmentation of the Gold Basin Meteoroid as Constrained from Cosmogenic Nuclides Lunar Planet Sci Conference, abstract no.2352. 8. Russell S S, Zolensky M, Righter K, Folco L, Jones R, Connolly H C, Grady M M, Grossman J N. (2005) The Meteoritical Bulletin, No. 89, 2005 September Meteorit Planet Sci 40(9), suppl./A201-A263. 9. Galimov EM, Kolotov VP, Nazarov MA, Kostitsyn Yu A, Kubrakova IV, Kononkova NN, Roshchina IA, Alexeev VA, Kashkarov LL, Badyukov DD, Sevast’yanov VS. (2013) Analytical results for the material of the . Geochem Int 51(7), 522-539. 10. Jarosewich E. (1971) Chemical analysis of the Murchison meteorite Meteoritics 6(1): 49-52 11. Kerridge JF. (1976) Major element composition of phyllosilicates in the Orgueil carbonaceous meteorite. Earth Planet Sc Lett 29(1): 194-200. 12. Pourmand A, Dauphas N, Ireland T. J. (2012) A novel extraction chromatography and MC- ICPMS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem Geol, 291:38-54. 13. Barrat JA, Zanda B, Moynier F, Bollinger C, Liorzou C, Bayon G. (2012) Geochemistry of CI chondrites revisited: major, trace elements, Cu and Zn isotopes Geochim. Cosmochim. Acta 83: 79-92.

26 14. Greshake A, Clayton RN, Makeda TK, Kurz M. NWA 1465 and NWA 1665: two unusual carbonaceous chondrites from Northwest Africa. 2003, Lunar Planetary Science. 15. Meteorite Bulletin Database. Provisional Name. Assigned by C. Smith, 2008, 05-21, name assigned to Albert Chamber. 16. Connolly H C Jr, Zipfel J, Folco L, Smith C, Jones R H, Benedix G K, Righter K, Yamaguchi A, Chennaoui Aoudjehane H, Grossmann J N (2007). The Meteoritical Bulletin No. 92, 2007 September. Meteoritics and Planetary Science 42: 1647-1694 see also page 1658. 17. Shearer C K, Papike JJ, Rietmeijer FJM. (1998) The planetary sample suite and environments of origin. Revs. Mineral. 36, ed. JJ Papike. Mineralogical Society of America, Chapter 1, pp 1-24 Wash. DC. Planetary Materials, Reviews in Mineralogy. 18. Graham AL, Bevan AWR, Hutchison R. Catalogue of Meteorites 4th Edn. 1985, British Museum Natural History), London, Univ. of Arizona Press, Tucson. 19. Weiting Z, Faming Zhuanli Shenqing Gongkai Shuomingshu (2009) CN 101462983 A 20090624. 20. Bell J. (1926) The hydrolysis of guanidine. J Chem Soc, 129: 1213-1219. 21. Katritzky AR, Meth-Cohn O, Rees CW in Comprehensive Organic Functional Group Transformation, 1995, Vol. 5, pp. 1063-1121, Ed. C.J. Moody, Pergamon Press, NY USA.

27