Stormwater Management Guidebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SECTION 3 Erosion Control Measures
SECTION 3 Erosion Control Measures 1. SEEDING When • Bare soil is exposed to erosive forces from wind and or water. Why • A cost effective way to prevent erosion by protecting the soil from raindrop impact, flowing water and wind. • Vegetation binds soil particles together with a dense root system, increasing infiltration thereby reducing runoff volume and velocity. Where • On all disturbed areas except where non-vegetative stabilization measures are being used or where seeding would interfere with agricultural activity. Scheduling • During the recommended temporary and permanent seeding dates outlined below. • Dormant seeding is acceptable. How 1. Site Assessment. Determine site physical characteristics including available sunlight, slope, adjacent topography, local climate, proximity to sensitive areas or natural plant communities, and soil characteristics such as natural drainage class, texture, fertility and pH. 2. Seed Selection. Use seed with acceptable purity and germination tests that are viable for the planned seeding date. Seed that has become wet, moldy or otherwise damaged is unacceptable. Select seed depending on, location and intended purpose. A mixture of native species for permanent cover may provide some advantages because they have coevolved with native wildlife and other plants and typically play an important function in the ecosystem. They are also adapted to the local climate and soil if properly selected for site conditions; can dramatically reduce fertilizer, lime and maintenance requirements; and provide a deeper root structure. When re- vegetating natural areas, introduced species may spread into adjacent natural areas, native species should be used. Noxious or aquatic nuisance species shall not be used (see list below). If seeding is a temporary soil erosion control measure select annual, non-aggressive species such as annual rye, wheat, or oats. -
Green Roof for Stormwater Management in a Highly Urbanized Area: the Case of Seoul, Korea
sustainability Article Green Roof for Stormwater Management in a Highly Urbanized Area: The Case of Seoul, Korea Muhammad Shafique 1,2, Reeho Kim 1,2,* and Kwon Kyung-Ho 3 1 Department of Smart City and Construction Engineering, Korea Institute of Civil Engineering and Building Technology, University of Science & Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; shafi[email protected] 2 Environmental & Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology, 83, Goyangdae-ro, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10223, Korea 3 Urban Water Cycle Research Center, Korea Institute of Safe Drinking Water Research, Anyang si, Gyeonggi-do 14059, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-9100-291 Received: 26 December 2017; Accepted: 21 February 2018; Published: 26 February 2018 Abstract: Urbanization changes natural pervious surfaces to hard, impervious surfaces such as roads, buildings and roofs. These modifications significantly affect the natural hydrologic cycle by increasing stormwater runoff rates and volume. Under these circumstances, green roofs offer multiple benefits including on-site stormwater management that mimics the natural hydrologic conditions in an urban area. It can retain a large amount of rainwater for a longer time and delay the peak discharge. However, there is very limited research that has been carried out on the retrofitted green roof for stormwater management for South Korean conditions. This study has investigated the performance of retrofitted green roofs for stormwater management in a highly urbanized area of Seoul, the capital city of Korea. In this study, various storm events were monitored and the research results were analyzed to check the performance of the green roof with controlling the runoff in urban areas. -
Effects of Stormwater Runoff from Development by Robert Pitt, P.E
A River Network Publication Volume 14 | Number 3 - 2004 Effects of Stormwater Runoff from Development By Robert Pitt, P.E. Ph.D., University of Alabama ost people know that urban runoff is a problem, but very few realize just how harmful it can be for rivers, lakes and streams. In order to secure better control of urban runoff, we must make the public and its officials aware of the full extent of the problems that need to be prevented when new M development takes place. Urban runoff has been found to cause significant impacts on aquatic life. The effects are obviously most severe for waters draining heavily urbanized watersheds. However, some studies have shown important aquatic life impacts even for streams in watersheds that are less than ten percent urbanized. Most aquatic life impacts associated with urbanization are probably related to long- term problems caused by polluted sediments and food web disruption. Because ecological responses to watershed changes may take between 5 and 10 years to equilibrate, water monitoring conducted soon after disturbances or mitigation may not accurately reflect the long-term conditions that will eventually occur. The first changes due to urbanization will be to stream and groundwater hydrology, followed by fluvial morphology, then water quality, and finally the aquatic ecosystem. Effects of Stormwater Discharges on Aquatic Life Many studies have shown the severe detrimental effects of urban runoff on water Photo courtesy of Dr. Pitt organisms. These studies have generally examined receiving water conditions above and below a city, or by comparing two parallel streams, one urbanized and another nonurbanized. -
Chapter 8 Drainage & Wastewater Infrastructure
Chapter 8 Drainage & Wastewater Infrastructure Chapter 8 Drainage and Wastewater Infrastructure .................................. 8-1 8.1 Key Terms ...................................................................................................................... 8-2 8.1.1 Abbreviations .................................................................................................................................... 8-2 8.1.2 Definitions ......................................................................................................................................... 8-3 8.2 General Information ..................................................................................................... 8-6 8.2.1 Comprehensive Plans, Codes, and Policies ................................................................................ 8-7 8.2.2 System Maps ...................................................................................................................................... 8-8 8.3 General Requirements .................................................................................................. 8-8 8.3.1 Standard Specifications and Plans ................................................................................................. 8-8 8.3.2 Regulations ........................................................................................................................................ 8-9 8.3.3 Industry Standards and other Agency Standards ..................................................................... 8-10 -
Green Roof Irrigation Solutions on the Market
GREEN ROOF IRRIGATION Comprehensive Solutions for Rooftop Environments RESIDENTIAL & COMMERCIAL IRRIGATION | Built on Innovation® hunterindustries.com THE BETTER THE IRRIGATION, the Greener the Roof Green roofs have become key components of sustainability in urban environments. They help keep buildings cool, provide habitat for increased biodiversity, and improve local air quality. As the world’s leading manufacturer of irrigation products, we are committed to developing highly efficient solutions for all landscapes, including green roofs. With best-in-class subsurface and overhead irrigation options using top-level control systems, we offer the most versatile and robust green roof irrigation solutions on the market. Built on Innovation® When designing a green roof irrigation system, you can choose a subsurface, overhead, or combined approach. We provide an array of solutions for each method. SUBSURFACE OVERHEAD An absolute revolution in subsurface irrigation, When paired with Pro-Spray® pop-ups and shrub Eco-Mat® provides green roof designers with the adapters, high-efficiency MP Rotator® nozzles most efficient irrigation solution ever developed. provide an effective solution for green roof irrigation. Eco-Mat incorporates fleece-wrapped dripline with an Thanks to their slow and steady application rate, integrated synthetic fleece mat. Installed just beneath MP Rotator nozzles provide unmatched distribution the optimal root depth of the selected plant material, uniformity for overhead irrigation. Green roof soils Eco-Mat uses specialized technology to efficiently tend to be loose, so a slow precipitation rate from the irrigate from the bottom up with the following benefits: nozzle prevents fast drainage through the soil. The multi-trajectory, multi-stream application method • Effectively holds water for future use by plants of the MP Rotator cuts through wind while gently • Eliminates water loss due to wind and evaporation hydrating the landscape at an even rate that soils • Spreads water efficiently and evenly throughout the can better absorb. -
Green Architecture and Water Reuse: Examples from Different Countries
Green architecture and water reuse: examples from different countries This paper shows different examples from different countries (Italy, India, Tanzania) of green architectural solutions (green wall, green roof, roof wetland) in which water (rain and treated greywater) are reused as a resource, in order to reduce the use of drinking water for activities not needing a high quality of water. Authors: Fabio Masi, Anacleto Rizzo, Riccardo Bresciani Abstract Water is a valuable resource which should be better managed to develop a sustainable future. Green architecture is starting to be largely applied, principally for aesthetic improvement of urban centres. However, green architectural solutions provide different additional benefits, among which the reuse of rain and treated grey water. Hence, green architecture can be also viewed as an option to limit the waste of drinking water for applications where the required quality can be lower. In this paper we report the application of three different green architectural solutions in which rain and treated grey water are reused (roof wetland, green roof, and green wall) in three different countries (Tanzania, Italy, and India). Technical data: Roof constructed wetland (Tanzania): • Greywater reused for irrigation • Greywater consumption of max 4 m3 per day • Sewer network for greywater and blackwater segregation • Two-chamber tank (2 m3) as pre-treatment • Pumping station (1.1 kW power, 30 l/min) to feed CW on the roof • Horizontal flow constructed wetland (23 m2, HRT 0.8 d) for greywater treatment -
Stormwater Management Regulations
City of Waco Stormwater Management Regulations 1.0 Applicability: These regulations apply to all development within the limits of the City of Waco as well as to any subdivisions within the extra territorial jurisdiction of the City of Waco. Any request for a variance from these regulations must be justified by sound Engineering practice. Other than those variances identified in these regulations as being at the discretion of the City Engineer, variances may only be granted as provided in the Subdivision Ordinance of the City of Waco or Chapter 28 – Zoning, of the Code of Ordinances of the City of Waco, as applicable. 1.1 Definitions: 100 year Floodplain Area inundated by the flood having a one percent chance of being exceeded in any one year (Base Flood). (Also known as Regulatory Flood Plain) Adverse Impact: Any impact which causes any of the following: Any increased inundation, of any building structure, roadway, or improvement. Any increase in erosion and/or sedimentation. Any increase in the upstream or downstream floodplane level. Any increase in the upstream or downstream floodplain boundaries. Floodplane The calculated elevation of floodwaters caused by the flood Elevation of a particular frequency. Drainage System System made up of pipes, ditches, streets and other structures designed to contain and transport surface water generated by a storm event. Treatment Removal/partial removal of pollutants from stormwater. Watercourse a natural or manmade channel, ditch, or swale where water flows either continuously or during rainfall events 1.2 Adverse Impact No preliminary or final plat or development plan or permit shall be approved that will cause an adverse drainage impact on any other property, based on the 2 yr, 10 1 yr, 25 yr and 100 yr floods. -
Green Infrastructure Designs
GREEN INFRASTRUCTURE DESIGNS SCALABLE SOLUTIONS TO LOCAL CHALLENGES UPDATE SEPTEMBER 2017 ABOUT DELTA INSTITUTE Founded in 1998, Delta Institute is a Chicago-based nonprofit organization working to build a more resilient environment and economy through sustainable solutions. Visit online at www.delta-institute.org. This publication was originally released in July 2015 with support from the National Oceanic and Atmospheric Administration through the Illinois Department of Natural Resources (IDNR, CFDA Number 11.419). The September 2017 update adds two new green infrastructure designs to the toolkit. Delta thanks Tim King PE, LEED AP BD+C and Luke Leising, AIA, PE, LEED AP O+M of Guidon Design for their work designing the initial five templates. Guidon Design, Inc. is a multi-disciplinary architecture and engineering firm. Delta also acknowledges the work of graduate students Loren Ayala and Liliana Hernandez-Gonzalez, civil and environmental engineering students at Northwestern University and Kimberly Grey, Chair of Chair of Civil & Environmental Engineering at Northwestern in developing the box tree filter and green roof designs. Additionally, Delta acknowledges Claire Costello, an undergraduate student at University of Chicago for her assistance reviewing, editing and preparing additional components for publication. Additionally, we are grateful to the following Calumet region communities for their contributions and review of the toolkit: Jodi Prout, City of Blue Island Jason Berry, City of Blue Island Dawn Haley, Village of Riverdale Mary Ryan, Village of Calumet Park Bryan Swanson, City of Calumet City Stan Urban, Village of Dolton Hildy Kingma, Village of Park Forest Ernestine Beck-Fulgham, Village of Robbins Finally, Delta Institute thanks Josh Ellis of the Metropolitan Planning Council, and the Calumet Stormwater Collaborative for their support of the project. -
Conceptual Green Infrastructure Design for the Blake Street Transit
2012 GREEN INFRASTRUCTURE TECHNICAL ASSISTANCE PROGRAM Urban Land Conservancy Denver, Colorado Conceptual Green Infrastructure Design for the Blake Street Transit-Oriented Development Site, City of Denver AUGUST 2013 Photo: Denver Housing Authority, Park Avenue Development EPA 830-R-13-002 About the Green Infrastructure Technical Assistance Program Stormwater runoff is a major cause of water pollution in urban areas. When rain falls in undeveloped areas, the water is absorbed and filtered by soil and plants. When rain falls on our roofs, streets, and parking lots, however, the water cannot soak into the ground. In most urban areas, stormwater is drained through engineered collection systems and discharged into nearby waterbodies. The stormwater carries trash, bacteria, heavy metals, and other pollutants from the urban landscape, polluting the receiving waters. Higher flows also can cause erosion and flooding in urban streams, damaging habitat, property, and infrastructure. Green infrastructure uses vegetation, soils, and natural processes to manage water and create healthier urban environments. At the scale of a city or county, green infrastructure refers to the patchwork of natural areas that provides habitat, flood protection, cleaner air, and cleaner water. At the scale of a neighborhood or site, green infrastructure refers to stormwater management systems that mimic nature by soaking up and storing water. These neighborhood or site-scale green infrastructure approaches are often referred to as low impact development. EPA encourages the use of green infrastructure to help manage stormwater runoff. In April 2011, EPA renewed its commitment to green infrastructure with the release of the Strategic Agenda to Protect Waters and Build More Livable Communities through Green Infrastructure. -
2013 Stormwater Status Report
2013 Fairfax County � STORMWATER STATUS REPORT � A Fairfax County, Va., publication � June 2014 � Photos on cover (from top left): Fish sampling; Wolftrap Creek stream restoration in Vienna, VA; Fish – small mouth bass (Micropterus dolomieu) at Water Quality Field Day; Sampling station being serviced — Occoquan; Water Quality Field Day – Woodley Hills School; Tree planting; Stormwater Management Pond – Noman M. Cole, Jr., Pollution Control Plant. (photo credit Fairfax County) i Report prepared and compiled by: Stormwater Planning Division Department of Public Works and Environmental Services Fairfax County, Virginia 22035 703-324-5500, TTY 711 www.fairfaxcounty.gov/dpwes/stormwater June 2014 To request this information in an alternate format call 703-324-5500, TTY 711. Fairfax County is committed to nondiscrimination on the basis of disability in all county programs, services and activities. Reasonable accommodations will be provided upon request. For information, call 703-324-5500, TTY 711. ii This page was intentionally left blank. iii iv Table of Contents Table of Contents .............................................................................................................................. iv List of Figures ......................................................................................................................................... vi List of Tables .......................................................................................................................................... vi Acknowledgments -
Draft District of Columbia Stormwater Management Guidebook Page 10 Chapter 2
STORMWATER MANAGEMENT GUIDEBOOK Prepared for: District Department of the Environment Watershed Protection Division District of Columbia Prepared by: Center for Watershed Protection 8390 Main Street Ellicott City, MD 21043 August 2012 i ii #!&,'!* ',$-0+2'-, 0#%0"',% $3230# 3."2#1 2- 2&# '120'!2 -$ -*3+ ' 2-0+52#0 ,%#+#,2 3'"# --) 5'** # 4'* *# 2 Q &22.S ""-#T"!T%-4 .3 *'!2'-, 12-0+52#0V%3'"# --) #-2'!#1 0#%0"',% $3230# 4#01'-,1 -$ 2&# +,3* 5'** # .-12#" 2 2&'1 5# 1'2#T $3230# 4#01'-,1 0# #6.#!2#" 2- -!!30Q 2 +-12Q -,!# 7#0T Acknowledgements A major undertaking such as this requires the dedication and cooperative efforts of many individuals. Dr. Hamid Karimi, Director of Natural Resources, Sheila Besse, Associate Director of Watershed Protection, Jeff Seltzer, Associate Director of Stormwater Management, and Timothy Karikari, Branch Chief of Technical Services each deserve credit for their overall leadership and support for this project. Their willingness to allow staff to pursue ideas to their fullest and provide necessary time, resources and managerial support, laid the foundation for much innovation. Project Manger Rebecca C. Stack, DDOE-technical services Lead Authors Greg Hoffmann, P.E., Center for Watershed Protection Rebecca C. Stack, DDOE-technical services Brian Van Wye, DDOE-stormwater Contributors and Peer Reviewers Joseph Battiata, P.E., Center for Watershed Protection Gerald Brock, Ph.D., George Washington University Josh Burch, DDOE-planning & restoration Collin R. Burrell, DDOE-water quality Walter Caldwell, DDOE-inspection enforcement Jonathan Champion, DDOE-stormwater Reid Christianson P.E., Ph.D., Center for Watershed Protection Laine Cidlowski, Office of Planning Richard DeGrandchamp, Ph.D., University of Colorado/Scientia Veritas Elias Demessie, DDOE-technical services Diane Douglas, DDOE-water quality Alex Foraste, Williamsburg Environmental Group, Inc. -
Problems and Solutions for Managing Urban Stormwater Runoff
Rained Out: Problems and Solutions for Managing Urban Stormwater Runoff Roopika Subramanian* The Clean Water Rule was the latest attempt by the Environmental Protection Agency and the Army Corps of Engineers to define “waters of the United States” under the Clean Water Act. While both politics and scholarship around this issue have typically centered on the jurisdictional status of rural waters, like ephemeral streams and vernal pools, the final Rule raised a less discussed issue of the jurisdictional status of urban waters. What was striking about the Rule’s exemption of “stormwater control features” was not that it introduced this urban issue, but that it highlighted the more general challenges of regulating stormwater runoff under the Clean Water Act, particularly the difficulty of incentivizing multibenefit land use management given the Act’s focus on pollution control. In this Note, I argue that urban stormwater runoff is more than a pollution-control problem. Its management also dramatically affects the intensity of urban water flow and floods, local groundwater recharge, and ecosystem health. In light of these impacts on communities and watersheds, I argue that the Clean Water Act, with its present limited pollution- control goal, is an inadequate regulatory driver to address multiple stormwater-management goals. I recommend advancing green infrastructure as a multibenefit solution and suggest that the best approach to accelerate its adoption is to develop decision-support tools for local government agencies to collaborate on green infrastructure projects. Introduction ..................................................................................................... 422 I. Urban Stormwater Runoff .................................................................... 424 A. Urban Stormwater Runoff: Multiple Challenges ........................... 425 B. Urban Stormwater Infrastructure Built to Drain: Local Responses to Urban Flooding .......................................................