Examples of Groups, Or, Groups to Play with Notes for Math 370 Ching-Li Chai First in the List Are Some Commutative Groups

Total Page:16

File Type:pdf, Size:1020Kb

Examples of Groups, Or, Groups to Play with Notes for Math 370 Ching-Li Chai First in the List Are Some Commutative Groups Examples of Groups, or, Groups to Play With Notes for Math 370 Ching-Li Chai First in the list are some commutative groups. 1. The group Z of all integers; the group law is the given by the addition of integers. 2. The group Z=nZ, where n 2 N>0. It has n elements. The group law is the addition. If e1 em n = p1 ··· pm , where p1; : : : ; pm are distinct primes and e1; : : : ; em are positive integers, ∼ e1 em then Z=nZ = (Z=p1 Z) × · · · × (Z=pm Z). 3. The group Q (resp. R, resp. C) of all rational (resp. real, resp. complex) numbers under addition. 4. The group Q× (resp. R×, resp. C×) of all non-zero rational (resp. real, resp. complex) numbers under multiplication. We have homomorphisms exp : R ! R× and exp : C ! C× given by the exponential function. 5. The quotient group Q=Z is an infinite abelian (or commutative) group in which each element has finite order. The next batch of examples are some matrix groups. In these examples we will fix a coefficient ring R. For now R is one of Q, R, C, Fp := Z=pZ or Z=nZ. But in fact one can take R to be any commutative ring. Let R× be the group of all invertible element of R; so an element a 2 R is in R× if and only if there exists an element b 2 R such that a · b = 1 in R. We will also fix a positive integer n. In the examples below the groups operate on the set Rn of all column vectors of size n with entries in R. So they operate as linear transformations on Rn. When R is infinite, these groups are usually infinite. 6. The general linear group GLn(R), consisting of all invertible n × n matrix with entries in the ring R. This set forms a group under matrix multiplication. Note that an n × n matrix A matrix with entries in R is invertible (i.e. it has an inverse matrix B in R) if and only if det(A) 2 R×; the inverse A−1 of A is given by the standard formula in terms of the determant of A and its (n − 1) × (n − 1) minors. 7. The special linear group SLn(R) is the normal subgroup of GLn(R), consisting of all n × n matrics A with coefficients in R such that det(A) = 1. It is the kernel of the × homomorphism det : GLn(R) ! R = GL1(R). 8. The subgroup Bn(R) of GLn(R), consisting of all upper-triangular n×n matrices with entries in R. 9. The group Nn(R) of Bn(R), consisting of all strictly upper-triangular n × n matrices with coefficients in R. The group Nn(R) is a normal subgroup of Bn(R). When n = 3, Nn(R) is often called a \Heisenberg group". 1 Here are some more matrix groups. They are examples of Lie groups, groups which can be studied using the tools of differential and integral calculus. n 10. Denote by On(R) the orthogonal group action on R . It consists of all n × n matrices A with entries in R, such that t t A · A = A · A = Idn : The group law is induced by matrix multiplication. The intersection On(R) \ SLn(R) is called the special orthogonal group. 11. For any n × n matrix A with entries in C, denote by A∗ its hermitian conjugate, that is the result of first taking the complex conjugate of A (i.e. conjugate all entries of A), than take the transpose. Denote by Un the set of all n × n matrices A with entries in ∗ ∗ C, such that A · A = A · A = Idn. It is a subgroup of GLn(C), called the unitary group. The intersection Un \ SLn(C) is called the special unitary group. In the next batch of examples we shall find some non-commutative finite groups. 12. The quaternion group Q; it has eight element: Q = {±1; ±i; ±j; ±kg : It is the group of all invertible elements in the ring of quaternions with integer coef- ficents. The center of Q is {±1g. We have i2 = j2 = k2 = −1, i · j = k = −j · i, j · k = i = −k · j and k · i = j = −i · k. The quaternion group Q is related to the Hamiltonian quaternions as follows. Let HZ = fa + b · i + c · j + d · k j a; b; c; d 2 Zg be the ring of Hamiltonian quaternions with integer coefficients. Then Q is the group H× of invertible elements in H. 13. Let n ≥ 1 be a positive integer. Denote by Sn the symmetric group of all permutations of the set f1; : : : ; ng with n elements. (A permutation of a set T is a bijection from T to itself.) The group law for Sn is given by composition of permutations. In order to conform with the standard convention about permutations, we will think of Sn as operation on the right of f1; : : : ; ng. So for σ1; σ2 2 Sn, their product σ1 · σ2 is the permutation which sends each element m 2 f1; : : : ; ng to ((m)σ1)σ2. In other words, permute first by σ1 and then by σ2. The group Sn has n! elements. 14. We can attach to every permutation σ 2 Sn its sign. The sign of a transposition is −1, and sign : Sn ! µ2 := {±1g is a surjective homomorphism from Sn to the group µ2 = {±1g of the square roots of unity. The kernel of sign, consisting of all even permutations, is called the alternating group in n letters. 2 15. The group S4 contains a copy of the Klein-four group (Z=2Z) × (Z=2Z), namely the normal subgroup N = fid; (12)(34); (13)(24); (14)(23)g. Here (12)(23) is the permu- tation of the set f1; 2; 3; 4g which interchanges 1; 2 and interchanges 3; 4; similarly for the two other non-trivial elements. The quotient of S4 by this normal subgroup N is isomorphic to S3. Notice that N is also a subgroup of A4. 2 16. Let n ≥ 3 be a positive integer, and let Pn be the regular n − gon on R , with vertices 2πj 2πj cos( n ); sin( n ) , j = 0; 1; : : : ; n − 1. The dihedral group D2n is the group of all symmetries of Pn. It has 2n elements, consisting of n rotations and n reflections. It can be generated by two element s and t, such that s is an element of order 2 (a reflection), t is an element of order n (a reflection), and s · t · s−1 = t−1. When n = 3, the dihedral group D6 is isomorphic to the symmetric group S3. 17. More generally, let S be a Platonic solid in R3. Then the group of all symmetries of S is a finite subgroup of the orthogonal group O3(R). Here is a list of the Platonic solids: the regular tetrahedrons, the cubes, the regular octahedrons, the regular dodecahedrons and the regular icosahedrons. Then standard duality construction shows that the symmetry groups for the cubes and for the regular octahedrons are isomorphic; also the symmetry groups for the regular dodecahedrons and the regular icosohedrons are isomorphic. Artin's book is an excellent source for informations about these groups. 3.
Recommended publications
  • On Abelian Subgroups of Finitely Generated Metabelian
    J. Group Theory 16 (2013), 695–705 DOI 10.1515/jgt-2013-0011 © de Gruyter 2013 On abelian subgroups of finitely generated metabelian groups Vahagn H. Mikaelian and Alexander Y. Olshanskii Communicated by John S. Wilson To Professor Gilbert Baumslag to his 80th birthday Abstract. In this note we introduce the class of H-groups (or Hall groups) related to the class of B-groups defined by P. Hall in the 1950s. Establishing some basic properties of Hall groups we use them to obtain results concerning embeddings of abelian groups. In particular, we give an explicit classification of all abelian groups that can occur as subgroups in finitely generated metabelian groups. Hall groups allow us to give a negative answer to G. Baumslag’s conjecture of 1990 on the cardinality of the set of isomorphism classes for abelian subgroups in finitely generated metabelian groups. 1 Introduction The subject of our note goes back to the paper of P. Hall [7], which established the properties of abelian normal subgroups in finitely generated metabelian and abelian-by-polycyclic groups. Let B be the class of all abelian groups B, where B is an abelian normal subgroup of some finitely generated group G with polycyclic quotient G=B. It is proved in [7, Lemmas 8 and 5.2] that B H, where the class H of countable abelian groups can be defined as follows (in the present paper, we will call the groups from H Hall groups). By definition, H H if 2 (1) H is a (finite or) countable abelian group, (2) H T K; where T is a bounded torsion group (i.e., the orders of all ele- D ˚ ments in T are bounded), K is torsion-free, (3) K has a free abelian subgroup F such that K=F is a torsion group with trivial p-subgroups for all primes except for the members of a finite set .K/.
    [Show full text]
  • Quotient Groups §7.8 (Ed.2), 8.4 (Ed.2): Quotient Groups and Homomorphisms, Part I
    Math 371 Lecture #33 x7.7 (Ed.2), 8.3 (Ed.2): Quotient Groups x7.8 (Ed.2), 8.4 (Ed.2): Quotient Groups and Homomorphisms, Part I Recall that to make the set of right cosets of a subgroup K in a group G into a group under the binary operation (or product) (Ka)(Kb) = K(ab) requires that K be a normal subgroup of G. For a normal subgroup N of a group G, we denote the set of right cosets of N in G by G=N (read G mod N). Theorem 8.12. For a normal subgroup N of a group G, the product (Na)(Nb) = N(ab) on G=N is well-defined. We saw the proof of this before. Theorem 8.13. For a normal subgroup N of a group G, we have (1) G=N is a group under the product (Na)(Nb) = N(ab), (2) when jGj < 1 that jG=Nj = jGj=jNj, and (3) when G is abelian, so is G=N. Proof. (1) We know that the product is well-defined. The identity element of G=N is Ne because for all a 2 G we have (Ne)(Na) = N(ae) = Na; (Na)(Ne) = N(ae) = Na: The inverse of Na is Na−1 because (Na)(Na−1) = N(aa−1) = Ne; (Na−1)(Na) = N(a−1a) = Ne: Associativity of the product in G=N follows from the associativity in G: [(Na)(Nb)](Nc) = (N(ab))(Nc) = N((ab)c) = N(a(bc)) = (N(a))(N(bc)) = (N(a))[(N(b))(N(c))]: This establishes G=N as a group.
    [Show full text]
  • On Finite Groups Whose Every Proper Normal Subgroup Is a Union
    Proc. Indian Acad. Sci. (Math. Sci.) Vol. 114, No. 3, August 2004, pp. 217–224. © Printed in India On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes ALI REZA ASHRAFI and GEETHA VENKATARAMAN∗ Department of Mathematics, University of Kashan, Kashan, Iran ∗Department of Mathematics and Mathematical Sciences Foundation, St. Stephen’s College, Delhi 110 007, India E-mail: ashrafi@kashanu.ac.ir; geetha [email protected] MS received 19 June 2002; revised 26 March 2004 Abstract. Let G be a finite group and A be a normal subgroup of G. We denote by ncc.A/ the number of G-conjugacy classes of A and A is called n-decomposable, if ncc.A/ = n. Set KG ={ncc.A/|A CG}. Let X be a non-empty subset of positive integers. A group G is called X-decomposable, if KG = X. Ashrafi and his co-authors [1–5] have characterized the X-decomposable non-perfect finite groups for X ={1;n} and n ≤ 10. In this paper, we continue this problem and investigate the structure of X-decomposable non-perfect finite groups, for X = {1; 2; 3}. We prove that such a group is isomorphic to Z6;D8;Q8;S4, SmallGroup(20, 3), SmallGroup(24, 3), where SmallGroup.m; n/ denotes the mth group of order n in the small group library of GAP [11]. Keywords. Finite group; n-decomposable subgroup; conjugacy class; X-decompo- sable group. 1. Introduction and preliminaries Let G be a finite group and let NG be the set of proper normal subgroups of G.
    [Show full text]
  • Math 411 Midterm 2, Thursday 11/17/11, 7PM-8:30PM. Instructions: Exam Time Is 90 Mins
    Math 411 Midterm 2, Thursday 11/17/11, 7PM-8:30PM. Instructions: Exam time is 90 mins. There are 7 questions for a total of 75 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely. 1 Q1. (10 points) Let σ 2 S9 be the permutation 1 2 3 4 5 6 7 8 9 5 8 7 2 3 9 1 4 6 (a) (2 points) Write σ as a product of disjoint cycles. (b) (2 points) What is the order of σ? (c) (2 points) Write σ as a product of transpositions. (d) (4 points) Compute σ100. Q2. (8 points) (a) (3 points) Find an element of S5 of order 6 or prove that no such element exists. (b) (5 points) Find an element of S6 of order 7 or prove that no such element exists. Q3. (12 points) (a) (4 points) List all the elements of the alternating group A4. (b) (8 points) Find the left cosets of the subgroup H of A4 given by H = fe; (12)(34); (13)(24); (14)(23)g: Q4. (10 points) (a) (3 points) State Lagrange's theorem. (b) (7 points) Let p be a prime, p ≥ 3. Let Dp be the dihedral group of symmetries of a regular p-gon (a polygon with p sides of equal length). What are the possible orders of subgroups of Dp? Give an example in each case. 2 Q5. (13 points) (a) (3 points) State a theorem which describes all finitely generated abelian groups.
    [Show full text]
  • Generating the Mathieu Groups and Associated Steiner Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 112 (1993) 41-47 41 North-Holland Generating the Mathieu groups and associated Steiner systems Marston Conder Department of Mathematics and Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand Received 13 July 1989 Revised 3 May 1991 Abstract Conder, M., Generating the Mathieu groups and associated Steiner systems, Discrete Mathematics 112 (1993) 41-47. With the aid of two coset diagrams which are easy to remember, it is shown how pairs of generators may be obtained for each of the Mathieu groups M,,, MIz, Mz2, M,, and Mz4, and also how it is then possible to use these generators to construct blocks of the associated Steiner systems S(4,5,1 l), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. 1. Introduction Suppose you land yourself in 24-dimensional space, and are faced with the problem of finding the best way to pack spheres in a box. As is well known, what you really need for this is the Leech Lattice, but alas: you forgot to bring along your Miracle Octad Generator. You need to construct the Leech Lattice from scratch. This may not be so easy! But all is not lost: if you can somehow remember how to define the Mathieu group Mz4, you might be able to produce the blocks of a Steiner system S(5,8,24), and the rest can follow. In this paper it is shown how two coset diagrams (which are easy to remember) can be used to obtain pairs of generators for all five of the Mathieu groups M,,, M12, M22> Mz3 and Mz4, and also how blocks may be constructed from these for each of the Steiner systems S(4,5,1 I), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively.
    [Show full text]
  • Subgroups of Division Rings in Characteristic Zero Are Characterized
    Subgroups of Division Rings Mark Lewis Murray Schacher June 27, 2018 Abstract We investigate the finite subgroups that occur in the Hamiltonian quaternion algebra over the real subfield of cyclotomic fields. When possible, we investigate their distribution among the maximal orders. MSC(2010): Primary: 16A39, 12E15; Secondary: 16U60 1 Introduction Let F be a field, and fix a and b to be non-0 elements of F . The symbol algebra A =(a, b) is the 4-dimensional algebra over F generated by elements i and j that satisfy the relations: i2 = a, j2 = b, ij = ji. (1) − One usually sets k = ij, which leads to the additional circular relations ij = k = ji, jk = i = kj, ki = j = ki. (2) − − − arXiv:1806.09654v1 [math.RA] 25 Jun 2018 The set 1, i, j, k forms a basis for A over F . It is not difficult to see that A is a central{ simple} algebra over F , and using Wedderburn’s theorem, we see that A is either a 4-dimensional division ring or the ring M2(F ) of2 2 matrices over F . It is known that A is split (i.e. is the ring of 2 2 matrices× over F ) if and only if b is a norm from the field F (√a). Note that×b is a norm over F (√a) if and only if there exist elements x, y F so that b = x2 y2a. This condition is symmetric in a and b. ∈ − More generally, we have the following isomorphism of algebras: (a, b) ∼= (a, ub) (3) 1 where u = x2 y2a is a norm from F (√a); see [4] or [6].
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Functional Analysis 194, 347–409 (2002) doi:10.1006/jfan.2002.3942 Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups Helge Glo¨ ckner1 Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918 E-mail: [email protected] Communicated by L. Gross Received September 4, 2001; revised November 15, 2001; accepted December 16, 2001 We characterize the existence of Lie group structures on quotient groups and the existence of universal complexifications for the class of Baker–Campbell–Hausdorff (BCH–) Lie groups, which subsumes all Banach–Lie groups and ‘‘linear’’ direct limit r r Lie groups, as well as the mapping groups CK ðM; GÞ :¼fg 2 C ðM; GÞ : gjM=K ¼ 1g; for every BCH–Lie group G; second countable finite-dimensional smooth manifold M; compact subset SK of M; and 04r41: Also the corresponding test function r r # groups D ðM; GÞ¼ K CK ðM; GÞ are BCH–Lie groups. 2002 Elsevier Science (USA) 0. INTRODUCTION It is a well-known fact in the theory of Banach–Lie groups that the topological quotient group G=N of a real Banach–Lie group G by a closed normal Lie subgroup N is a Banach–Lie group provided LðNÞ is complemented in LðGÞ as a topological vector space [7, 30]. Only recently, it was observed that the hypothesis that LðNÞ be complemented can be omitted [17, Theorem II.2]. This strengthened result is then used in [17] to characterize those real Banach–Lie groups which possess a universal complexification in the category of complex Banach–Lie groups.
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • On Some Generation Methods of Finite Simple Groups
    Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group.
    [Show full text]
  • Arxiv:Hep-Th/0510191V1 22 Oct 2005
    Maximal Subgroups of the Coxeter Group W (H4) and Quaternions Mehmet Koca,∗ Muataz Al-Barwani,† and Shadia Al-Farsi‡ Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman Ramazan Ko¸c§ Department of Physics, Faculty of Engineering University of Gaziantep, 27310 Gaziantep, Turkey (Dated: September 8, 2018) The largest finite subgroup of O(4) is the noncrystallographic Coxeter group W (H4) of order 14400. Its derived subgroup is the largest finite subgroup W (H4)/Z2 of SO(4) of order 7200. Moreover, up to conjugacy, it has five non-normal maximal subgroups of orders 144, two 240, 400 and 576. Two groups [W (H2) × W (H2)]×Z4 and W (H3)×Z2 possess noncrystallographic structures with orders 400 and 240 respectively. The groups of orders 144, 240 and 576 are the extensions of the Weyl groups of the root systems of SU(3)×SU(3), SU(5) and SO(8) respectively. We represent the maximal subgroups of W (H4) with sets of quaternion pairs acting on the quaternionic root systems. PACS numbers: 02.20.Bb INTRODUCTION The noncrystallographic Coxeter group W (H4) of order 14400 generates some interests [1] for its relevance to the quasicrystallographic structures in condensed matter physics [2, 3] as well as its unique relation with the E8 gauge symmetry associated with the heterotic superstring theory [4]. The Coxeter group W (H4) [5] is the maximal finite subgroup of O(4), the finite subgroups of which have been classified by du Val [6] and by Conway and Smith [7].
    [Show full text]
  • Normal Subgroups of the General Linear Groups Over Von Neumann Regular Rings L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 96, Number 2, February 1986 NORMAL SUBGROUPS OF THE GENERAL LINEAR GROUPS OVER VON NEUMANN REGULAR RINGS L. N. VASERSTEIN1 ABSTRACT. Let A be a von Neumann regular ring or, more generally, let A be an associative ring with 1 whose reduction modulo its Jacobson radical is von Neumann regular. We obtain a complete description of all subgroups of GLn A, n > 3, which are normalized by elementary matrices. 1. Introduction. For any associative ring A with 1 and any natural number n, let GLn A be the group of invertible n by n matrices over A and EnA the subgroup generated by all elementary matrices x1'3, where 1 < i / j < n and x E A. In this paper we describe all subgroups of GLn A normalized by EnA for any von Neumann regular A, provided n > 3. Our description is standard (see Bass [1] and Vaserstein [14, 16]): a subgroup H of GL„ A is normalized by EnA if and only if H is of level B for an ideal B of A, i.e. E„(A, B) C H C Gn(A, B). Here Gn(A, B) is the inverse image of the center of GL„(,4/S) (when n > 2, this center consists of scalar invertible matrices over the center of the ring A/B) under the canonical homomorphism GL„ A —►GLn(A/B) and En(A, B) is the normal subgroup of EnA generated by all elementary matrices in Gn(A, B) (when n > 3, the group En(A, B) is generated by matrices of the form (—y)J'lx1'Jy:i''1 with x € B,y £ A,l < i ^ j < n, see [14]).
    [Show full text]