Einstein Polarizations of Continuous Gravitational Waves

Total Page:16

File Type:pdf, Size:1020Kb

Einstein Polarizations of Continuous Gravitational Waves Isi, M., Weinstein, A. J., Mead, C., and Pitkin, M. (2015) Detecting beyond- Einstein polarizations of continuous gravitational waves. Physical Review D, 91, 082002. Copyright © 2015 American Physical Society. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge The content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) When referring to this work, full bibliographic details must be given http://eprints.gla.ac.uk/104666/ Deposited on: 22 April 2015. Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk LIGO-P1400169 Detecting Beyond-Einstein Polarizations of Continuous Gravitational Waves Maximiliano Isi,1, ∗ Alan J. Weinstein,1, y Carver Mead,1, z and Matthew Pitkin2, x 1California Institute of Technology 2University of Glasgow (Dated: March 29, 2015) The direct detection of gravitational waves with the next generation detectors, like Advanced LIGO, provides the opportunity to measure deviations from the predictions of General Relativity. One such departure would be the existence of alternative polarizations. To measure these, we study a single detector measurement of a continuous gravitational wave from a triaxial pulsar source. We develop methods to detect signals of any polarization content and distinguish between them in a model independent way. We present LIGO S5 sensitivity estimates for 115 pulsars. I. INTRODUCTION which make use of GW burst search methods [12]. In this paper, we present methods to search LIGO{like Since its introduction in 1915, Einstein's theory of detector data for continuous GW signals of any polariza- General Relativity (GR) has been confirmed by exper- tion mode, not just those allowed by GR. We also com- iment in every occasion [1]. However, GR has not yet pare the relative sensitivity of different model{dependent been tested with great precision on scales larger than the and independent templates to certain kinds of signals. solar system or for highly dynamical and strong gravita- Furthermore, we provide expected sensitivity curves for tional fields [2]. Those kinds of rapidly changing fields GR and non{GR signals, obtained by means of blind give rise to gravitational waves (GWs)|self propagat- searches over LIGO noise (not actual upper limits). ing stretching and squeezing of spacetime originating in Section II provides the background behind GW polar- the acceleration of massive objects, like spinning neu- izations and continuous waves, while sections III and V tron stars with an asymmetry in their moment of inertia present search methods and the data analysis procedures (e.g., see [3, 4]). used to evaluate sensitivity for detection. Results and fi- Although GWs are yet to be directly observed, detec- nal remarks are provided in sections V & VI respectively. tors such as the Laser Interferometer Gravitational Wave Observatory (LIGO) expect to do so in the coming years, giving us a chance to probe GR on new grounds [5, 6]. II. BACKGROUND Because GR does not present any adjustable parameters, these tests have the potential to uncover new physics [1]. A. Polarizations By the same token, LIGO data could also be used to test alternative theories of gravity that disagree with GR on Just like electromagnetic waves, GWs can present dif- the properties of GWs. ferent kinds of polarizations. Most generally, metric the- Furthermore, when looking for a weak signal in noisy ories of gravity could allow six possible modes: plus (+), LIGO data, certain physical models are used to target cross ( ), vector x (x), vector y (y), breathing (b) and the search and are necessary to make any detection pos- longitudinal× (l). Their effects on a free{falling ring of sible [2]. Because these are usually based on predictions particles are illustrated in fig. 1. Transverse GWs (+, from GR, assuming an incorrect model could yield a weak and b) change the distance between particles separated in× detection or no detection at all. Similarly, if GR is not the plane perpendicular to the direction of propagation a correct description for highly dynamical gravity, check- (taken to be the z-axis). Vector GWs are also transverse; ing for patterns given by alternative models could result but, because all particles in a plane perpendicular to the in detection where no signal had been seen before. direction of propagation are equally accelerated, their There exist efforts to test GR by looking at the de- relative separation is not changed. Nonetheless, parti- viations of the parametrized post{Newtonian coefficients cles farther from the source move at later times, hence extracted from the inspiral phase of compact binary co- varying their position relative to points with both dif- alescence events [7{9]. Besides this, deviations from GR ferent x{y coordinates and different z distance. Finally, could be observed in generic GW properties such as po- longitudinal GWs change the distance between particles larization, wave propagation speed or parity violation separated along the direction of propagation. [1, 10, 11]. Tests of these properties have been proposed Note that, because of their symmetries, the breathing and longitudinal modes are degenerate for LIGO-like in- terferometric detectors, so it is enough to just consider ∗ [email protected] one of them in the analysis. Also, this study assumes y [email protected] wave frequency and speed remain constant across modes, z [email protected] which restricts the detectable differences between polar- x [email protected] izations to amplitude modulations. 2 y x y odic motion, such as binary systems or spinning neutron stars [14]. Throughout this paper, we target known pul- sars (e.g., the Crab pulsar) and assume an asymmetry x z x in their moment of inertia (rather than precession of the spin axis or other possible, but less likely, mechanisms) causes them to emit gravitational radiation. A source of this type can generate GWs only at multiples of its y y y rotational frequency ν. In fact, it is expected that most power be radiated at twice this value [15]. For that rea- son, we take the GW frequency, νgw, to be 2ν. Moreover, x z z the frequency evolution of these pulsars is well{known thanks to electromagnetic observations, mostly at radio wavelengths but also in gamma-rays. Simulation of a CGW from a triaxial neutron star is FIG. 1: Illustration of the effect of different GW straightforward. The general form of a such signal is: polarizations on a ring of test particles. plus (+) and cross ( ) tensor modes (green); vector{x (x) and vector{y× (y) modes (red); breathing (b) and longitudinal (l) scalar modes (black). In all of these X h(t) = A (t; α; δ; λ, φ, γ; ξ) h (t; ι, h ; φ ; ν; ν;_ ν¨); diagrams the wave propagates in the z{direction [1]. p p 0 0 p j (1) where, for each polarization p, Ap is the detector response In reality, however, GWs might only possess some of (antenna pattern) and hp a sinusoidal waveform of fre- those six components: different theories of gravity pre- quency νgw = 2ν. The detector parameters are: λ, lon- dict the existence of different polarizations. In fact, due gitude; φ, latitude; γ, angle of the detector x{arm mea- to their symmetries, + and are associated with tensor sured from East; and ξ, the angle between arms. Values × theories, x and y with vector theories, and b and l with for the LIGO Hanford Observatory (LHO), LIGO Liv- scalar theories. In terms of particle physics, this differ- ingston Observatory (LLO) and Virgo (VIR) detectors entiation is also linked to the predicted helicity of the are presented in table I. The source parameters are: , graviton: 2, 1 or 0, respectively. Consequently, GR the signal polarization angle; ι, the inclination of the pul- ± ± only allows + and , while scalar{tensor theories also sar spin axis relative to the observer's line-of-sight; h , × 0 predict the presence of some extra b component whose an overall amplitude factor; φ0, a phase offset; and ν, the strength depends on the source [1]. Bolder theories might rotational frequency, withν _,ν ¨ its first and second deriva- predict the existence of vector or scalar modes only, while tives. Also, α is the right ascension and δ the declination still being in agreement with all other non{GW tests. of the pulsar in celestial coordinates. Four-Vector Gravity (G4v) is one such extreme exam- ple [13]. This vector{based framework claims to repro- Note that the inclination angle ι is defined as is stan- duce all the predictions of GR, including weak–field tests dard in astronomy, with ι = 0 and ι = π respectively and total radiated power of GWs. However, this theory meaning that the angular momentum vector of the source differs widely from GR when it comes to gravitational points towards and opposite to the observer. The signal wave polarizations. Thus, one of the only ways to test polarization angle is related to the position angle of G4v would be to detect a GW signal composed of x and the source, which is in turn defined to be the East angle y modes instead of + and . × of the projection of the source's spin axis onto the plane of the sky. B. Signal Although there are hundreds of pulsars in the LIGO band, in the majority of cases we lack accurate mea- Because of their persistence, continuous gravitational surements of their inclination and polarization angles. waves (CGWs) provide the means to study GW polar- The few exceptions, presented in table II, were obtained izations without the need for multiple detectors. For the through the study of the pulsar spin nebula [16].
Recommended publications
  • Unsung Innovators: Lynn Conway and Carver Mead They Literally Wrote the Book on Chip Design
    http://www.computerworld.com/s/article/9046420/Unsung_innovators_Lynn_Conway_and_Carver_Mead Unsung innovators: Lynn Conway and Carver Mead They literally wrote the book on chip design By Gina Smith December 3, 2007 12:00 PM ET Computerworld - There is an analogy Lynn Conway brings up when trying to explain what is now known as the "Mead & Conway Revolution" in chip design history. Before the Web, the Internet had been chugging along for years. But it took the World Wide Web, and its systems and standards, to help the Internet burst into our collective consciousness. "What we had took off in that modern sort of way," says Conway today. Before Lynn Conway and Carver Mead's work on chip design, the field was progressing, albeit slowly. "By the mid-1970s, digital system designers eager to create higher-performance devices were frustrated by having to use off-the-shelf large-scale-integration logic," according to Electronic Design magazine, which inducted Mead and Conway into its Hall of Fame in 2002. The situation at the time stymied designers' efforts "to make chips sufficiently compact or cost- effective to turn their very large-scale visions into timely realities." But then Conway and Mead introduced their very large-scale integration (VLSI) methods for combining tens of thousands of transistor circuits on a single chip. And after Mead and Conway's 1980 textbook Introduction to VLSI Design -- and its subsequent storm through the nation's universities -- engineers outside the big semiconductor companies could pump out bigger and better digital chip designs, and do it faster than ever. Their textbook became the bible of chip designers for decades, selling over 70,000 copies.
    [Show full text]
  • Countering the Bohr Thralldom
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2021 Countering the Bohr Thralldom Curtis Lacy University of Washington Ph.D. Physics 1970, now retired ORCID 0000-00034-2506-2171, [email protected] Keywords: superposition of states, observable, superluminal, Copenhagen interpretation of quantum mechanics Abstract The Copenhagen interpretation of quantum mechanics and the notion of superposition of states are examined and found problematical. Introduction In 2013, a short article by Carver Mead1 appeared online,2 in which he deplores the stultifying effect of competition for position and influence by the pioneers and originators of contemporary science, particularly relativity and quantum mechanics. In his words, "A bunch of big egos got in the way", and stalled the revolution which had started in the early twentieth century. Mead recounts the story of Niels Bohr and Werner Heisenberg laughing at Charles Townes, inventor of the maser and laser, when he presented his ideas to them. They dismissed him with the condescending judgment that he didn’t understand how quantum mechanics works. The subsequent development of laser technology constitutes a cogent reminder of the perils inherent in casual dismissal of novel ideas. Mead also expresses concern regarding the subsequent development of physics in the twentieth century. The opening statement in his book Collective Electrodynamics declares “It is my firm belief that the last seven decades of the twentieth century will be characterized in history as the dark ages of theoretical physics”. The present note proposes that the currently accepted picture of quantum mechanics, the so-called Copenhagen interpretation of quantum mechanics (hereinafter CIQM), brings in its wake certain difficulties which call for further consideration, perhaps even a thorough revision.
    [Show full text]
  • The Optical Mouse: Early Biomimetic Embedded Vision
    The Optical Mouse: Early Biomimetic Embedded Vision Richard F. Lyon Abstract The 1980 Xerox optical mouse invention, and subsequent product, was a successful deployment of embedded vision, as well as of the Mead–Conway VLSI design methodology that we developed at Xerox PARC in the late 1970s. The de- sign incorporated an interpretation of visual lateral inhibition, essentially mimicking biology to achieve a wide dynamic range, or light-level-independent operation. Con- ceived in the context of a research group developing VLSI design methodologies, the optical mouse chip represented an approach to self-timed semi-digital design, with the analog image-sensing nodes connecting directly to otherwise digital logic using a switch-network methodology. Using only a few hundred gates and pass tran- sistors in 5-micron nMOS technology, the optical mouse chip tracked the motion of light dots in its field of view, and reported motion with a pair of 2-bit Gray codes for x and y relative position—just like the mechanical mice of the time. Besides the chip, the only other electronic components in the mouse were the LED illuminators. Fig. 1 The Xerox optical mouse chip in its injection- molded dual-inline package (DIP) of clear plastic, with pins stuck into a conductive packaging foam. The bond wires connecting the chip’s pads to the lead frame are (barely) visible. Richard F. Lyon Google Inc., Mountain View CA, e-mail: [email protected] 1 2 Richard F. Lyon Fig. 2 The Winter 1982 Xe- rox World internal magazine cover featuring the Electron- ics Division and their 3-button mechanical and optical mouse developments, among other electronic developments.
    [Show full text]
  • Carver A. Mead Papers, 1956-2016, Bulk 1968-1994
    http://oac.cdlib.org/findaid/ark:/13030/c8k64qc0 No online items Finding Aid for the Carver A. Mead Papers, 1956-2016, bulk 1968-1994 Penelope Neder-Muro & Mariella Soprano California Institute of Technology Archives and Special Collections December 2017 (Updated December 2018) 1200 East California Blvd. MC B215-74 Pasadena, California 91125 [email protected] URL: http://archives.caltech.edu/ Finding Aid for the Carver A. 10284-MS 1 Mead Papers, 1956-2016, bulk 1968-1994 Language of Material: English Contributing Institution: California Institute of Technology Archives and Special Collections Title: Carver A. Mead Papers creator: Mead, Carver A. Identifier/Call Number: 10284-MS Physical Description: 49 linear feet(85 archives boxes, 2 half size boxes, 4 oversize flat boxes, 2 record cartons, 7 tubes, 1 postcard box, and digital files) Date (inclusive): 1956-2017 Date (bulk): 1968-1994 Abstract: Carver A. Mead, Caltech Alumnus (B.S. 1956, M.S. 1957, PhD 1960) and the Gordon and Betty Moore Professor of Engineering and Applied Science, Emeritus, taught at Caltech for over forty years. Mead retired from teaching in 1999, but remains active in his research and in the Caltech community. Mead's papers consist of correspondence, biographical material, teaching notes, notebooks, book drafts, audiovisual material, artifacts, and research material, including his work with very large scale integration (VLSI) of integrated circuits. Conditions Governing Access The collection is open for research. Researchers must apply in writing for access. Some files are confidential and will remain closed for an indefinite period. Researchers may request information about closed files from the Caltech Archives.
    [Show full text]
  • Carver Mead | Research Overview
    Carver Mead | Research Overview http://www.carvermead.caltech.edu/research.html Carver Mead Gordon & Betty Moore Professor of Engineering & Applied Science, Emeritus Contact: Donna L. Fox Email: [email protected] Phone: 626.395.2812 Home Research Overview Research Overview Honors and Awards Power System History Publications Patents Teaching Talks YouTube Video Channel Articles and Interviews Caltech History Curriculum Vitae Carver Mead New Adventures Fund For the past 50 years, Carver Mead has dedicated his research, teaching, and public presentation to the physics and technology of electron devices. This effort has been divided among basic physics, practical devices, and seeing the solid state as a medium for the realization of novel and enormously concurrent computing structures. Listed below are a number of important contributions that were made over that period. 1960 Transistor switching analysis. Dissertation (Ph.D.), California Institute of Technology (0). Proposed and demonstrated the first three-terminal solid-state device operating with electron tunneling and hot-electron transport as its operating principles (1). 1961 Initiated a systematic investigation of the energy-momentum relation of electrons in the energy gap of insulators (2, 3, 4) and semiconductors (5, 6, 7). These studies involved exquisite control of nanometer-scale device dimensions, albeit in only one dimension. 1962 First demonstration that hot electrons in Gold retained their energy for distances in the nanometer range (8). 1 of 9 7/6/2020, 8:44 AM Carver Mead | Research Overview http://www.carvermead.caltech.edu/research.html 1963 With W. Spitzer (9, 10, 11), established the systematic role of interface states in determining the energy at interfaces of III-V compounds, independent of the detailed nature of the interface.
    [Show full text]
  • Carver Mead Oral History
    Carver Mead Oral History Interviewed by: Doug Fairbairn Recorded: May 27, 2009 Mountain View, California CHM Reference number: X4309.2008 © 2009 Computer History Museum Oral History of Carver Mead Doug Fairbairn: I'm Douglas Fairbairn. Today I'm interviewing Dr. Carver Mead, the Gordon and Betty Moore Professor of Engineering and Applied Science Emeritus at California Institute of Technology or Caltech in Pasadena, California. I've actually known Carver for over 30 years. We originally met in connection with his work in VLSI design and design methodology, and we're using this opportunity to look at some of the roots of that, some of Carver's background and in particular the roots of his work in VLSI design and VLSI design methodology and how that important work came to such an important point. In order to set a context for that, we're going to delve in to Carver's early years and growing up in southern California and so forth, but we will not go in to nearly the detail that some others have. I want to point out to the viewers of this tape that there has been an extensive interview of Carver's background and career in most of the important areas that was done by the Chemical Heritage Foundation in 2004 and 2005, and the transcripts of that very extensive set of interviews that spanned three days are available from them. So we are going to focus in this particular interview on a summary of his background and how it eventually led to his work in VLSI design and VLSI design methodologies and something about the impact that has had subsequently.
    [Show full text]
  • Gravitational Waves from Orbiting Binaries Without General Relativity: a Tutorial Robert C
    V2 2019 Gravitational waves from orbiting binaries without general relativity: a tutorial Robert C. Hilborna) American Association of Physics Teachers College Park, MD 20740 Abstract This tutorial leads the reader through the details of calculating the properties of gravitational waves from orbiting binaries, such as two orbiting black holes. Using analogies with electromagnetic radiation, the tutorial presents a calculation that produces the same dependence on the masses of the orbiting objects, the orbital frequency, and the mass separation as does the linear version of General Relativity (GR). However, the calculation yields polarization, angular distributions, and overall power results that differ from those of GR. Nevertheless, the calculation produces waveforms that are nearly identical to the pre-binary-merger portions of the signals observed by the Laser Interferometer Gravitational-Wave Observatory (LIGO-Virgo) collaboration. The tutorial should be easily understandable by students who have taken a standard upper-level undergraduate course in electromagnetism.a I. INTRODUCTION The recent observations1, 2, 3, 4 of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO-Virgo) collaboration have excited the physics community and the general public.b The ability to detect gravitational waves (GWs) directly provides a “new spectroscopy” that is likely to have a profound influence on our understanding of the structure and evolution of the universe and its constituents. In addition, the LIGO-Virgo collaboration provides strong evidence that most of the observed GWs can be attributed to the in-spiraling of two mutually orbiting black holes, ending with the coalescence of the black holes,5 thereby enhancing our confidence a Version 2 of this tutorial adds the “integrated orbital phase” method of describing chirp signals and a detailed derivation of the interaction of a vector gravitational wave with a LIGO-Virgo interferometer detector.
    [Show full text]
  • Interview with Carver A. Mead
    CARVER A. MEAD (1934– ) INTERVIEWED BY SHIRLEY K. COHEN July 17, 1996 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Engineering, electrical engineering, computer science Abstract An interview in July 1996 with Carver Andress Mead, Gordon and Betty Moore Professor of Engineering and Applied Science (as of 1999, Moore Professor emeritus). Dr. Mead received his undergraduate and graduate education at Caltech (BS, 1956; MS, 1957; PhD, 1960). He joined the Caltech faculty in 1958, becoming a full professor in 1967. In this interview, he recalls growing up in the mountains east of Fresno, father’s work for the Southern California Edison Company; early education in a one-room schoolhouse, then high school in Fresno. Early interest in electronics. Enters Caltech in 1952. Freshman courses with Linus Pauling, Richard Feynman, Frederic Bohnenblust; junior year focuses on electrical engineering. Stays on for a master’s degree with the encouragement of Hardy C. Martel. PhD student with R. David Middlebrook and Robert V. Langmuir. Work on electron tunneling; grants from the Office of Naval Research and General Electric. Helps establish applied physics in the 1960s with Amnon Yariv and Charles Wilts. Discusses his friendship with Gordon Moore and work on design of semiconductors. Discusses the establishment of a computer science department at Caltech in the mid-1970s and the arrival of Ivan Sutherland: the http://resolver.caltech.edu/CaltechOH:OH_Mead_C Silicon Structures Project. Departure of Sutherland in 1978 and decline of computer science under Pres. Marvin L. (Murph) Goldberger. MOSIS [Metal Oxide Semiconductor Implementation Service] program. Teaching at Bell Labs, 1980; startup of fabless semiconductor companies.
    [Show full text]
  • Getting Physical
    GILDER November 2002 / Vol.VII No.11 TECHNOLOGY REPORT Getting Physical he rise of digital electronics is the paramount industrial feat of the twentieth century. At the heart of this development is the movement T that I have called the overthrow of matter. It is symbolized by the microchip, which Gordon Moore observes has long been made of the three most common substances in the earth’s crust: silicon, aluminum, and oxygen. Although subsequent refinements have added trace elements of many other rarer chemicals, the most valuable element in the chip remains the idea for the design. Extending the overthrow of matter beyond the Microcosm is the technology of fiber optics. Functioning through the massless movement of photonic energy, The digital camera the global telecommunications network transmits more valuable cargo than all chip involves twenty the world’s supertankers. Nicholas Negroponte in his bestselling book Being Digital memorably announced this process as the movement of the economy from chips to do the atoms to bits, with atoms representing the smallest unit of mass and bits repre- senting the smallest unit of information. combination of Another way of couching this theme of an overthrow of matter is as a great photodetection & divorce: a digital separation of the logical processes, the algorithms of computa- tion, from the physical substrate of the computer. Transistors are complex four- processing that a dimensional structures made of atoms with electrical, chemical, and physical properties changing over time. Every one is different. Operating at the physical single-chip system layer, chip designers had to optimize every transistor.
    [Show full text]
  • Brain-Inspired Computing – We Need a Master Plan
    Brain-inspired computing – We need a master plan. A. Mehonic & A.J. Kenyon Department of Electronic & Electrical Engineering UCL Torrington Place London WC1E 7JE United Kingdom Abstract New computing technologies inspired by the brain promise fundamentally different ways to process information with extreme energy efficiency and the ability to handle the avalanche of unstructured and noisy data that we are generating at an ever-increasing rate. To realise this promise requires a brave and coordinated plan to bring together disparate research communities and to provide them with the funding, focus and support needed. We have done this in the past with digital technologies; we are in the process of doing it with quantum technologies; can we now do it for brain-inspired computing? Main The problem Our modern computing systems consume far too much design. For example, the performance of NVIDIA GPUs energy. They are not sustainable platforms for the has improved by the factor of 317 since 2012: far complex Artificial Intelligence (AI) applications that are beyond what would be expected from Moore's law increasingly a part of our everyday lives. We usually alone (Figure 1b). Further impressive performance don’t see this, particularly in the case of cloud-based improvements have been demonstrated at the R&D systems, as we are usually more interested in their stage and it is likely that we can achieve more. functionality – how fast are they; how accurate; how Unfortunately, it is unlikely that digital solutions alone many parallel operations per second? We are so will cope with demand over an extended period.
    [Show full text]
  • Reminiscences of the VLSI Revolution: How a Series of Failures Triggered a Paradigm Shift in Digital Design*
    Reminiscences of the VLSI Revolution: How a series of failures triggered a paradigm shift in digital design* By Lynn Conway Professor of Electrical Engineering and Computer Science, Emerita University of Michigan, Ann Arbor Lynn Conway at MIT, October 2008, the 30th anniversary of launching her VLSI design course there. Preface Innovations in science and engineering have excited me for a lifetime, as they have for many friends and colleagues. Unfortunately, our wider culture often imagines the engineering life to be one of tedium and technical drudgery, seldom witnessing the joys of such creativity. If only I could wave a wand, I've often wished, and say "YOU CAN DO IT" to inspire young folks to dedicate their lives to such adventures. But then various friends asked me to write about my own career – a tale wherein travails, setbacks, dark days and obscurity at times seemed the theme – and I wondered who’d be inspired by such a journey, so often apparently lonely, difficult and discouraging? However, after deeper contemplation and review, I realized that each setback in my story, each hardship, actually strengthened my skills, my perspectives, and my resolve. And when colleagues began reading the early drafts, they reacted similarly: "Wow, this is really something!" The story was authentic, real – maybe even surreal – and it actually happened. The child who once dreamed of "making a difference," indeed made a difference after all. And with that, I'd like to inspire YOU to imagine how you too can positively impact our world. Be assured, it won't be easy, and fame may never come your way, but the satisfaction gained from a life of creative work will be immense.
    [Show full text]
  • Moore's Law at 50
    ENTROPY ECONOMICS > TECH RESEARCH < ______________________________________________________________________________________________________________________ GLOBAL INNOVATION + TECHNOLOGY RESEARCH Moore’s Law: A 50th Anniversary Assessment BRET SWANSON > April 14, 2015 _________________________________ The article, “Cramming More Components “It was a tangible thing about belief in the fu- Onto Integrated Circuits,” appeared in the ture.” — Carver Mead 35th anniversary issue of Electronics in April 1965.3 “Integrated circuits,” Moore wrote, “will In 1971, Intel’s first microprocessor, the 4004, lead to such wonders as home computers — contained 2,300 transistors, the tiny digital or at least terminals connected to a central switches that are the chief building blocks of computer — automatic controls for automo- the information age. Between 1971 and biles, and personal portable communications 1986, Intel sold around one million 4004 equipment.” Moore was a physical chemist chips. Today, an Apple A8 chip, the brains of working with a brilliant team of young scien- the iPhone 6 and iPad, contains two billion tists and engineers at Fairchild Semiconduc- transistors. In just the last three months of tor, one of Silicon Valley’s first semiconductor 2014, Apple sold 96 million iPhones and firms.4 A few years later, he and several iPads. In all, in the fourth quarter of last year, members of the team would leave to found Apple alone put around 30 quintillion Intel. (30,000,000,000,000,000,000) transistors into the hands of people around the world.1 This rapid scaling of information technology Gordon Moore’s original 1965 chart, projecting — often referred to as Moore’s law — is the “Moore’s law.” foundation of the digital economy, the Inter- net, and a revolution in distributed knowledge sweeping the globe.
    [Show full text]