Logic of Behavior: Sheaves, Toposes, and Internal Languages

Total Page:16

File Type:pdf, Size:1020Kb

Logic of Behavior: Sheaves, Toposes, and Internal Languages Chapter 7 Logic of behavior: Sheaves, toposes, and internal languages In this chapter, we will study the notion of behavior and interaction by defining a category BT whose objects we call behavior types. Doing so will refine exactly what we mean by behavior, as well as how different types of behavior relate. However, our formulation will do much more: it will give us a formal language and logic in which to prove properties of behaviors in systems. 7.1 Motivation: a logic for composing machines Imagine you are trying to design a system of interacting components. You wouldn’t be doing this if you didn’t have a goal in mind: you want the system to do something, to behave in a certain way (even gods know what they think is “good” for the system they design.) Luckily, in the given case the possible behavior of any system in any environment is determined by the possible behaviors of each of its components, together with the precise way in which they interact.1 In this chapter, we will discuss a logic wherein one can describe general types of behavior that occur over time, and prove properties of a larger-scale system from the properties and interaction patterns of its components. 7.1.1 Systems and components For example, suppose we want an autonomous vehicle to maintain a distance of at least s safe from another object. To do so, several components must interact: a ≥ 1 The well-known concept of emergence is not about possibilities, it is about prediction. Predicting the behavior of a system given predictions of its components is notoriously hard. The behavior of a double pendulum is chaotic—meaning extremely sensitive to initial conditions—whereas those of the two component pendulums are not. However, the set of possibilities for the double pendulum are completely understood: it is the set of possible angular positions and velocities of both arms. When we speak of a machine’s properties in this chapter, we always mean the guarantees on its behaviors, not the probabilities involved. 1 CHAPTER 7. LOGIC OF BEHAVIOR: SHEAVES, TOPOSES, AND INTERNAL 2 LANGUAGES sensor that approximates the real distance by an internal variable s , say s s, a 0 0 ≈ controller that uses s0 to decide what action a to take, and a motor that moves the vehicle with an acceleration based on a. This in turn affects the real distance s, so there is a feedback loop. Consider the following model diagram: s sensor controller motor s0 a s In the diagram shown, the distance s is exposed by the exterior interface. This just means we imagine s as being a variable that other components of a larger system may want to interact with. We could have exposed no variables (making it a closed system) or we could have exposed a and/or s0. In order for the system to ensure s safe, we need each of the components to ≥ ensure a property of its own. But what are these components, “sensor, controller, motor”, and what do they do? One way to think about any of the components is to open it up and see how it is put together; with a detailed study we may be able to say what it will do. For example, just as s was exposed in the diagram above, one could imagine opening up the sensor component and seeing an interaction between subcomponents sensor radar s processor s0 sonar This ability to zoom in and see a single unit as being composed of others is important for design. But at the end of the day, you eventually need to stop diving down and simply use the properties of the components in front of you to prove properties of the composed system. Your job is to design the system at a given level, taking the component properties of lower-level systems as given. We will think of each component in terms of the relationship it maintains (through time) between the ports on its interface. We will make this more precise soon, but examples should help. The sensor maintains a relationship between s and s0, e.g. that they differ by no more than 5cm. The controller maintains a relationship between s0 and the action signal a, e.g. that if at any time s < safe, then within one second it will emit the signal a go. The motor maintains a relationship between a and s, e.g. that a dictates the second derivative of s by the formula a go s > 1 a stop s 0 : (7.1) ¹ ) Ü º ^ ¹ ) Ü º 7.1. MOTIVATION: A LOGIC FOR COMPOSING MACHINES 3 The above formula, and the rest, need to have unambiguous interpretations in a formal logical language, in which we can use standard proof techniques to combine properties of subsystems into properties of the whole. This is our objective in the present chapter. 7.1.2 A language for behavioral properties We have said how component systems, wired together in some arrangement, create larger-scale systems. We have also said that, given the wiring arrangement, the behav- ioral properties of the component system behaviors dictate the behavioral properties of the whole. But what exactly are behavioral properties? In this chapter, we want to give a formal language and semantics for a very general notion of behavior. Mathematics is itself gives a formal language; the usual style of mathematical modeling is to use any piece of this vast language at any time and for any reason. One uses “human understanding” to ensure that the different linguistic pieces are fitting together in an appropriate way when different systems are combined. Where the present work differs is that we want to find a domain-specific language for modeling behavior, any sort of behavior, and nothing but behavior. Unlike in the wide world of math, we want a setting where the only things that can be discussed are behaviors. For this, we will construct what is called a topos, which is a special kind of category. Our topos, let’s call it BT, will have behavior types as its objects. An amazing fact about toposes is that they come with an internal language that looks very much like the usual formal language of mathematics itself. Thus one can define groups, topological spaces, etc. in any topos. But in BT, groups will be group-like behavior types, e.g. where the group changes through time; topological spaces will be topological space- like behavior types, e.g. where the space changes through time. Rather than living in the world of sets—where elements are constant through time—we will live in the world of behavior types, which can change through time. The topos BT not only has an internal language, but it has a mathematical semantics using the notion of sheaves. A sheaf is a certain sort of functor. Every property we prove about behavior types will have meaning in this category of sheaves. When discussing systems and components above in Section 7.1.1, we mentioned behavior types; these will be the objects in the topos BT. Every wire in the picture below will stand for a behavior type, and every box will stand for a behavior contract, relating the wires it touches. s sensor controller motor s0 a s For example CHAPTER 7. LOGIC OF BEHAVIOR: SHEAVES, TOPOSES, AND INTERNAL 4 LANGUAGES • There is a behavior type for distances s between our vehicle and the other object; perhaps its behaviors are real-valued continuous functions of time. • There is a behavior type for action-signals a emanating from the controller; perhaps its behaviors are piecewise-constant functions of time taking values in a finite set such as go; stop . f g • The controller itself is a behavior contract on pair s ; a , while the motor is a ¹ 0 º behavior contract on a pair a; s e.g. the one shown in Eq. (7.1). ¹ º 7.2 Introduction to toposes, sheaves, and their logic In this section, we introduce toposes and sheaves. We give a brief history and some first definitions in Section 7.2.1. Then we discuss topological spaces and sheaves on them in Section 7.2.2. This leads into the definition and basic properties of toposes, which we discuss in Section 7.2.3. In particular, we explain how toposes are related to logic in Section 7.2.4 and quickly discuss type theories and semantics in Section 7.2.5. We will not discuss a specific topos of behavior types until Section 7.3. 7.2.1 Toposes A topos is defined to be a category of sheaves.2 So for any space X; Op , the category ¹ º Shv X; Op defined in Definition 7.10 is a topos. Also, for any database schema—i.e. ¹ º finitely presented category— , the category -Inst of database instances on is a C C C topos. Toposes encompass both of these sources of examples, and much more. The point is, a topos is a category that happens to be the category of sheaves E on something. There are several things that make toposes really nice; one is that every topos has much of the same structural properties that the category Set has. For example, here are some structures and properties enjoyed by every topos : E 1. has all limits, E 2. has all colimits, E 3. is cartesian closed, E 4. has epi-mono factorizations, E true 5. has a subobject classifier 1 Ω E −−−! We need to explain a few of these.
Recommended publications
  • Topos Theory
    Topos Theory Olivia Caramello Sheaves on a site Grothendieck topologies Grothendieck toposes Basic properties of Grothendieck toposes Subobject lattices Topos Theory Balancedness The epi-mono factorization Lectures 7-14: Sheaves on a site The closure operation on subobjects Monomorphisms and epimorphisms Exponentials Olivia Caramello The subobject classifier Local operators For further reading Topos Theory Sieves Olivia Caramello In order to ‘categorify’ the notion of sheaf of a topological space, Sheaves on a site Grothendieck the first step is to introduce an abstract notion of covering (of an topologies Grothendieck object by a family of arrows to it) in a category. toposes Basic properties Definition of Grothendieck toposes Subobject lattices • Given a category C and an object c 2 Ob(C), a presieve P in Balancedness C on c is a collection of arrows in C with codomain c. The epi-mono factorization The closure • Given a category C and an object c 2 Ob(C), a sieve S in C operation on subobjects on c is a collection of arrows in C with codomain c such that Monomorphisms and epimorphisms Exponentials The subobject f 2 S ) f ◦ g 2 S classifier Local operators whenever this composition makes sense. For further reading • We say that a sieve S is generated by a presieve P on an object c if it is the smallest sieve containing it, that is if it is the collection of arrows to c which factor through an arrow in P. If S is a sieve on c and h : d ! c is any arrow to c, then h∗(S) := fg | cod(g) = d; h ◦ g 2 Sg is a sieve on d.
    [Show full text]
  • Arxiv:1307.5568V2 [Math.AG]
    PARTIAL POSITIVITY: GEOMETRY AND COHOMOLOGY OF q-AMPLE LINE BUNDLES DANIEL GREB AND ALEX KURONYA¨ To Rob Lazarsfeld on the occasion of his 60th birthday Abstract. We give an overview of partial positivity conditions for line bundles, mostly from a cohomological point of view. Although the current work is to a large extent of expository nature, we present some minor improvements over the existing literature and a new result: a Kodaira-type vanishing theorem for effective q-ample Du Bois divisors and log canonical pairs. Contents 1. Introduction 1 2. Overview of the theory of q-ample line bundles 4 2.1. Vanishing of cohomology groups and partial ampleness 4 2.2. Basic properties of q-ampleness 7 2.3. Sommese’s geometric q-ampleness 15 2.4. Ample subschemes, and a Lefschetz hyperplane theorem for q-ample divisors 17 3. q-Kodaira vanishing for Du Bois divisors and log canonical pairs 19 References 23 1. Introduction Ampleness is one of the central notions of algebraic geometry, possessing the extremely useful feature that it has geometric, numerical, and cohomological characterizations. Here we will concentrate on its cohomological side. The fundamental result in this direction is the theorem of Cartan–Serre–Grothendieck (see [Laz04, Theorem 1.2.6]): for a complete arXiv:1307.5568v2 [math.AG] 23 Jan 2014 projective scheme X, and a line bundle L on X, the following are equivalent to L being ample: ⊗m (1) There exists a positive integer m0 = m0(X, L) such that L is very ample for all m ≥ m0. (2) For every coherent sheaf F on X, there exists a positive integer m1 = m1(X, F, L) ⊗m for which F ⊗ L is globally generated for all m ≥ m1.
    [Show full text]
  • The Freyd-Mitchell Embedding Theorem States the Existence of a Ring R and an Exact Full Embedding a Ñ R-Mod, R-Mod Being the Category of Left Modules Over R
    The Freyd-Mitchell Embedding Theorem Arnold Tan Junhan Michaelmas 2018 Mini Projects: Homological Algebra arXiv:1901.08591v1 [math.CT] 23 Jan 2019 University of Oxford MFoCS Homological Algebra Contents 1 Abstract 1 2 Basics on abelian categories 1 3 Additives and representables 6 4 A special case of Freyd-Mitchell 10 5 Functor categories 12 6 Injective Envelopes 14 7 The Embedding Theorem 18 1 Abstract Given a small abelian category A, the Freyd-Mitchell embedding theorem states the existence of a ring R and an exact full embedding A Ñ R-Mod, R-Mod being the category of left modules over R. This theorem is useful as it allows one to prove general results about abelian categories within the context of R-modules. The goal of this report is to flesh out the proof of the embedding theorem. We shall follow closely the material and approach presented in Freyd (1964). This means we will encounter such concepts as projective generators, injective cogenerators, the Yoneda embedding, injective envelopes, Grothendieck categories, subcategories of mono objects and subcategories of absolutely pure objects. This approach is summarised as follows: • the functor category rA, Abs is abelian and has injective envelopes. • in fact, the same holds for the full subcategory LpAq of left-exact functors. • LpAqop has some nice properties: it is cocomplete and has a projective generator. • such a category embeds into R-Mod for some ring R. • in turn, A embeds into such a category. 2 Basics on abelian categories Fix some category C. Let us say that a monic A Ñ B is contained in another monic A1 Ñ B if there is a map A Ñ A1 making the diagram A B commute.
    [Show full text]
  • The Category of Sheaves Is a Topos Part 2
    The category of sheaves is a topos part 2 Patrick Elliott Recall from the last talk that for a small category C, the category PSh(C) of presheaves on C is an elementary topos. Explicitly, PSh(C) has the following structure: • Given two presheaves F and G on C, the exponential GF is the presheaf defined on objects C 2 obC by F G (C) = Hom(hC × F; G); where hC = Hom(−;C) is the representable functor associated to C, and the product × is defined object-wise. • Writing 1 for the constant presheaf of the one object set, the subobject classifier true : 1 ! Ω in PSh(C) is defined on objects by Ω(C) := fS j S is a sieve on C in Cg; and trueC : ∗ ! Ω(C) sends ∗ to the maximal sieve t(C). The goal of this talk is to refine this structure to show that the category Shτ (C) of sheaves on a site (C; τ) is also an elementary topos. To do this we must make use of the sheafification functor defined at the end of the first talk: Theorem 0.1. The inclusion functor i : Shτ (C) ! PSh(C) has a left adjoint a : PSh(C) ! Shτ (C); called sheafification, or the associated sheaf functor. Moreover, this functor commutes with finite limits. Explicitly, a(F) = (F +)+, where + F (C) := colimS2τ(C)Match(S; F); where Match(S; F) is the set of matching families for the cover S of C, and the colimit is taken over all covering sieves of C, ordered by reverse inclusion.
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • SHEAVES, TOPOSES, LANGUAGES Acceleration Based on A
    Chapter 7 Logic of behavior: Sheaves, toposes, and internal languages 7.1 How can we prove our machine is safe? Imagine you are trying to design a system of interacting components. You wouldn’t be doing this if you didn’t have a goal in mind: you want the system to do something, to behave in a certain way. In other words, you want to restrict its possibilities to a smaller set: you want the car to remain on the road, you want the temperature to remain in a particular range, you want the bridge to be safe for trucks to pass. Out of all the possibilities, your system should only permit some. Since your system is made of components that interact in specified ways, the possible behavior of the whole—in any environment—is determined by the possible behaviors of each of its components in their local environments, together with the precise way in which they interact.1 In this chapter, we will discuss a logic wherein one can describe general types of behavior that occur over time, and prove properties of a larger-scale system from the properties and interaction patterns of its components. For example, suppose we want an autonomous vehicle to maintain a distance of some safe R from other objects. To do so, several components must interact: a 2 sensor that approximates the real distance by an internal variable S0, a controller that uses S0 to decide what action A to take, and a motor that moves the vehicle with an 1 The well-known concept of emergence is not about possibilities, it is about prediction.
    [Show full text]
  • Diagram Chasing in Abelian Categories
    Diagram Chasing in Abelian Categories Toni Annala Contents 1 Overview 2 2 Abelian Categories 3 2.1 Denition and basic properties . .3 2.2 Subobjects and quotient objects . .6 2.3 The image and inverse image functors . 11 2.4 Exact sequences and diagram chasing . 16 1 Chapter 1 Overview This is a short note, intended only for personal use, where I x diagram chasing in general abelian categories. I didn't want to take the Freyd-Mitchell embedding theorem for granted, and I didn't like the style of the Freyd's book on the topic. Therefore I had to do something else. As this was intended only for personal use, and as I decided to include this to the application quite late, I haven't touched anything in chapter 2. Some vague references to Freyd's book are made in the passing, they mean the book Abelian Categories by Peter Freyd. How diagram chasing is xed then? The main idea is to chase subobjects instead of elements. The sections 2.1 and 2.2 contain many standard statements about abelian categories, proved perhaps in a nonstandard way. In section 2.3 we dene the image and inverse image functors, which let us transfer subobjects via a morphism of objects. The most important theorem in this section is probably 2.3.11, which states that for a subobject U of X, and a morphism f : X ! Y , we have ff −1U = U \ imf. Some other results are useful as well, for example 2.3.2, which says that the image functor associated to a monic morphism is injective.
    [Show full text]
  • On Sheaf Theory
    Lectures on Sheaf Theory by C.H. Dowker Tata Institute of Fundamental Research Bombay 1957 Lectures on Sheaf Theory by C.H. Dowker Notes by S.V. Adavi and N. Ramabhadran Tata Institute of Fundamental Research Bombay 1956 Contents 1 Lecture 1 1 2 Lecture 2 5 3 Lecture 3 9 4 Lecture 4 15 5 Lecture 5 21 6 Lecture 6 27 7 Lecture 7 31 8 Lecture 8 35 9 Lecture 9 41 10 Lecture 10 47 11 Lecture 11 55 12 Lecture 12 59 13 Lecture 13 65 14 Lecture 14 73 iii iv Contents 15 Lecture 15 81 16 Lecture 16 87 17 Lecture 17 93 18 Lecture 18 101 19 Lecture 19 107 20 Lecture 20 113 21 Lecture 21 123 22 Lecture 22 129 23 Lecture 23 135 24 Lecture 24 139 25 Lecture 25 143 26 Lecture 26 147 27 Lecture 27 155 28 Lecture 28 161 29 Lecture 29 167 30 Lecture 30 171 31 Lecture 31 177 32 Lecture 32 183 33 Lecture 33 189 Lecture 1 Sheaves. 1 onto Definition. A sheaf S = (S, τ, X) of abelian groups is a map π : S −−−→ X, where S and X are topological spaces, such that 1. π is a local homeomorphism, 2. for each x ∈ X, π−1(x) is an abelian group, 3. addition is continuous. That π is a local homeomorphism means that for each point p ∈ S , there is an open set G with p ∈ G such that π|G maps G homeomorphi- cally onto some open set π(G).
    [Show full text]
  • Relative Duality for Quasi-Coherent Sheaves Compositio Mathematica, Tome 41, No 1 (1980), P
    COMPOSITIO MATHEMATICA STEVEN L. KLEIMAN Relative duality for quasi-coherent sheaves Compositio Mathematica, tome 41, no 1 (1980), p. 39-60 <http://www.numdam.org/item?id=CM_1980__41_1_39_0> © Foundation Compositio Mathematica, 1980, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 41, Fasc. 1, 1980, pag. 39-60 @ 1980 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn Printed in the Netherlands RELATIVE DUALITY FOR QUASI-COHERENT SHEAVES Steven L. Kleiman Introduction In practice it is useful to know when the relative duality map is an isomorphism, where f : Xi Y is a flat, locally projective, finitely presentable map whose fibers X(y) are pure r-dimensional, F is a quasi-coherent sheaf on X, and N is one on Y, and where Extf denotes the m th derived function of f * Homx. (The notion Ext f was used by Grothendieck in his Bourbaki talk on the Hilbert scheme, no. 221, p. 4, May 1961, and it may have originated there.) Theorem (21) below deals with the following criterion: For f flat and lf p (locally finitely presentable), Dm is an isomorphism for all N if and only if Rr-mf *F commutes with base-change.
    [Show full text]
  • 3. Ample and Semiample We Recall Some Very Classical Algebraic Geometry
    3. Ample and Semiample We recall some very classical algebraic geometry. Let D be an in- 0 tegral Weil divisor. Provided h (X; OX (D)) > 0, D defines a rational map: φ = φD : X 99K Y: The simplest way to define this map is as follows. Pick a basis σ1; σ2; : : : ; σm 0 of the vector space H (X; OX (D)). Define a map m−1 φ: X −! P by the rule x −! [σ1(x): σ2(x): ··· : σm(x)]: Note that to make sense of this notation one has to be a little careful. Really the sections don't take values in C, they take values in the fibre Lx of the line bundle L associated to OX (D), which is a 1-dimensional vector space (let us assume for simplicity that D is Carier so that OX (D) is locally free). One can however make local sense of this mor- phism by taking a local trivialisation of the line bundle LjU ' U × C. Now on a different trivialisation one would get different values. But the two trivialisations differ by a scalar multiple and hence give the same point in Pm−1. However a much better way to proceed is as follows. m−1 0 ∗ P ' P(H (X; OX (D)) ): Given a point x 2 X, let 0 Hx = f σ 2 H (X; OX (D)) j σ(x) = 0 g: 0 Then Hx is a hyperplane in H (X; OX (D)), whence a point of 0 ∗ φ(x) = [Hx] 2 P(H (X; OX (D)) ): Note that φ is not defined everywhere.
    [Show full text]
  • Residues, Duality, and the Fundamental Class of a Scheme-Map
    RESIDUES, DUALITY, AND THE FUNDAMENTAL CLASS OF A SCHEME-MAP JOSEPH LIPMAN Abstract. The duality theory of coherent sheaves on algebraic vari- eties goes back to Roch's half of the Riemann-Roch theorem for Riemann surfaces (1870s). In the 1950s, it grew into Serre duality on normal projective varieties; and shortly thereafter, into Grothendieck duality for arbitrary varieties and more generally, maps of noetherian schemes. This theory has found many applications in geometry and commutative algebra. We will sketch the theory in the reasonably accessible context of a variety V over a perfect field k, emphasizing the role of differential forms, as expressed locally via residues and globally via the fundamental class of V=k. (These notions will be explained.) As time permits, we will indicate some connections with Hochschild homology, and generalizations to maps of noetherian (formal) schemes. Even 50 years after the inception of Grothendieck's theory, some of these generalizations remain to be worked out. Contents Introduction1 1. Riemann-Roch and duality on curves2 2. Regular differentials on algebraic varieties4 3. Higher-dimensional residues6 4. Residues, integrals and duality7 5. Closing remarks8 References9 Introduction This talk, aimed at graduate students, will be about the duality theory of coherent sheaves on algebraic varieties, and a bit about its massive|and still continuing|development into Grothendieck duality theory, with a few indications of applications. The prerequisite is some understanding of what is meant by cohomology, both global and local, of such sheaves. Date: May 15, 2011. 2000 Mathematics Subject Classification. Primary 14F99. Key words and phrases. Hochschild homology, Grothendieck duality, fundamental class.
    [Show full text]