Wet Storage Stain (White Rust)

Total Page:16

File Type:pdf, Size:1020Kb

Wet Storage Stain (White Rust) Wet Storage Stain WET STORAGE STAIN galvanized coatings. (WHITE RUST) When this surface has access to freely moving air in normal atmospheric exposure, it reacts with rainfall Wet storage stain, also known as white rust, is the or dew to form a porous, gelatinous zinc hydroxide cor- voluminous white or gray deposit formed by accelerat- rosion product. During drying, this product reacts with ed corrosion of the zinc coating when closely-packed, carbon dioxide in the atmosphere and converts into a newly-galvanized articles are stored or shipped under thin, compact and tightly adherent layer of corrosion damp and poorly ventilated conditions. It is found most products consisting mainly of basic zinc carbonate gen- often on stacked and bundled items, such as galvanized erally written as 2ZnCO3·3Zn(OH)2. sheets, plates, angles, bars, and pipe. Weathered zinc The long life normally associated with galvanized surfaces which have already formed their normal pro- coatings in atmospheric service is entirely dependent tective layer of corrosion products are seldom attacked. upon the protection of the basic zinc carbonate. Being Due to their configuration, many products galvanized relatively insoluble, the basic zinc carbonate layer is after fabrication are less susceptible to wet storage stain- weather-resistant and, once formed, minimizes further ing than plain galvanized wire and sheet. corrosion. After a period of time, this whitish-gray Wet storage stain results from the exposure condi- powdery film tends to mask the underlying zinc crystals tions and is not indicative of inferior or poor quality gal- on the surface of the galvanized coating. vanizing. The degree of protection obtained in a given case The bulky white or gray corrosion product associ- varies with the nature of the environment. The presence ated with wet storage stain should not be confused with of chlorides and sulfur gases in the air, for example, the protective layer of zinc corrosion products which modify the composition of the carbonate layer and tend form under normal atmospheric exposure of galvanized to increase its solubility allowing rain and moisture to coatings. Even though the corrosion products on fully dissolve the carbonate layer more rapidly. Thus the life exposed galvanized surfaces may be white or light gray, of a galvanized coating is generally shorter in marine they are not the product of wet storage stain. Their color and industrial atmospheres than it is in the cleaner air of is solely a function of the environment and the zinc-iron a rural environment. On a galvanized part, the basic alloy content of the galvanized coating. chemical conversion on the surface of zinc metal to zinc When wet storage staining is found on galvanized carbonate is the mechanism that is interrupted by the materials, it is not usually in sufficient quantity to be formation of wet storage stain. detrimental to coating protection. Normally it disap- pears with weathering. However, with ill advised trans- WET STORAGE STAIN CHEMISTRY portation, handling and storage methods, it can become When galvanized articles are closely packed, serious. deprived of freely moving air and exposed to moisture, While the galvanizer has a responsibility to pro- an entirely different set of conditions arises in the chain duce a galvanized coating of good quality in confor- of zinc chemical changes. Without the free flow of car- mance with governing specifications, the galvanizer is bon dioxide over the galvanized surface, the surface no longer in control after the work leaves the plant. The retains water and forms an “oxygen concentration cell.” purchaser must ensure the proper handling and storage The effect may be best explained in terms of the of material at the construction site to ensure a stain-free reactions which occur under a drop of water flattened product at the time of final installation. between two surfaces. The resultant water film obvi- ously has only a minimal surface exposed to air; mean- NORMAL GALVANIZED COATING CHEMISTRY ing that the zinc surface near the middle of the water Before considering how wet storage stain occurs drop or film gets a different supply of oxygen than does on a galvanized part, it is important to understand how the zinc surface at the periphery of the water drop. This freshly coated zinc surfaces interact with the atmos- difference in turn sets up a difference in the electrolytic phere. Once the basics of the zinc-atmosphere interac- potential of the zinc. The central area becomes anodic tions are understood, the formation and prevention of and the edge area becomes cathodic, thus creating the wet storage stain can be explained. oxygen concentration cell (Figure 1). Since zinc is very reactive, any zinc surface in The attack on the zinc occurs at the anodic area. contact with the surrounding air will quickly form a The corrosion products are modifications of the non- layer of zinc oxide. The formation of this thin, hard, protective relatively soluble zinc hydroxide. Since this layer is the first step in the development of the protec- hydroxide remains rather stable under these conditions, tive corrosion product film normally associated with zinc ions constantly leave the coating to be bound by FIGURE 1 PREVENTION OF WET Wet Storage Stain Chemical Reactions STORAGE STAIN Zinc Coating Water (Moisture) STORAGE AND TRANSPORTATION Whenever galvanized articles are packed closely together for appreciable periods of time, adequate pre- cautions should be taken against wet storage stain. Wet storage stain can be minimized by maintaining a low humidity environment around the material and by pro- viding adequate ventilation between the stacked pieces. Low O2 Concentrations High O Concentrations Points to be observed are: 2 1. The galvanized steel, as produced, should be - - Cathodic Reaction: O2 + 4e + 2H2O 4OH clean and free from flux residues. Anodic Reaction: Zn Zn++ + 2e- 2. The material should be stored under cover in water, thus accelerating corrosion. The limitation of dry, well ventilated conditions, with heating facilities. It access to oxygen is also a limitation of access to carbon is very important to store the materials away from open dioxide and this hinders conversion of zinc hydroxide to doorways. the protective zinc carbonate. The corrosion products in this case are not protective and corrosion proceeds as 3. If outdoor stacking is unavoidable, the articles long as the original conditions prevail. should be raised from the ground and separated with The moisture necessary for the formation of wet strip spacers to provide free access of air to all parts of storage stain may originate in various ways. It may be the surface. They also should be inclined in a manner present on the galvanized parts at the time of stacking or which will give maximum drainage. Do not store gal- packing, as a result of incomplete drying after quench- ing. It may also be a result of direct exposure to rain or FIGURE 2 sea water, or from condensation caused by atmospheric temperature changes. Close packing can result in mois- ture being retained by capillary action between the sur- faces in contact because drying is delayed by the lack of circulating air. The extent of the damage by wet storage stain depends on the duration of exposure to retained mois- ture and the environment. The attack is accelerated when the retained moisture contains chlorides from sea water, sulfur compounds from industrial environments, or flux residues from the galvanizing operations. Each of these contaminants heightens the oxygen concentra- tion cell’s effect by increasing the water’s electrical con- ductivity. The important thing to realize, however, is that severe damage can be done in a relatively short time by water alone, without any other contributing factors. Because the corrosion products of wet storage stain are voluminous, any attack may appear more seri- ous than it actually is. The volume change from zinc- metal to zinc-oxide or zinc-hydroxide is 3 to 5 times greater. Medium or even heavy layers of wet storage stain are very unsightly, but they represent the loss of very little zinc from the base coating. The thicker zinc To help prevent wet storage stain from occurring on newly coatings provided by after fabrication hot dip galvaniz- galvanized surfaces, structures should be stored at an ing usually result in wet storage stain having little or no incline and oriented so water does not collect. Wood spac- significant effect on the durability and intended service er boards are placed between the layers so that crevices are life of the coating. not created between zinc surfaces. FIGURE 3 FIGURE 4 Figure 3 shows improperly stored galvanized guardrail. Storing galvanized steel in vegetation with no spacers between the products creates a highly conducive environment for wet storage stain to take place. By contrast, the items on this truck, Figure 4, are ideally stacked for transportation. FIGURE 5 Figure 5 shows an example of heavy wet storage staining. Some parts with heavy wet storage stain build-up can be cleaned, but most must be stripped and regalvanized before being put into service. FIGURE 6 Most parts with a medium layer of wet storage stain, Figures 6 and 7, can be cleaned and then put into service. FIGURE 8 FIGURE 7 In general, galvanized steel with a light build-up of wet storage stain, Figure 8, does not need to be cleaned. The light layer of wet storage stain will be converted to zinc carbonate during normal service. vanized steel on wet soil or decaying vegetation. be painted within six months, a post treatment may The use of spacers is also recommended during any interfere with paint adhesion. Communicating with shipping if there is the likelihood of condensation. the galvanizer will establish how to prepare the sur- For example, where material is chilled in traveling face for painting.
Recommended publications
  • Structural Diversity of Anodic Zinc Oxide Controlled by the Type Of
    Reviews ChemElectroChem doi.org/10.1002/celc.202100216 Zinc Anodizing: Structural Diversity of Anodic Zinc Oxide Controlled by the Type of Electrolyte Katja Engelkemeier,*[a, c] Aijia Sun,[a, c] Dietrich Voswinkel,[b, c] Olexandr Grydin,[b, c] Mirko Schaper,[b, c] and Wolfgang Bremser[a, b] ChemElectroChem 2021, 8, 1–15 1 © 2021 The Authors. ChemElectroChem published by Wiley-VCH GmbH These are not the final page numbers! �� Wiley VCH Dienstag, 18.05.2021 2199 / 204431 [S. 1/15] 1 Reviews ChemElectroChem doi.org/10.1002/celc.202100216 Anodic zinc oxide (AZO) layers are attracting interdisciplinary The article gives an overview of the different possibilities of research interest. Chemists, physicists and materials scientists anodic treatment, whereby the voltage and the current type are are increasingly devoting attention to fundamental and the main distinguishing criteria. Presented is the electrolytic application-related research on these layers. Research work oxidation (anodizing) and the electrolytic plasma oxidation focuses on the application as semiconductor, corrosion protec- (EPO). The electrolytic etching is also a process of anodic tor, adhesion promoter, abrasion protector, or antibacterial treatment. However, it does not produce AZO layers, but rather surfaces. The structure and crystallinity essentially determine a degradation of the zinc layer. The review article shows the the properties of the AZO coatings. The type and concentration parameters used so far (electrolyte, current type, current of the electrolyte, the applied current density or voltage as well density, voltage) and points out the influence on the formation as the duration time enable layer structures of structural variety. of AZO structures in dependency to the used electrolyte.
    [Show full text]
  • Zinc Oxide and Zinc Hydroxide Formation Via Aqueous Precipitation: Effect of the Preparation Route and Lysozyme Addition
    Materials Chemistry and Physics 167 (2015) 77e87 Contents lists available at ScienceDirect Materials Chemistry and Physics journal homepage: www.elsevier.com/locate/matchemphys Zinc oxide and zinc hydroxide formation via aqueous precipitation: Effect of the preparation route and lysozyme addition * Ayben Top , Hayrullah Çetinkaya _ _ Department of Chemical Engineering, Izmir Institute of Technology, Urla-Izmir, 35430, Turkey highlights graphical abstract Aqueous precipitation products of Zn(NO3)2 and NaOH were prepared. Synthesis route and lysozyme addi- tion affected morphology of the products. ε-Zn(OH)2, b-Zn(OH)2, and ZnO crys- tal structures were observed. Lysozyme-ZnO/Zn(OH)2 composites with ~5e20% lysozyme content were obtained. article info abstract Article history: Aqueous precipitation products of Zn(NO3)2 and NaOH obtained by changing the method of combining Received 13 February 2015 the reactants and by using lysozyme as an additive were investigated. In the case of single addition Received in revised form method, octahedral ε-Zn(OH)2 and plate-like b-Zn(OH)2 structures formed in the absence and in the 20 August 2015 presence of lysozyme, respectively. Calcination of these Zn(OH) samples at 700 C yielded porous ZnO Accepted 10 October 2015 2 structures by conserving the template crystals. When zinc source was added dropwise into NaOH so- Available online 24 October 2015 lution, predominantly clover-like ZnO crystals were obtained independent of lysozyme addition. Mixed spherical and elongated ZnO morphology was observed when NaOH was added dropwise into Zn(NO ) Keywords: 3 2 Oxides solution containing lysozyme. Lysozyme contents of the precipitation products were estimated as in the e fi Composite materials range of ~5 20% and FTIR indicated no signi cant conformational change of lysozyme in the composite.
    [Show full text]
  • Chemical Deposition of Zinc Hydroxosulfide Thin Films from Zinc (II) - Ammonia-Thiourea Solutions B
    Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (II) - Ammonia-Thiourea Solutions B. Mokili, M. Froment, D. Lincot To cite this version: B. Mokili, M. Froment, D. Lincot. Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (II) - Ammonia-Thiourea Solutions. J. Phys. IV, 1995, 05 (C3), pp.C3-261-C3-266. 10.1051/jp4:1995324. jpa-00253690 HAL Id: jpa-00253690 https://hal.archives-ouvertes.fr/jpa-00253690 Submitted on 1 Jan 1995 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE lV Colloque C3, supplCment au Journal de Physique 111, Volume 5, avril 1995 Chemical Deposition of Zinc Hydroxosulfide thin Films from Zinc (11) - Ammonia-Thiourea Solutions B. Mokili, M. Froment* and D. ~incot(1) Laboratoire d'Electrochimie et de Chimie Analytique, Unite' Associke au CNRS, Ecole Nationale Supe'rieure de Chimie de Paris, I I rue Pierre et Marie Curie, 75231 Paris cedex 05, France * UPR 15 du CNRS "Physiquedes Liquides et Electrochimie", Universite' Pierre et Marie Curie, 75252 Paris cedex 05, France Abstract The growth of ZnS films from ammonia solutions using thiourea as a sulfur precursor has been investigated.
    [Show full text]
  • Complex Ions and Amphoterism
    Chemistry 112: Reactions Involving Complex Ions Page 27 COMPLEX IONS AND AMPHOTERISM his experiment involves the separation and identification of ions using Ttwo important reaction types: (i) the formation of complex ions and (ii) the amphoteric behavior of some metal hydroxides. You have already encoun- tered complex ion formation in the analysis of the silver group ions and in the experiment on metal sulfides, but more needs to be said about this topic as an introduction to this experiment. THE FORMATION OF COMPLEX IONS Although we usually write cation formulas in solution as if they were simple ions, such as Al3+, these ions are actually bound to a number of water mol- ecules arranged around the central ion (see figure below). The water molecules in this case are examples of a much larger class of molecules and ions called ligands that form coordinate covalent bonds with a central metal cation. That is, the bond is of the form L: → Mn+, where L has donated δ+ an otherwise unused lone pair of electrons H As noted in the experiment on the to the electron accepting metal ion. In the 3+ δ+ H O Al silver group ions, a ligand is a Lewis water molecule, there are two lone pairs of •• base (a donor of one or more pairs of electrons on the O atom, and either of these δ− electrons), and the metal ion in the may form a coordinate covalent bond with a complex ion is a Lewis acid (an elec- metal cation. Ligands are often small, polar tron pair acceptor).
    [Show full text]
  • Wet Storage Stain
    A Guide to Minimizing and Treating Wet Storage Stain on Hot-Dip Galvanized Steel Hot-Dip Galvanizing for Corrosion Protection Hot-dip galvanizing, used in myriad applications, combats corrosion throughout the world. Hot-dip galvanized steel is the most economical, maintenance-free corrosion protection system available. A key feature of hot-dip galvanized (HDG) products is longevity in various environments. The time to first maintenance of hot-dip galvanized steel is directly proportional to the thickness of the zinc coating; therefore, it is important to monitor any issue that may decrease the coating thickness. Like any manufacturing process, hot-dip galvanizing requires an inspection of the finished product to ensure compliance with applicable specifications. One factor closely scrutinized during inspection of hot-dip galvanized steel is the finish and appearance of the galvanized surface. Some aspects of the final appearance can be controlled by the galvanizer while others cannot. One surface condition is known as wet storage stain (commonly referred to as white rust), which can occur after galvanizing. San Diego Central Library utilizes galvanized steel © 2014 American Galvanizers Association. The material provided herein has been developed to provide accurate and authoritative information about after-fabrication hot-dip galvanized steel. This material provides general information only and is not intended as a substitute for competent professional examination and verification as to suitability and applicability. The information provided herein is not intended as a representation or warranty on the part of the AGA. Anyone making use of this information assumes all liability arising from such use. 2 American Galvanizers Association Figure 1: Wet Storage Stain What is We t Storage Stain? Wet storage stain (Figure 1) is a white or gray powdery Once the galvanized zinc coating is exposed to free deposit that can develop on newly galvanized articles.
    [Show full text]
  • Complex Ions and Amphoterism
    Chemistry 112: Reactions Involving Complex Ions Page 27 COMPLEX IONS AND AMPHOTERISM his experiment involves the separation and identification of ions using Ttwo important reaction types: (i) the formation of complex ions and (ii) the amphoteric behavior of some metal hydroxides. You have already encoun- tered complex ion formation in the analysis of the silver group ions and in the experiment on metal sulfides, but more needs to be said about this topic as an introduction to this experiment. THE FORMATION OF COMPLEX IONS Although we usually write cation formulas in solution as if they were simple ions, such as Al3+, these ions are actually bound to a number of water mol- ecules arranged around the central ion (see figure below). The water molecules in this case are examples of a much larger class of molecules and ions called ligands that form coordinate covalent bonds with a central metal cation. That is, the bond is of the form L: → Mn+, where L has donated δ+ an otherwise unused lone pair of electrons H As noted in the experiment on the to the electron accepting metal ion. In the 3+ δ+ H O Al silver group ions, a ligand is a Lewis water molecule, there are two lone pairs of •• base (a donor of one or more pairs of electrons on the O atom, and either of these δ− electrons), and the metal ion in the may form a coordinate covalent bond with a complex ion is a Lewis acid (an elec- metal cation. Ligands are often small, polar tron pair acceptor).
    [Show full text]
  • Intercalations and Characterization of Zinc/Aluminium Layered Double Hydroxide-Cinnamic Acid
    Available online at BCREC website: https://bcrec.id Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1) 2019, 165-172 Research Article Intercalations and Characterization of Zinc/Aluminium Layered Double Hydroxide-Cinnamic Acid Nurain Adam1,2, Sheikh Ahmad Izaddin Sheikh Mohd Ghazali2*, Nur Nadia Dzulkifli2, Cik Rohaida Che Hak3, Siti Halimah Sarijo1 1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Malaysia 2Faculty of Applied Sciences, Universiti Teknologi MARA, Pekan Parit Tinggi, 72000, Kuala Pilah, Negeri Sembilan, Malaysia 3Material Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Kajang, Malaysia Received: 1st October 2018; Revised: 8th December 2018; Accepted: 12nd December 2018; Available online: 25th January 2019; Published regularly: April 2019 Abstract Cinnamic acid (CA) is known to lose its definite function by forming into radicals that able to penetrate into the skin and lead to health issues. Incorporating CA into zinc/aluminum-layered double hydroxides (Zn/Al-LDH) able to reduce photodegradation and eliminate close contact between skin and CA. Co-precipitation or direct method used by using zinc nitrate hexahydrate and aluminium nitrate nonahydrate as starting precursors with addition of various concentration of CA. The pH were kept constant at 7±0.5. Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) shows the presence of nanocomposites peak 3381 cm–1 for OH group, 1641 cm–1 for C=O group, 1543 cm–1 for C=C group and 1206 cm–1 for C–O group and disappearance of N–O peak at 1352 cm–1 indi- cates that cinnamic acid were intercalated in between the layered structures. Powder X-Ray Diffraction (PXRD) analysis for Zn/Al-LDH show the basal spacing of 9.0 Ǻ indicates the presence of nitrate and increases to 18.0 Ǻ in basal spacing in 0.4M Zn/Al-LDH-CA.
    [Show full text]
  • Selective Recovery of Chromium, Copper, Nickel, and Zinc from an Acid Solution Using an Environmentally Friendly Process
    Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process Manuela D. Machado & Eduardo V. Soares & Helena M. V. M. Soares Abstract solution at pH 10, selective recovery of zinc (82.7% as Purpose Real electroplating effluents contain multiple zinc hydroxide) and chromium (95.4% as a solution of metals. An important point related with the feasibility of cromate) was achieved. the bioremediation process is linked with the strategy to Conclusion The approach, used in the present work, recover selectively metals. In this work, a multimetal allowed a selective and efficient recovery of chromium, solution, obtained after microwave acid digestion of the copper, nickel, and zinc from an acid solution using a ashes resulted from the incineration of Saccharomyces combined electrochemical and chemical process. The cerevisiae contaminated biomass, was used to recover strategy proposed can be used for the selective recovery selectively chromium, copper, nickel, and zinc. of metals present in an acid digestion solution, which Results The acid solution contained 3.8, 0.4, 2.8, and resulted from the incineration of ashes of biomass used in 0.2 g/L of chromium(III), copper, nickel, and zinc, the treatment of heavy metals rich industrial effluents. respectively. The strategy developed consisted of recov- ering copper (97.6%), as a metal, by electrolyzing the Keywords Chemical precipitation . Electrolysis . Heavy solution at a controlled potential. Then, the simultaneous metals . Recycling . Selective recovery. Chemical speciation alkalinization of the solution (pH 14), addition of H2O2, and heating of the solution led to a complete oxidation of chromium and nickel recovery (87.9% as a precipitate of 1 Introduction nickel hydroxide).
    [Show full text]
  • Xanthan Gum Capped Zno Microstars As a Promising Dietary Zinc Supplementation
    foods Article Xanthan Gum Capped ZnO Microstars as a Promising Dietary Zinc Supplementation Alireza Ebrahiminezhad 1,2, Fatemeh Moeeni 2, Seyedeh-Masoumeh Taghizadeh 2, Mostafa Seifan 3, Christine Bautista 3, Donya Novin 3, Younes Ghasemi 2,* and Aydin Berenjian 3,* 1 Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348, Iran; [email protected] 2 Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348, Iran; [email protected] (F.M.); [email protected] (S.-M.T.) 3 School of Engineering, Faculty of Sciences and Engineering, University of Waikato, Hamilton 3216, New Zealand; [email protected] (M.S.); [email protected] (C.B.); [email protected] (D.N.) * Correspondence: [email protected] (Y.G.); [email protected] (A.B.) Received: 7 February 2019; Accepted: 26 February 2019; Published: 2 March 2019 Abstract: Zinc is one of the essential trace elements, and plays an important role in human health. Severe zinc deficiency can negatively affect organs such as the epidermal, immune, central nervous, gastrointestinal, skeletal, and reproductive systems. In this study, we offered a novel biocompatible xanthan gum capped zinc oxide (ZnO) microstar as a potential dietary zinc supplementation for food fortification. Xanthan gum (XG) is a commercially important extracellular polysaccharide that is widely used in diverse fields such as the food, cosmetic, and pharmaceutical industries, due to its nontoxic and biocompatible properties. In this work, for the first time, we reported a green procedure for the synthesis of ZnO microstars using XG, as the stabilizing agent, without using any synthetic or toxic reagent.
    [Show full text]
  • Guide to Preparing Hot-Dip Galvanized Steel for Paint
    Guide to Preparing Hot-Dip Galvanized Steel for Paint Learn five key steps to prepare your next hot-dip galvanized steel project for paint. CONTENTS: Communicate with the Galvanizer . 4 Determine the Condition of the Surface . 5 • Newly Galvanized • Partially Weathered • Fully Weathered Clean the Surface . 6 • Remove bumps, runs, and drips • Remove organic materials • Rinse and dry Profile the Surface . 9 • Sweep Blasting • Wash Primer • Acrylic Pretreatment • Surface Grinding Painting . 10 Summary . 11 © 2011 American Galvanizers Association. The material provided herein has been developed to provide accurate and authoritative information about after-fabrication hot-dip galvanized steel. This material provides general information only and is not intended as a substitute for competent professional examination and verification as to suitability and applicability. The information provided herein is not intended as a representation or warranty on the part of the AGA. Anyone making use of this information assumes all liability arising from such use. ~ 2 ~ American Galvanizers Association Guide to Preparing Hot-Dip Galvanized Steel for Paint The Thurston Avenue Bridge utilizes a duplex system of paint over hot-dip galvanized (HDG) steel for corrosion protection Duplex systems, such as paint over hot-dip galvanized steel, have been used for decades as a means to enhance corrosion protection. Painting over hot-dip galvanized steel provides the owner/specifier with effective corrosion protection, while still allowing the structure to be painted for color or aesthetic reasons. Duplex systems are becoming increasingly common and popular because of this combination of benefits. Successfully painting over hot-dip galvanized steel is relatively simple. Just like painting on any other surface, proper surface preparation is key to creating an effective bond between the paint and the galvanized surface.
    [Show full text]
  • Synthesis and Exfoliation of Layered Hydroxide Zinc Aminobenzoate Compounds
    Journal of the Ceramic Society of Japan 117 [10] 1115-1119 2009 Paper Synthesis and exfoliation of layered hydroxide zinc aminobenzoate compounds Lifang ZHAO,*,** Jianyjing MIAO,* Hongshe WANG,* Yoshie ISHIKAWA** and Qi FENG**,† *Department of Chemistry and Chemical Engineering, Baoji University of Arts and Science, Baoji, Shanxi, 721007 P. R. China **Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu-shi, 761- 0396 Two types of layered hydroxide zinc o-aminobenzoate compounds with structures of layered basic metal salt (LBMS) were prepared by reacting of zinc hydroxide and o-aminobenzoic acid solution in a temperature range of 40–110°C. The formation reactions, structures, chemical compositions, and exfoliation behavior in alcohol solvents of the layered compounds were inves- tigated by using XRD, TG–DTA, SEM, and TEM. The layered phase with a basal spacing of 1.33 nm has an α-Ni(OH)2-like structure, and its chemical formula can be written as Zn(OH)1.27(o-NH2C6H4COO)0.73·nH2O. The 1.33 nm layered phase shows plate-like particle morphology. The plate-like crystals can be exfoliated into nanosheet-like particles in alcohol solvents. ©2009 The Ceramic Society of Japan. All rights reserved. Key-words : Layered hydroxide zinc aminobenzoate compound, Layered basic metal salt, Exfoliation reaction, Nanosheet [Received June 1, 2009; Accepted August 20, 2009] Another type of anion-exchangeable brucite-like layered metal 1. Introduction hydroxide compounds is known as layered basic metal salts Low-dimensional nanomaterials, such as zero-dimensional (LBMSs), and can be represented by a general formula of II m– 13) – nanoparticles, one-dimensional nanofibers and nanotubes, and [M (OH)2–x](A )x/m·nH2O.
    [Show full text]
  • Layered Zinc Hydroxide Monolayers by Hydrolysis of Organozincs† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Layered zinc hydroxide monolayers by hydrolysis of organozincs† Cite this: Chem. Sci.,2018,9,2135 Alice H. M. Leung,a Sebastian D. Pike, a Adam J. Clancy, b Hin Chun Yau,b Won Jun Lee, b Katherine L. Orchard,b Milo S. P. Shaffer *bc and Charlotte K. Williams *ab 2D inorganic materials and their exfoliated counterparts are both of fundamental interest and relevant for applications including catalysis, electronics and sensing. Here, a new bottom-up synthesis route is used to prepare functionalised nanoplatelets, in apolar organic solvents, via the hydrolysis of organometallic reagents; the products can be prepared in high yield, at room temperature. In particular, a series of layered zinc hydroxides, coordinated by aliphatic carboxylate ligands, were produced by the hydrolysis of diethyl zinc and zinc carboxylate mixtures, optimally at a molar ratio of [COOR]/[Zn] ¼ 0.6. Layered zinc hydroxides coordinated by oleate ligands form high concentration solutions of isolated monolayers (3 nm thick x 26 nm) in apolar organic solvents (up to 23 mg mLÀ1 in toluene), as confirmed by both Creative Commons Attribution-NonCommercial 3.0 Unported Licence. atomic force and transmission electron microscopies of deposited species. The high solubility of the product allows the synthetic pathway to be monitored directly in situ through 1H NMR spectroscopy. The high solubility also provides a route to solution deposition of active functional materials, as Received 29th September 2017 illustrated by the formation of nanoporous films of optically transparent porous zinc oxide (1 mm Accepted 16th January 2018 thickness) after annealing at 500 C.
    [Show full text]