On the History of Unified Field Theories

Total Page:16

File Type:pdf, Size:1020Kb

On the History of Unified Field Theories Living Rev. Relativity, 7, (2004), 2 LIVINGREVIEWS http://www.livingreviews.org/lrr-2004-2 in relativity On the History of Unified Field Theories Hubert F. M. Goenner University of G¨ottingen Institut f¨urTheoretische Physik Tammannstr. 1 D-37077 G¨ottingen Germany email: [email protected] http://www.theorie.physik.uni-goettingen.de/~goenner Accepted on 14 January 2004 Published on 13 February 2004 Abstract This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin { with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented byshort- lived attempts to include the matter field described by Schr¨odinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included. ○c Max Planck Society and the author(s) http://relativity.livingreviews.org/About/copyright.html Imprint / Terms of Use Living Reviews in Relativity is a peer reviewed open access journal published by the Max Planck Institute for Gravitational Physics, Am M¨uhlenberg 1, 14476 Potsdam, Germany. ISSN 1433-8351. Because a Living Reviews article can evolve over time, we recommend to cite the article as follows: Hubert F. M. Goenner, \On the History of Unified Field Theories", Living Rev. Relativity, 7, (2004), 2. [Online Article]: cited [<date>], http://www.livingreviews.org/lrr-2004-2 The date given as <date> then uniquely identifies the version of the article you are referring to. Article Revisions Living Reviews supports two different ways to keep its articles up-to-date: Fast-track revision A fast-track revision provides the author with the opportunity to add short notices of current research results, trends and developments, or important publications to the article. A fast-track revision is refereed by the responsible subject editor. If an article has undergone a fast-track revision, a summary of changes will be listed here. Major update A major update will include substantial changes and additions and is subject to full external refereeing. It is published with a new publication number. For detailed documentation of an article's evolution, please refer always to the history document of the article's online version at http://www.livingreviews.org/lrr-2004-2. Contents 1 Introduction 5 1.1 Preface . 5 1.2 Introduction to part I . 6 2 The Possibilities of Generalizing General Relativity: A Brief Overview 13 2.1 Geometry . 13 2.1.1 Metrical structure . 14 2.1.2 Affine structure . 16 2.1.3 Different types of geometry . 17 2.1.4 Cartan's method . 22 2.1.5 Tensors, spinors, symmetries . 23 2.2 Dynamics . 26 2.3 Number field . 27 2.4 Dimension . 28 3 Early Attempts at a Unified Field Theory 29 3.1 First steps in the development of unified field theories . 29 3.2 Early disagreement about how to explain elementary particles by field theory . 31 4 The Main Ideas for Unification between about 1918 and 1923 34 4.1 Weyl's theory . 34 4.1.1 The geometry . 34 4.1.2 Physics . 36 4.1.3 Reactions to Weyl's theory I: Einstein and Weyl . 38 4.1.4 Reactions to Weyl's theory II: Schouten, Pauli, Eddington, and others . 40 4.1.5 Reactions to Weyl's theory III: Further research . 42 4.2 Kaluza's five-dimensional unification . 44 4.3 Eddington's affine theory . 46 4.3.1 Eddington's paper . 46 4.3.2 Einstein's reaction and publications . 48 4.3.3 Comments by Einstein's colleagues . 52 4.3.4 Overdetermination of partial differential equations and elementary particles 53 5 Differential Geometry's High Tide 55 6 The Pursuit of Unified Field Theory by Einstein and His Collaborators 58 6.1 Affine and mixed geometry . 58 6.2 Further work on (metric-) affine and mixed geometry . 61 6.3 Kaluza's idea taken up again . 64 6.3.1 Kaluza: Act I . 64 6.3.2 Kaluza: Act II . 67 6.4 Distant parallelism . 73 6.4.1 Cartan and Einstein . 73 6.4.2 How the word spread . 75 6.4.3 Einstein's research papers . 77 6.4.4 Reactions I: Mostly critical . 85 6.4.5 Reactions II: Further research on distant parallelism . 90 6.4.6 Overdetermination and compatibility of systems of differential equations . 96 7 Geometrization of the Electron Field as an Additional Element of Unified Field Theory 99 7.1 Unification of Maxwell's and Dirac's equations, of electrons and light . .100 7.2 Dirac's electron with spin, Einstein's teleparallelism, and Kaluza's fifth dimension . 102 7.2.1 Spinors . 102 7.2.2 General relativistic Dirac equation and unified field theory . .104 7.2.3 Parallelism at a distance and electron spin . 110 7.2.4 Kaluza's theory and wave mechanics . 111 7.3 Einstein, spinors, and semi-vectors . 116 8 Less Than Unification 120 9 Mutual Influences Among Mathematicians and Physicists? 122 10 Public Reception of Unified Field Theory at the Time 124 11 Conclusion 125 12 Acknowledgements 128 References 129 On the History of Unified Field Theories 5 1 Introduction 1.1 Preface This historical review of classical unified field theories consists of two parts. In the first,the development of unified field theory between 1914 and 1933, i.e., during the years Einstein1 lived and worked in Berlin, will be covered. In the second, the very active period after 1933 until the 1960s to 1970s will be reviewed. In the first version of Part I presented here, in view of the immense amount of material, neither all shades of unified field theory nor all the contributions from the various scientific schools will be discussed with the same intensity; I apologise for the shortcoming and promise to improve on it with the next version. At least, even if I do not discuss them all in detail, as many references as are necessary for a first acquaintance with the field are listed here; completeness may be reached only (if at all) by later updates. Although I also tried to take into account the published correspondence between the main figures, my presentation, again, is far from exhaustive in this context. Eventually, unpublished correspondence will have to be worked in, and this may change some of the conclusions. Purposely I included mathematicians and also theoretical physicists of lesser rank than those who are known to be responsible for big advances. My aim is to describe the field in its full variety as it presented itself to the reader atthetime. The review is written such that physicists should be able to follow the technical aspects of the papers (cf. Section 2), while historians of science without prior knowledge of the mathematics of general relativity at least might gain an insight into the development of concepts, methods, and scientific communities involved. I should hope that readers find more than one opportunity for further in-depth studies concerning the many questions left open. I profited from earlier reviews of the field, or of parts of2 it,byPauli ([246], Section V); Lud- wig [212]; Whittaker ([414], pp. 188{196); Lichnerowicz [209]; Tonnelat ([356], pp. 1{14); Jordan ([176], Section III); Schmutzer ([290], Section X); Treder ([183], pp. 30{43); Bergmann ([12], pp. 62{ 73); Straumann [334, 335]; Vizgin [384, 385]3; Bergia [11]; Goldstein and Ritter [146]; Straumann and O'Raifeartaigh [240]; Scholz [292], and Stachel [330]. The section on Einstein's unified field theories in Pais' otherwise superb book presents the matter neither with the needed historical cor- rectness nor with enough technical precision [241]. A recent contribution of van Dongen, focussing on Einstein's methodology, was also helpful [371]. As will be seen, with regard to interpretations and conclusions, my views are different in some instances. In Einstein biographies, the subject of “unified field theories" { although keeping Einstein busy for the second half of his life{hasbeen dealt with only in passing, e.g., in the book of Jordan [177], and in an unsatisfying way in excellent books by F¨olsing[136] and by Hermann [159]. This situation is understandable; for to describe a genius stubbornly clinging to a set of ideas, sterile for physics in comparison with quantum mechan- 1 Albert Einstein (1879{1955). Born in Ulm, W¨urttemberg (Germany). Studied physics and mathematics at the Swiss Federal Polytechnic School (ETH) Zurich and received his doctor's degree in 1905. Lecturer at the University of Bern (Switzerland), Professor in Zurich, Prague (then belonging to Austria), Berlin (Germany) and Princeton (U.S.A.). Nobel Prize 1921 for his work on the light-electric effect (photon concept). Best known for his special and general relativity theories. Important results in Brownian motion and the statistical foundations of radiation as a quantum phenomenon. Worked for more than 30 years on Unified Field Theory. 2 Wolfgang Ernst Pauli (1900{1958). Born in Vienna, Austria. Studied at the University of Munich with A. Sommerfeld who recognised his great gifts. Received his doctorate in 1921 for a thesis on the quantum theory of ionised molecular hydrogen. From October 1921 assistant of Max Born in G¨ottingen.After a year with Bohr, Pauli, became a lecturer at the University of Hamburg in 1923.
Recommended publications
  • Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
    BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein.
    [Show full text]
  • Witold Roter (1932-2015)
    COLLOQUIUMMATHEMATICUM Online First version WITOLD ROTER (1932–2015) BY ANDRZEJ DERDZIŃSKI (Columbus, OH) Witold Roter was born on September 20th, 1932 and died on June 19th, 2015. He authored or co-authored 40 papers in differential geometry, pub- lished between 1961 and 2010. His nine Ph.D. advisees, listed here along with the year of receiving the degree, are: Czesław Konopka (1972), Edward Głodek (1973), Andrzej Gębarowski (1975), Andrzej Derdziński (1976), Zbig- niew Olszak (1978), Ryszard Deszcz (1980), Marian Hotloś (1980), Wiesław Grycak (1984), and Marek Lewkowicz (1989). Also, for many years, he ran the Wrocław seminar on differential geome- try, first started by Władysław Ślebodziński, who had been Witold Roter’s Ph.D. advisor. For more biographical information (in Polish), see Zbigniew Olszak’s article [44]. This is a brief summary of Witold Roter’s selected results, divided into four sections devoted to separate topics. Since he repeatedly returned to questions he had worked on earlier, our presentation is not chronological. 1. Parallel Weyl tensor in the Riemannian case. The curvature tensor R of a given n-dimensional pseudo-Riemannian manifold (M; g) is naturally decomposed into the sum R = S + E + W of its irreducible com- ponents [41, p. 47]. The first two correspond to the scalar curvature and Einstein tensor (the traceless part of the Ricci tensor). The third component is the Weyl tensor W , also known as the conformal curvature tensor, which is of interest only in dimensions n ≥ 4 since, for algebraic reasons, W = 0 whenever n ≤ 3. Viewed as a (1; 3) tensor field, so that it sends three vector fields trilin- early to a vector field, W is a conformal invariant: it remains unchanged when the metric g is replaced by the product φg, where φ is any smooth positive function.
    [Show full text]
  • Part V Appendices a Vector Calculus
    Part V Appendices A Vector calculus It is often useful in physics⎛ ⎞ to describe the position of some object x ⎜ ⎟ using three numbers ⎝y⎠. This is what we call a vector v and de- z note by a little arrow above the letter. The three numbers are the components of the vector along the three coordinate axes. The first number tells us how far the vector in question goes in the x-direction, the second how far in the y-direction⎛ ⎞ and the third how far in the 0 ⎜ ⎟ z-direction. For example, w = ⎝4⎠ is a vector that points exclusively 0 in the y-direction. Vectors can be added ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ v w v + w ⎜ x⎟ ⎜ x⎟ ⎜ x x⎟ = = → + = 1 v ⎝vy⎠ w ⎝wy⎠ v w ⎝vy + wy⎠ (A. ) vz wz vz + wy and multiplied ⎛ ⎞ ⎛ ⎞ v w ⎜ x⎟ ⎜ x⎟ · = · = + + 2 v w ⎝vy⎠ ⎝wy⎠ vxwx vywy vzwz. (A. ) vz wz The result of this multiplication is not a vector, but a number (= a scalar), hence the name: scalar product. The scalar product of a vec- tor with itself is directly related to its length: √ length(v)= v ·v. (A.3) Take note that we can’t simply write three quantities below each other between two brackets and expect it to be a vector. For example, © Springer International Publishing AG 2018 J. Schwichtenberg, Physics from Symmetry, Undergraduate Lecture Notes in Physics, https://doi.org/10.1007/978-3-319-66631-0 256 physics from symmetry let’s say we put the temperature T, the pressure P and the humidity H of a room between two brackets: ⎛ ⎞ T ⎜ ⎟ ⎝ P ⎠ .
    [Show full text]
  • The Chirality-Flow Method for Massive and Electroweak Amplitudes
    LU-TP 20-41 July 2020 The Chirality-Flow Method for Massive and Electroweak Amplitudes Joakim Alnefjord Department of Astronomy and Theoretical Physics, Lund University Master thesis supervised by Malin Sj¨odahl,Christian Reuschle, and Andrew Lifson Abstract In this thesis I extend the chirality-flow method to the full standard model at tree-level by including massive particles and electroweak interactions. The chirality-flow method is a new diagrammatic method for calculating Feynman diagrams that is based on the spinor- helicity formalism, that before this thesis was written had been worked out for massless QED and QCD at tree-level. I summarize what is known about massive spinor-helicity calculations and use this as the basis for the extended diagrammatic interpretation for massive particles. I use the Lorentz structure of the electroweak vertices to rewrite them in the chirality-flow picture. Popul¨arvetenskaplig beskrivning Det finns m˚angav¨agaratt g˚ai jakten efter en b¨attre f¨orst˚aelsef¨orv˚armateriella v¨arlds minsta best˚andsdelar,elementarpartiklarna. Vi kan bygga kraftigare och mer exakta par- tikelacceleratorer och d¨armedf¨orb¨attraden experimentella delen av partikelfysiken. Vi kan ocks˚af¨ors¨oka hitta nya teorier om hur v¨arldenfungerar, n˚agotsom i praktiken ¨ar v¨aldigt komplicerat. Vi kan ist¨alletfokusera p˚asmartare s¨attatt g¨orautr¨akningarinom dagens teoretiska ramar, vilket ¨arvad den h¨ar uppsatsen handlar om. Inom partikelfysiken ¨arvi ofta intresserade av att r¨aknaut s˚akallade ¨overg˚angsamplituder. Dessa kan exempelvis liknas med en sannolikhet att ett visst tillst˚andav partiklar ska ¨overg˚atill ett annat tillst˚andav andra partiklar vid en kollision i partikelacceleratorer.
    [Show full text]
  • 226 NAW 5/2 Nr. 3 September 2001 Honderdjaarslezing Dirk Struik Dirk Struik Honderdjaarslezing NAW 5/2 Nr
    226 NAW 5/2 nr. 3 september 2001 Honderdjaarslezing Dirk Struik Dirk Struik Honderdjaarslezing NAW 5/2 nr. 3 september 2001 227 Afscheid van Dirk Struik Honderdjaarslezing Op 21 oktober 2000 overleed Dirk Struik in kringen. Zij ging een heel andere richting uit vriend Klaas Kooyman, de botanist die later zijn huis in Belmont (Massachusetts). Een In dan Anton en ik. Ik heb natuurlijk in die hon- bibliothecaris in Wageningen is geworden, La- Memoriam verscheen in het decembernum- derd jaar zoveel meegemaakt, dat ik in een tijn en Grieks geleerd bij meneer De Vries in mer van het Nieuw Archief. Ter afscheid van paar kwartier dat niet allemaal kan vertellen. Den Haag. We gingen daarvoor op en neer met deze beroemde wetenschapper van Neder- Ik zal een paar grepen doen uit mijn leven, het electrische spoortje van Rotterdam naar landse afkomst publiceren we in dit nummer mensen die me bijzonder hebben geboeid en Den Haag. We hebben er alleen maar het een- vijf artikelen over Dirk Struik. Het eerste ar- gebeurtenissen die me hebben be¨ınvloed. voudigste Latijn en Grieks geleerd, Herodo- tikel is van Struik zelf. In oktober 1994 orga- Mijn vroegste herinnering is aan de Boe- tus, Caesar — De Bello Gallico: “Gallia divisa niseerde het CWI een symposium ter ere van renoorlog, omstreeks 1900.2 Ik was een jaar est in partes tres ...” Dat heeft me heel wei- de honderdste verjaardag van Dirk Struik. Ter of vijf, zes en vroeg aan mijn vader: “Vader, nig geholpen bij de studie van de wiskunde. afsluiting heeft Struik toen zelf de volgen- wat betekent toch dat woord oorlog?” — dat Je kunt heel goed tensors doen zonder Latijn de redevoering gehouden, met als geheugen- hoef je tegenwoordig niet meer uit te leggen- te kennen, hoewel het wel goed is om te we- steun enkel wat aantekeningen op een velle- aan zesjarigen.
    [Show full text]
  • Minimal Dark Matter Models with Radiative Neutrino Masses
    Master’s thesis Minimal dark matter models with radiative neutrino masses From Lagrangians to observables Simon May 1st June 2018 Advisors: Prof. Dr. Michael Klasen, Dr. Karol Kovařík Institut für Theoretische Physik Westfälische Wilhelms-Universität Münster Contents 1. Introduction 5 2. Experimental and observational evidence 7 2.1. Dark matter . 7 2.2. Neutrino oscillations . 14 3. Gauge theories and the Standard Model of particle physics 19 3.1. Mathematical background . 19 3.1.1. Group and representation theory . 19 3.1.2. Tensors . 27 3.2. Representations of the Lorentz group . 31 3.2.1. Scalars: The (0, 0) representation . 35 1 1 3.2.2. Weyl spinors: The ( 2 , 0) and (0, 2 ) representations . 36 1 1 3.2.3. Dirac spinors: The ( 2 , 0) ⊕ (0, 2 ) representation . 38 3.2.4. Majorana spinors . 40 1 1 3.2.5. Lorentz vectors: The ( 2 , 2 ) representation . 41 3.2.6. Field representations . 42 3.3. Two-component Weyl spinor formalism and van der Waerden notation 44 3.3.1. Definition . 44 3.3.2. Correspondence to the Dirac bispinor formalism . 47 3.4. The Standard Model . 49 3.4.1. Definition of the theory . 52 3.4.2. The Lagrangian . 54 4. Component notation for representations of SU(2) 57 4.1. SU(2) doublets . 59 4.1.1. Basic conventions and transformation of doublets . 60 4.1.2. Dual doublets and scalar product . 61 4.1.3. Transformation of dual doublets . 62 4.1.4. Adjoint doublets . 63 4.1.5. The question of transpose and conjugate doublets .
    [Show full text]
  • Emil De Souza Sбnchez Filho
    Emil de Souza Sánchez Filho Tensor Calculus for Engineers and Physicists Tensor Calculus for Engineers and Physicists Emil de Souza Sa´nchez Filho Tensor Calculus for Engineers and Physicists Emil de Souza Sa´nchez Filho Fluminense Federal University Rio de Janeiro, Rio de Janeiro Brazil ISBN 978-3-319-31519-5 ISBN 978-3-319-31520-1 (eBook) DOI 10.1007/978-3-319-31520-1 Library of Congress Control Number: 2016938417 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland To Sandra, Yuri, Natalia and Lara Preface The Tensor Calculus for Engineers and Physicist provides a rigorous approach to tensor manifolds and their role in several issues of these professions.
    [Show full text]
  • On the History of Levi-Civita's Parallel Transport
    On the history of Levi-Civita’s parallel transport Giuseppe Iurato University of Palermo, Palermo, IT E-mail: [email protected] Abstract In this historical note, we wish to highlight the crucial conceptual role played by the prin- ciple of virtual work of analytical mechanics, in working out the fundamental notion of parallel transport on a Riemannian manifold, which opened the way to the theory of con- nections and gauge theories. Moreover, after a detailed historical-technical reconstruction of the original Levi-Civita’s argument, a further historiographical deepening and a related critical discussion of the question, are pursued1,2,3. 1 Introduction The role of the principle of virtual works of analytical mechanics, in formulating Levi-Civita’s parallel transport of Riemannian geometry, has already been emphasized in [29], to which we refer for the first prolegomena to the question as well as for a wider and comprehensive historical contextualization of it. In this note, which falls into the intersection area among history of mechanics, history of differential geometry and history of theoretical physics, we would like to deepen this aspect regarding the genesis of one of the most important ideas of modern mathematics and its applications to theoretical physics (above all, field theory), enlarging the framework of investigation with the introduction and critical discussion of further, new historiographical elements of the question, after having reconstructed technically the original argument of Levi-Civita. In what follows, therefore, we briefly recall, as a minimal historical introduction, some crucial biographical moments of the Levi-Civita, which will help us to better lay out the question here treated.
    [Show full text]
  • Arxiv:1911.04535V2
    Linear Transformations on Affine-Connections Damianos Iosifidis Institute of Theoretical Physics, Department of Physics Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece∗ We state and prove a simple Theorem that allows one to generate invariant quantities in Metric- Affine Geometry, under a given transformation of the affine connection. We start by a general functional of the metric and the connection and consider transformations of the affine connection possessing a certain symmetry. We show that the initial functional is invariant under the aforemen- tioned group of transformations iff its Γ-variation produces tensor of a given symmetry. Conversely if the tensor produced by the Γ-variation of the functional respects a certain symmetry then the functional is invariant under the associated transformation of the affine connection. We then apply our results in Metric-Affine Gravity and produce invariant actions under certain transformations of the affine connection. Finally, we derive the constraints put on the hypermomentum for such invariant Theories. I. INTRODUCTION restrictions on the hypermomentum. The most common example of the later being the projective invariance of the The geometric structure of a manifold, of a generic di- Einstein-Hilbert action [7, 10, 14–16] which implies that mension n, is specified once a metric g and an affine con- the hypermomentum has an identically vanishing trace nection are given. Then, the manifold is denoted as when contracted in its first two indices. Therefore we ( , g, ∇) and in general possesses curvature, torsion and see that connection transformations are very interesting non-metricity.M ∇ Setting both torsion and non-metricity to and Gravitational actions that are invariant under cer- zero, one recovers the so-called Riemannian Geometry[1] tain groups of transformations of the affine connection which is completely characterized by the metric alone will have associated matter actions that should also re- 1.
    [Show full text]
  • A Pictorial Introduction to Differential Geometry, Leading to Maxwell's
    A pictorial introduction to differential geometry, leading to Maxwell’s equations as three pictures. Dr Jonathan Gratus Physics Department, Lancaster University and the Cockcroft Institute of accelorator Science. [email protected] http://www.lancaster.ac.uk/physics/about-us/people/jonathan-gratus September 26, 2017 Abstract I hope that this document may give anyone enthusiastic enough to get a feel for differen- In this article we present pictorially the foun- tial geometry with only a minimal mathemat- dation of differential geometry which is a cru- ical or physics education. However it helps cial tool for multiple areas of physics, notably having a good imagination, to picture things general and special relativity, but also me- in 3 dimension (and possibly 4 dimension) chanics, thermodynamics and solving differ- and a good supply of pipe cleaners. ential equations. As all the concepts are pre- I teach a masters course in differential sented as pictures, there are no equations in geometry to physicists and this document this article. As such this article may be read should help them to get some intuition be- by pre-university students who enjoy physics, fore embarking on the heavy symbol bashing. mathematics and geometry. However it will also greatly aid the intuition of an undergrad- uate and masters students, learning general Contents relativity and similar courses. It concentrates on the tools needed to understand Maxwell’s 1 Introduction 3 equations thus leading to the goal of present- ing Maxwell’s equations as 3 pictures. 2 Manifolds, scalar and vector fields 5 2.1 Manifolds.. 5 2.2 Submanifolds.
    [Show full text]
  • Lecture Notes Introduction to Supersymmetry and Supergravity
    Lecture notes Introduction to Supersymmetry and Supergravity Jan Louis Fachbereich Physik der Universit¨atHamburg, Luruper Chaussee 149, 22761 Hamburg, Germany ABSTRACT These lectures give a basic introduction to supersymmetry and supergravity. Lecture course given at the University of Hamburg, winter term 2015/16 January 25, 2016 Contents 1 The Supersymmetry Algebra 4 1.1 Review of Poincare Algebra . .4 1.2 Representations of the Lorentz Group . .5 1.3 Supersymmetry Algebra . .6 2 Representations of the supersymmetry algebra and the Chiral Multi- plet 7 2.1 Massive representations . .7 2.2 Massless representations . .8 2.3 The chiral multiplet in QFTs . .8 3 Superspace and the Chiral Multiplet 11 3.1 Basic set-up . 11 3.2 Chiral Multiplet . 12 3.3 Berezin integration . 13 3.4 R-symmetry . 14 4 Super Yang-Mills Theories 15 4.1 The Vector Multiplet in Superspace . 15 4.2 Non-Abelian vector multiplets . 17 5 Super YM Theories coupled to matter and the MSSM 18 5.1 Coupling to matter . 18 5.2 The minimal supersymmetric Standard Model (MSSM) . 19 5.2.1 The Spectrum . 19 5.2.2 The Lagrangian . 20 6 Spontaneous Supersymmetry Breaking 22 6.1 Order parameters of supersymmetry breaking . 22 6.2 Models for spontaneous supersymmetry breaking . 22 6.2.1 F-term breaking . 23 6.2.2 D-term breaking . 23 6.3 General considerations . 24 6.3.1 Fermion mass matrix and Goldstone's theorem for supersymmetry 24 6.3.2 Mass sum rules and the supertrace . 25 1 7 Non-renormalizable couplings 27 7.1 Non-linear σ-models .
    [Show full text]
  • Properties of an Alternative Off-Shell Formulation of 4D Supergravity
    S S symmetry Article Properties of an Alternative Off-Shell Formulation of 4D Supergravity Friedemann Brandt Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany; [email protected] Abstract: This article elaborates on an off-shell formulation of D = 4, N = 1 supergravity whose auxiliary fields comprise an antisymmetric tensor field without gauge degrees of freedom. In particular, the relation to new minimal supergravity, a supercovariant tensor calculus and the construction of invariant actions including matter fields are discussed. Keywords: supergravity; off-shell formulation; matter couplings; supercovariant tensor calculus; invariant actions; BRST transformations 1. Introduction In the basic formulation [1,2] of pure D = 4, N = 1 supergravity, the commutator algebra of local symmetry transformations closes only on-shell. This complicates various computations, such as the construction of couplings of the supergravity multiplet (i.e., the supersymmetry multiplet with the vierbein and the gravitino) to matter multiplets, of locally supersymmetric invariants with higher derivatives and of Faddeev–Popov terms. Fortunately, there are off-shell formulations of the theory with auxiliary fields that close Citation: Brandt, F. Properties of an the algebra of local symmetry transformations off-shell. Alternative Off-Shell Formulation of The best-known off-shell formulations of pure D = 4, N = 1 supergravity are the 4D Supergravity. Symmetry 2021, 13, so-called old minimal formulation [3,4] and the so-called new minimal formulation [5]. The 620. https://doi.org/10.3390/sym auxiliary fields of the new minimal supergravity multiplet are a real 2-form gauge potential 13040620 and a real vector field which is the gauge field of local R-transformations (“R-gauge field”).
    [Show full text]