Medicinal Plants at the Ethnobotany–Biotechnology Interface in Africa

Total Page:16

File Type:pdf, Size:1020Kb

Medicinal Plants at the Ethnobotany–Biotechnology Interface in Africa South African Journal of Botany 2004, 70(1): 89–96 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY EISSN 1727–9321 Medicinal plants at the ethnobotany–biotechnology interface in Africa SA Nigro1, NP Makunga1* and OM Grace2 1 Research Centre for Plant Growth and Development, School of Botany and Zoology, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa 2 Ethnobotany Unit, National Botanical Institute, PO Box 52099, Berea Road, Durban 4007, South Africa * Corresponding author, e-mail: [email protected] Received 5 September 2003, accepted 15 October 2003 Africa bears a long history of people–plant interaction useful plants. African ethnomedicinal plants with valu- that has been significantly enhanced by biotechnology. able secondary metabolites and established in vitro Ethnomedicinal plants have been targeted in the search propagation protocols may be likely candidates for for new natural products but their exploitation has led to genetic transformation when biotechnology becomes concern for their conservation. Biotechnology has more accessible on the continent. The ethnic and floral applications that extend beyond conservation to opti- wealth of southern Africa lends a prime example of how mising natural product research and adding value to biotechnology may enrich people–plant interactions. Introduction Africa, the cradle of mankind, bears a long history of people- commercial value (Coombes 1986), biotechnology is an plant interaction. It is the second largest of the earth’s seven important instrument for the manipulation of plants to better continents, and is characterised by rich ethnic and biotic suit the needs of Man. In adding value to useful plants, it mosaics that represent 13% of the earth’s human population plays a developmental role at the interface of ethno- and and the largest of continental floras, estimates of which economic botany. The term was first applied by the range between 50 000 and 70 000 plant taxa (Klopper et al. Hungarian engineer Karl Ereky in 1917 to ‘all lines of work 2002, Smith and Van Wyk 2002). The African flora is remark- by which products are produced from raw materials with the able not only for its diversity but its distinctiveness: as many aid of living things’ (Glick and Pasternak 1994). Although as 88% of its species are endemic (Davis et al. 1994). High biotechnology referred originally to a system for the large- levels of endemism indicate that many of the continent’s scale production of pigs, the term was used loosely until plant resources are uniquely African. the establishment of the journal Biotechnology and The terms ‘ethno-’ and ‘economic’ botany to describe the Bioengineering in 1961. Biotechnology was redefined as the study of people–plant interaction have been used inter- ‘industrial production of goods and services using biological changeably and deserve clarification. We refer to Wickens organisms, systems, and processes’ within the disciplines of (1990) who defined ethnobotany as ‘the study of useful microbiology, biochemistry and chemical engineering (Glick plants prior to their commercial exploitation and eventual and Pasternak 1994). The discovery of recombinant DNA domestication’, and economic botany as an umbrella term technology in 1973 (Cohen et al. 1973) introduced biotech- applied to ‘the study of plants utilised either directly or indi- nology at the molecular level, where an organism’s machin- rectly for the benefit of Man’. Economic plants therefore ery could be modified to manufacture desired products. include those used in agriculture, horticulture and forestry The ethnobotanical approach to natural products research (Wickens 1990) and in turn provide for the many industries highlights that those plant taxa used traditionally are most that make use of plant products. In Africa, where approxi- likely to yield useful products, and, consequently, are most mately 43% of the population are impoverished (Africa South likely to be threatened by over-exploitation (Grace et al. of the Sahara 2001), the same plant species may be used at 2002). It is not surprising, therefore, that useful plant species all levels between subsistence and commercial agriculture, have been targeted in the search for and optimisation of new thus blurring the definition of ‘ethno-’ and ‘economic’ plants. natural products, or that the value added to them using The transitory process of a useful plant species assuming biotechnology has strengthened the call for their conserva- commercial importance has been enhanced significantly in tion. Of the multitude of purposes for which Man exploits modern times by biotechnology. Described as the use of bio- plants, their use in ethnomedicine is among the most rele- logical entities to create products with novel functions or vant to modern society. Ethnomedicinal plants have con- 90 Nigro, Makunga and Grace tributed many important phytochemicals to allopathic medi- ing the same period (Bajaj 1988–1997). Progress was made cine. African examples include molluscicides from in particular on in vitro techniques such as micropropaga- Phytolacca octandra L. (Phytolaccaceae) used to control the tion, induction of high yielding somaclones, protoplast fusion schistosomiasis vector (Lemma 1991 cited in Horeau and for the induction of novel somatic hybrids, cyropreservation DaSilva 1999), and several compounds from Catharanthus of germplasm, and Agrobacterium rhizogenes-mediated roseus G.Don (Apocynaceae) used in therapy of diabetes transformation for hairy roots (Bajaj 1998). and tumours (George et al. 2001). Familiar plant products The main objectives of such research are to enhance the with African origins include Old World cotton (Gossypium production of secondary metabolites, by manipulating plant herbaceum L., Malvaceae), coffee (Coffea spp., cells to increase metabolic flux into specific pathways (Dixon Rubiaceae), and frankincense (Boswellia papyrifera (Del.) and Bolwell 1986). Since many widely used natural products Hocsht, Burseraceae) (Geldenhuys and Van Wyk 2002). are remarkably complex in structure, and despite advances In this paper we consider the role of biotechnology at the in synthetic chemistry, synthesis is frequently difficult and interface of ethno- and economic botany in Africa. We review economically non-viable (Hamill and Lidgett 1997). Indeed, progress made in the disciplines over recent decades, and plants remain the major sources of a variety of indispensa- speculate on the way forward, with particular reference to ble industrial compounds, examples of which include phar- the search for natural products from ethnomedicinal plants in maceuticals (e.g. steroids, alkaloids), food additives (e.g. the southern African flora. emulsifiers, natural flavourants and colourants) (Balandrin and Klocke 1988, Bajaj and Ishimaru 1999) and, more Understanding Medicinal Plants recently, nutraceutics (Bourgaud et al. 2001). The documentation and study of people-plant interaction in Conserving the African Flora Africa began relatively recently with the arrival of European colonists (Van Wyk 2002). Ethnobotanical accounts of the Taxa used for their secondary metabolites on a commercial east African flora include those of Williamson (1955) and or industrial level may be considered ‘economic plants’, but Lindsay (1978). Burkhill’s (1985) volumes for West Tropical the material from which useful compounds are extracted is Africa are keystones for that region, as is Dounias’ review not always cultivated, or wild-harvested on a sustainable (2000) for Central and West Africa. Plant use throughout the basis. A case in point is Prunus africana (Hook.f.) Kalkm. continent was considered recently by Iwu (1993) and (Rosaceae) bark, from which several secondary metabolites Neuwinger (2000), and continues to be documented by pro- are extracted for use in European pharmaceuticals. The grammes such as the Survey of Economic Plants for Arid principal sources of the bark are natural forest populations in and Semi-Arid Lands (SEPASAL) (Davis et al. 1998, SEPA- Africa and Madagascar and, despite legislation to ensure SAL 2003). otherwise, harvesting is non-sustainable (Cunningham and The history of ethnobotanical research in southern Africa Mbenkum 1993, Prunus Net 2003). was thoroughly reviewed by Van Wyk (2002), but a literature A similar situation affects ethnomedicinal plant taxa in search of English sources will yield several key publications southern Africa; they are almost exclusively wild-harvested (Grace et al. 2002). Ethnomedicinal plants in southern Africa to meet the demands of a booming informal trade and con- were accounted for in the famous tome of Watt and Breyer- sumer industry (see, for example, Cunningham 1988, Brandwijk (1962), and proceeded by those of, for example, Mander 1998, Williams et al. 2000). Germplasm conserva- Mabogo (1990), Hutchings et al. (1996), Van Wyk et al. tion, including propagation and breeding to improve various (1997) and Arnold et al. (2002). Concern for the conserva- traits (Nessler 1994), and cryopreservation, is focussed on tion of medicinal plants in recent decades stimulated crop plants but is equally relevant to wild-harvested medici- research that gave rise to a collection of cornerstone publi- nal taxa. This branch of conservation seeks to arrest genet- cations on their trade. Those dealing with southern Africa ic erosion in indigenous taxa (Bukenya-Ziraba 1998) that include Cunningham (1988), Scott-Shaw (1990), Mander
Recommended publications
  • New Jan16.2011
    Spring 2011 Mail Order Catalog Cistus Nursery 22711 NW Gillihan Road Sauvie Island, OR 97231 503.621.2233 phone 503.621.9657 fax order by phone 9 - 5 pst, visit 10am - 5pm, fax, mail, or email: [email protected] 24-7-365 www.cistus.com Spring 2011 Mail Order Catalog 2 USDA zone: 2 Symphoricarpos orbiculatus ‘Aureovariegatus’ coralberry Old fashioned deciduous coralberry with knock your socks off variegation - green leaves with creamy white edges. Pale white-tinted-pink, mid-summer flowers attract bees and butterflies and are followed by bird friendly, translucent, coral berries. To 6 ft or so in most any normal garden conditions - full sun to part shade with regular summer water. Frost hardy in USDA zone 2. $12 Caprifoliaceae USDA zone: 3 Athyrium filix-femina 'Frizelliae' Tatting fern An unique and striking fern with narrow fronds, only 1" wide and oddly bumpy along the sides as if beaded or ... tatted. Found originally in the Irish garden of Mrs. Frizell and loved for it quirkiness ever since. To only 1 ft tall x 2 ft wide and deciduous, coming back slowly in spring. Best in bright shade or shade where soil is rich. Requires summer water. Frost hardy to -40F, USDA zone 3 and said to be deer resistant. $14 Woodsiaceae USDA zone: 4 Aralia cordata 'Sun King' perennial spikenard The foliage is golden, often with red stems, and dazzling on this big and bold perennial, quickly to 3 ft tall and wide, first discovered in a department store in Japan by nurseryman Barry Yinger. Spikes of aralia type white flowers in summer are followed by purple-black berries.
    [Show full text]
  • Broadleigh Gardens 2014 Spring List
    Broadleigh Gardens 2014 Spring list MAIL ORDER • 01823 286231 Bishops Hull • Taunton • Somerset TA4 1AE www.broadleighbulbs.co.uk Specialists in small bulbs Broadleigh Gardens Bishops Hull, Taunton, Somerset TA4 1AE Telephone: 01823 286231 Fax: 01823 323646 www.broadleighbulbs.co.uk “...they think warm days will never cease” aving been asked about my ‘retirement’ after Chelsea I thought you might like to see one of Hthe growing grandsons with the growing plants. The species peony collection is also growing and we hope Iris Double Lament Lilium Friso to have sufficient to offer more varieties soon. Things never stand still and one of the consequences of not doing Chelsea is that we no longer need some of the large show plants so this year we are able to offer the evergreen Dianella tasmanica (page 12) with its extraordinary blue berries. Some of our plants did not enjoy the wonderful summer as much as we did but the Schizostylis were an eye opener. They are stream side plants from southern Africa so we think of them as wanting dampish soils but forget that The youngest grandson - but Eucomis pole-evansii is winning! they experience seasonal rainfall and very hot summers. They literally blossomed and are still in full flower as I varieties are grown in an open field so we know they are write this in mid November. They are perfect to keep the hardy and we lift plants for sale. There are many more interest going into autumn I grow them in my dry ditch varieties on the website. with iris and hostas.
    [Show full text]
  • Spring 2011 Mail Order Catalog Cistus Nursery
    Spring 2011 Mail Order Catalog Cistus Nursery 22711 NW Gillihan Road Sauvie Island, OR 97231 503.621.2233 phone 503.621.9657 fax order by phone 9 - 5 pst, visit 10am - 5pm, fax, mail, or email: [email protected] 24-7-365 www.cistus.com Spring 2011 Mail Order Catalog 2 USDA zone: 2 Symphoricarpos orbiculatus ‘Aureovariegatus’ coralberry $12 Caprifoliaceae USDA zone: 3 Athyrium filix-femina 'Frizelliae' tatting fern $14 Woodsiaceae USDA zone: 4 Aralia cordata 'Sun King' perennial spikenard $22 Araliaceae Aurinia saxatilis 'Dudley Nevill Variegated' $14 Brassicaceae Chrysanthemum x rubellum ‘Clara Curtis’ $11 Asteraceae Cyclamen hederifolium - silver shades $12 Primulaceae Eryngium bourgatii mediterranean sea holly $6 Apiaceae Euonymus europaeus ‘Red Ace’ spindle tree $14 Celastraceae Heuchera 'Sugar Plum' PPAF purple coral bells $12 Saxifragaceae Hydrangea macrophylla 'David Ramsey' big-leaf hydrangea $16 Hydrangeaceae Kerria japonica 'Albescens' white japanese kerria -$15 Rosaceae Liriope ‘Silver Dragon’ variegated lily turf $12 Liliaceae Opuntia basilaris ‘Peachy’ beavertail cactus $12 Cactaceae Opuntia fragilis SBH 6778 brittle prickly pear $7 Cactaceae Opuntia humifusa - dwarf from Claude Barr $12 Cactaceae Opuntia polyacantha 'Imnaha Sunset' $12 Cactaceae Opuntia polyacantha x ericacea var. columb. 'Golden Globe' $15 Cactaceae Opuntia x rutila - red/black spines $12 Cactaceae Philadelphus ‘Innocence’ mock orange $14 Hydrangeaceae Salix integra 'Hakuro-nishiki' dappled willow $12 Salicaceae Scilla scilloides chinese scilla $9 Liliaceae
    [Show full text]
  • Phylogenetic Taxonomy of Artemisia L. Species from Kazakhstan Based On
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 72 (2018), No. 1 (712), pp. 29–37. DOI: 10.1515/prolas-2017-0068 PHYLOGENETIC TAXONOMY OF ARTEMISIA L. SPECIES FROM KAZAKHSTAN BASED ON MATK ANALYSES Yerlan Turuspekov1,5, Yuliya Genievskaya1, Aida Baibulatova1, Alibek Zatybekov1, Yuri Kotuhov2, Margarita Ishmuratova3, Akzhunis Imanbayeva4, and Saule Abugalieva1,5,# 1 Institute of Plant Biology and Biotechnology, 45 Timiryazev Street, Almaty, KAZAKHSTAN 2 Altai Botanical Garden, Ridder, KAZAKHSTAN 3 Karaganda State University, Karaganda, KAZAKHSTAN 4 Mangyshlak Experimental Botanical Garden, Aktau, KAZAKHSTAN 5 Al-Farabi Kazakh National University, Biodiversity and Bioresources Department, Almaty, KAZAKHSTAN # Corresponding author, [email protected] Communicated by Isaak Rashal The genus Artemisia is one of the largest of the Asteraceae family. It is abundant and diverse, with complex taxonomic relations. In order to expand the knowledge about the classification of Kazakhstan species and compare it with classical studies, matK genes of nine local species in- cluding endemic were sequenced. The infrageneric rank of one of them (A. kotuchovii) had re- mained unknown. In this study, we analysed results of sequences using two methods — NJ and MP and compared them with a median-joining haplotype network. As a result, monophyletic origin of the genus and subgenus Dracunculus was confirmed. Closeness of A. kotuchovii to other spe- cies of Dracunculus suggests its belonging to this subgenus. Generally, matK was shown as a useful barcode marker for the identification and investigation of Artemisia genus. Key words: Artemisia, Artemisia kotuchovii, DNA barcoding, haplotype network. INTRODUCTION (Bremer, 1994; Torrel et al., 1999). Due to the large amount of species in the genus, their classification is still complex Artemisia of the family Asteraceae is a genus with great and not fully completed.
    [Show full text]
  • Artemisia Afra: a Potential Flagship for African Medicinal Plants? ⁎ N.Q
    Available online at www.sciencedirect.com South African Journal of Botany 75 (2009) 185–195 www.elsevier.com/locate/sajb Review Artemisia afra: A potential flagship for African medicinal plants? ⁎ N.Q. Liu, F. Van der Kooy , R. Verpoorte Division of Pharmacognosy, Section of Metabolomics, Institute of Biology, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands Received 11 July 2008; received in revised form 4 November 2008; accepted 6 November 2008 Abstract The genus Artemisia consists of about 500 species, occurring throughout the world. Some very important drug leads have been discovered from this genus, notably artemisinin, the well known anti-malarial drug isolated from the Chinese herb Artemisia annua. The genus is also known for its aromatic nature and hence research has been focussed on the chemical compositions of the volatile secondary metabolites obtained from various Artemisia species. In the southern African region, A. afra is one of the most popular and commonly used herbal medicines. It is used to treat various ailments ranging from coughs and colds to malaria and diabetes. Although it is one of the most popular local herbal medicines, only limited scientific research, mainly focussing on the volatile secondary metabolites content, has been conducted on this species. The aim of this review was therefore to collect all available scientific literature published on A. afra and combine it into this paper. In this review, a general overview will be given on the morphology, taxonomy and geographical distribution of A. afra. The major focus will however be on the secondary metabolites, mainly the volatile secondary metabolites, which have been identified from this species.
    [Show full text]
  • Evaluation of Plant Extracts: Artemisia Afra and Annona Muricata for Inhibitory Activities Against Mycobacterium Tuberculosis and Human Immunodeficiency Virus
    Evaluation of plant extracts: Artemisia afra and Annona muricata for inhibitory activities against Mycobacterium tuberculosis and Human Immunodeficiency virus By Megan C. Pruissen Submitted in fulfilment of the requirements for the degree of Magister Scientiae in the Faculty of Science at the Nelson Mandela Metropolitan University January 2013 Supervisor: Dr S. Govender Co-Supervisor: Prof M. van de Venter In accordance with Rule G4.6.3, I hereby declare that the above-mentioned dissertation represents my own unaided work and that it has not previously been submitted for assessment to another university or for another qualification. M.C. Pruissen Date CONTENTS Page ACKNOWLEDGEMENTS........................................................................................... i ABSTRACT................................................................................................................ ii LIST OF FIGURES..................................................................................................... iii LIST OF TABLES....................................................................................................... v LIST OF ABBREVIATIONS....................................................................................... vi CHAPTER ONE LITERATURE REVIEW............................................................ 1 1.1 INTRODUCTION 1 1.2 MYCOBACTERIUM TUBERCULOSIS.................................. 2 1.2.1 Epidemiology and Pathogenesis……………….......... 2 1.2.2 Treatment and Drug Resistant Tuberculosis (TB)... 3 1.3 HUMAN
    [Show full text]
  • Mining the Essential Oils of the Anthemideae
    African Journal of Biotechnology Vol. 3 (12), pp. 706-720, December 2004 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2004 Academic Journals Review Mining the essential oils of the Anthemideae Jaime A. Teixeira da Silva Faculty of Agriculture, Kagawa University, Miki-cho, Ikenobe, 2393, Kagawa-ken, 761-0795, Japan. E-mail: [email protected]; Telfax: +81 (0)87 898 8909. Accepted 21 November, 2004 Numerous members of the Anthemideae are important cut-flower and ornamental crops, as well as medicinal and aromatic plants, many of which produce essential oils used in folk and modern medicine, the cosmetic and pharmaceutical industries. These oils and compounds contained within them are used in the pharmaceutical, flavour and fragrance industries. Moreover, as people search for alternative and herbal forms of medicine and relaxation (such as aromatherapy), and provided that there are no suitable synthetic substitutes for many of the compounds or difficulty in profiling and mimicking complex compound mixtures in the volatile oils, the original plant extracts will continue to be used long into the future. This review highlights the importance of secondary metabolites and essential oils from principal members of this tribe, their global social, medicinal and economic relevance and potential. Key words: Apoptosis, artemisinin, chamomile, essential oil, feverfew, pyrethrin, tansy. THE ANTHEMIDAE Chrysanthemum (Compositae or Asteraceae family, Mottenohoka) containing antioxidant properties and are a subfamily Asteroideae, order Asterales, subclass popular food in Yamagata, Japan. Asteridae, tribe Anthemideae), sometimes collectively termed the Achillea-complex or the Chrysanthemum- complex (tribes Astereae-Anthemideae) consists of 12 subtribes, 108 genera and at least another 1741 species SECONDARY METABOLITES AND ESSENTIAL OILS (Khallouki et al., 2000).
    [Show full text]
  • Nanoformulation of Artemisia Afra and Its Potential Biomedical Applications in Type 2 Diabetes
    Nanoformulation of Artemisia afra and its potential biomedical applications in type 2 diabetes A thesis submitted in partial fulfilment of the requirements for the degree Magister Scientiae in the Department of Biotechnology; University of the Western Cape Nicole Albertha-Wade Liebenberg December 2019 Supervisor: Dr. Brendon Pearce (PhD) Co-supervisors: Prof. Mongi Benjeddou (PhD) Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, 7353, South Africa http://etd.uwc.ac.za/ KEYWORDS Type 2 diabetes Artemisia afra Nanoparticles Gold nanoparticles Green chemistry Glucose uptake Traditional medicine i | P a g e http://etd.uwc.ac.za/ Abstract Current research classifies Type 2 diabetes as most prevalent non-communicable diseases in South Africa. Approximately 285 million people are affected globally with an expected increase to 595 million by the year 2035. Synthetic first-line drugs in the treatment of Type 2 diabetes, have been shown to have an efficacy rate of approximately 43% as a result of poor drug uptake and metabolism. Furthermore, given South Africa’s uniquely diverse botanical heritage, herbs commonly used traditional medicine have shown promise in the treatment of Type 2 diabetes. Artemisia afra, also known as African Wormwood, is one of the most widely used herbs in traditional medicine. This specific species has been extensively studied and is believed to have an effect on glucose uptake in addition to insulin productivity in the body. Drug delivery and uptake systems are important aspects of precision medicine, the science of ensuring medication works optimally for each individual, as they may bypass genetic factors as well as provide optimal efficacy of these treatments.
    [Show full text]
  • Pacific Bulb Society Bulb and Seed Exchange (BX) 201-300 Details for Items Listed Here Have Been Truncated Due to Space Contraints
    Pacific Bulb Society Bulb and ExchangeSeed (BX) 201-300 6. 5. 4. 3. 2. 1. >FromPBS: BX 201 itemsfor Winter= 204. itemsfor = 269,Spring total itemsSummer for = 695, total items for Autumn = 1002, total itemper =21.7,BX itemsaverage per month = 65.7, BX’saverage month = 3,per total Thefollowing are statistical analyses of BX201-300, 2009-2011. itemTotal =2170, average andsearch for item the in appropriate the BX. descriptionsof each item, visit PBS the archives ( Detail >FromMary Ittner:Sue (BULBS) 9. 8. 7. 6. 5. 4. 3. 2. 1. >FromPBS: (SEEDS) BX 202 13. 12. 11. 10. 9. 8. 7. Eucomis zambesiaca Dieramaigneum Geissorhizaovata Babianamucronata Brunsvigiajosephinae Boophanehaemanthoides Albucasetosa Moraeahuttoniae Drimiauniflora Aristeawoodii Dieramadracomontanum Hypoxishemerocallidea Agapanthus inapertus Ornithogalumthyrsoides Kniphofiasarmentosa Lachenaliaaurioliae Ixiaorientalis Eriospermumconfusum Items 10 20 30 40 50 60 Tulbaghiaalliacea Polyxenaensilfolia ssp. maughamii Moraealugubris Lachenaliaperryae 0 March 2009 s items for listed herehave been truncated due spaceto contraints. For moredetailed May 2009 (April 2009) 17, (March 30, 2009) June 2009 July 2009 July 2009 July 2009 , short , form August 2009 August 2009 September 2009 September 2009 October 2009 October 2009 November 2009 November 2009 December 2009 February 2010 March 2010 April 2010 May 2010 May 2010 June 2010 PBS BX 200-300 BX PBS July 2010 July 2010 August 2010 Date August 2010 August 2010 http://www.pacificbulbsociety.org/list.php 7. filipponei 6. 5. 4. >FromLynn Makela: (BULBS) 3.Bulbs of >FromMary Ittner: Sue 2.Seed of >FromDell Sherk: humilis 1.Small bulbs of >FromJim Shields: BX 203 15. 14. 13. SEEDS: montanus 12.Bulblets of 11. 10. September 2010 Ipheionsessile Ipheionsellowianum Habranthusbrachyandrus Achimenesgrandiflora October 2010 Massoniajasminiflora Hesperoxiphionperuvianum Haemanthusalbiflos Oxalis Nerinemasoniorum October 2010 November 2010 November 2010 ) (May 2009) 5, December 2010 sp.
    [Show full text]
  • 14.Panshul Sharma, Kapil Kumar Verma, Nutan Thakur, Hans
    Human Journals Review Article June 2021 Vol.:21, Issue:3 © All rights are reserved by Kapil Kumar Verma et al. Medicinal Plants for Antidiabetic Activity Available in Himachal Pradesh Keywords: Herbal medicines, Therapeutic, Diabetes, Medicinal plant, Ayurveda ABSTRACT Panshul Sharma1, Kapil Kumar Verma1*, Nutan Herbal medicines are the most sensitive topic all worldwide Thakur1, Hans Raj1 due to unwanted effects of synthetic medicines. Increasing 1 School of Pharmacy, Abhilashi University, Mandi- demand for herbal sources maintaining quality and purity of 175028, Himachal Pradesh, India. the raw materials. There are some 1250 Ayurvedic medicinal plants which may go into formulating therapeutic Submitted: 20 May 2021 preparations as per Ayurvedic systems. Diabetes may Accepted: 26 May 2021 known since ancient times very well. Knowledge of diabetes Published: 30 June 2021 may takes place from ancient India. Ayurvedic antidiabetic medicinal plants improve the digestive power, increase the gastric secretions, get easily digested in the body and decrease output of overall body fluids for e.g. urine, sweat etc. Most of the natural products are isolated and may used for the treatment of Diabetes. This review explain the www.ijppr.humanjournals.com various medicinal plants which may used for Diabetes since ancient times like Aporosa lindleyana Baill, Momordica Charantia and Eugenia Jambolana, Myrtus Communis L. Terminalia Pallida Brandis, Sapindus trifoliatus etc. All these herbal plants have been reported as treatment of Type1 and Type 2 Diabetes in Ayurveda system of Medicine. www.ijppr.humanjournals.com INTRODUCTION Natural products and plants are the natural source which may found as therapeutically effective against diseases as a medicine.
    [Show full text]
  • Artemisia Afra Herba
    ARTEMISIA AFRA HERBA Definition Artemisia Afra Herba consists of the aerial parts of Artemisia afra Jacq. ex Willd. (Asteraceae). Synonyms Vernacular names wilde als (A), wormwood, unhlonyane (Xh, Z, Ts), lengana (S) Description Macroscopical1 Figure 2 – line drawing Microscopical Figure 1 – Live plant Highly aromatic perennial shrub reaching a height of 2 metres; aerial parts deciduous in regions experiencing cold winters, regenerating from the base in spring; leaves finely-divided, silver-grey due to the presence of fine hairs, up to 80mm long × 40mm wide; flowers (Jan-June) inconspicuous, yellow, borne at the ends of branches in globose capitula ±3mm in diameter. Figure 3 – microscopical features Characteristic features are: the very abundant unicellular thin-walled clothing hairs, loose in the powdered drug or attached to fragments of the lamina, forming a tangled mass; the glandular trichomes of leaf and stem with unicellular stalk and multicellular heads ±50 microns in diameter; the abundant tricolporate yellow brown pollen grains, ±20 microns in diameter; the fragments of the corolla with striated outer epidermis and papillate inner epidermis; the small block-like cells of the stamen filament; the epidermal cells of the lamina with sinuous slightly thickened walls; the fibrous layer of the anther. 1 Hilliard, O.M. (1977). Compositae in Natal. Pp. 360- 1. Fibrous layer of anther 2. Corolla showing papillate inner epidermis 361. University of Natal Press, Pietermaritzburg. 1 3. Tricolporate yellow-brown pollen grains, ±20µ Rf values of major compounds: 0,25 (grey); 0,31 in diameter (blue grey); 0,61 (mauve); 0,86 (purple); cineole: 4. Polygonal epidermal cells of upper leaf lamina 0,84 (blue-purple) 5.
    [Show full text]
  • Artemisia Afra and Artemisia Annua
    File 0 - Plants : introduction First and foremost, it should be noted that the term « Artemisia » often used by La Maison de l’Artemisia refers to the plant species Artemisia afra and Artemisia annua. This generic term is not written in italics so as not to confuse it with the genus « Artemisia » which comprises several hundred other species. Distinction between Artemisia annua and Artemisia afra : Artemisia annua is an herbaceous plant that has been used for 2000 years in Traditional Chinese Medicine to prevent and treat intermittent fevers (malaria) and other parasitic diseases. It is an annual pant and must therefore be sown every year in order to be harvested before flowering. This makes it demanding in terms of care. Artemisia afra is a perennial bush native to South East Africa, used by Traditional Medicine practitioners for centuries to prevent and cure malaria and other parasitic diseases. It is a perennial plant which can be harvested as needed throughout its growth. However, it is difficult to produce viable seeds. This is why it is mainly propagated by layering or cuttings. Figure 1 : Artemisia afra bush (bottom left), flowering Artemisia annua plant with small yellow blossoms (centre right) and Artemisia annua plants (extreme right and in the background). La Maison de l’Artemisia - http://maison-artemisia.org/ - 2020 1 Artemisia afra 1. Taxonomy Artemisia afra Jacq. ex Willd is a species of the Asteraceae family. It has many common names, including "African wormwood", "wild wormwood" in English and "armoise africaine" in French.
    [Show full text]