Mott Memory and Neuromorphic Devices

Total Page:16

File Type:pdf, Size:1020Kb

Mott Memory and Neuromorphic Devices This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. INVITED PAPER Mott Memory and Neuromorphic Devices Correlations of electronsVarising in structural and physical phase transitionsVprovide a nanoscale-compatible mechanism of possible utility to electronics. This paper discusses the mechanisms and their implications in memory and information processing. By You Zhou and Shriram Ramanathan ABSTRACT | Orbital occupancy control in correlated oxides Boer and Verwey noted that the band theory is insufficient allows the realization of new electronic phases and collective to explain the electrical properties of many transition state switching under external stimuli. The resultant structural metal oxides with a partially filled d-electron band, which and electronic phase transitions provide an elegant way to were expected to be metallic but are insulators in reality encode, store, and process information. In this review, we ex- [1]. In 1949, Mott put forward a theory on how electron– amine the utilization of Mott metal-to-insulator transitions, for electron interactions in these materials (commonly ref- memory and neuromorphic devices. We emphasize the over- erred to as Mott insulators despite the fact that many of arching electron–phonon coupling and electron–electron in- them display complex electronic phase diagrams that may teraction-driven transition mechanisms and kinetics, which not be wholly described by the original theory) could ex- renders a general description of Mott memories from aspects plain their insulating states [2]. It was later discovered that such as nonvolatility, sensing scheme, read/write speed, and Mott insulators not only show unconventional electrical switching energy. Various memory and neuromorphic device insulating behavior, but also often exhibit interesting phase architectures incorporating phase transition elements are transitions with drastic change in their electrical and mag- reviewed, focusing on their operational principles. The role of netic properties under various stimuli. In the words of Peierls distortions and crystal symmetry changes during phase Nevill Mott, the Mott transition can strictly be defined as a change is discussed. Prospects for such orbitronic devices as ‘‘transition from an antiferromagnetic insulator to a metal’’ hardware components for information technologies are [3]. In this review, we use the terminology of Mott mate- summarized. rials in a broader sense to describe materials with strong correlation that show insulator-to-metal transitions despite KEYWORDS | Complex oxide; emerging memory; metal oxide; the fact that ordering of spins may not exactly coincide with metal-to-insulator transition; Mott insulator; neuromorphics; electrical conductivity changes. nonvolatile; orbitronics Recently, the potential applications of Mott insulators, especially those manifesting metal-to-insulator transitions, in memory devices have been actively explored, as the I. INTRODUCTION phase transitions could be triggered at subnanosecond The scaling of semiconductor devices approaching 10-nm timescales [4], [5] and the state of devices can be accessed critical dimensions is much indebted to the success of the electrically. It is also noteworthy that the electronic-struc- electronic band theory. Nevertheless, as early as 1937, de tural phase changes in complex oxide thin films are robust and reversible for millions of cycles, in sharp contrast to bulk single crystals that shatter across the transition due to stress buildup. The enhanced reliability of phase transitions Manuscript received September 28, 2014; revised April 1, 2015; accepted May 6, 2015. has contributed to the exponential growth of interest in this This work was supported by the Army Research Office under Grant W911NF-14-1-0669; by the Air Force Office of Scientific Research under Grant FA9550-12-1-0189; and by topic from not only applications’ point of view but also the the National Academy of Sciences. ability to study intrinsic physics of the transition with low- The authors are with the John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA (e-mail: [email protected]; dimensional materials. In turn, this motivates state-of-the- [email protected]). art experimental techniques such as ultrafast diffraction, Digital Object Identifier: 10.1109/JPROC.2015.2431914 spectroscopy and other in situ diagnostics to be applied to 0018-9219 Ó 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. | Proceedings of the IEEE 1 This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. Zhou and Ramanathan: Mott Memory and Neuromorphic Devices tion to state ‘‘0’’ is limited by the kinetics of the phase transition. If the kinetic barrier is much smaller than the thermodynamic driving force, the metastable state ‘‘1’’ could not be retained for significant period of time and the memory will be mono-stable and volatile. With a large kinetic barrier, on the other hand, the device would be quasi-bistable and nonvolatile, in which case another external stimuli is needed to switch from ‘‘1’’ to ‘‘0.’’ Theoretically, it is even possible to realize both volatile and nonvolatile operations with a single material at two dif- ferent temperatures with different magnitude of thermo- dynamic driving force. By way of illustration, many of the phase transitions of Mott insulators are hysteretic at tem- peratures close to Tc, which could enable the nonvolatile operation. On the contrary, the stable phase will always be restored in the absence of external stimuli if the ambient temperature is outside the hysteretic window. In comparison with memory devices like DRAM and SRAM, where the state is stored in the form of charge on capacitors, the state of Mott memories could be memo- rized and read out in the form of electronic and magnetic properties. This enables the compact packing of two- terminal cross-point array with 4F2 cell area size (F is the minimum chip feature size). What is more, the speed of electrically triggered Mott transitions [6], [7] in two- terminal devices is comparable with standard memory devices including DRAM, SRAM, and faster than Flash [8], while the demonstrated speed of optically triggered switching can even approach the gate delay of the state- of-the-art transistors [9]. It has also been demonstrated that the write energy per transition is sub-100 fJ and could Fig. 1. Free energy landscape of Mott memories under writing and reading signals as a function of order parameter. (a) At the standby be scaled down with smaller device dimensions [7]. Addi- temperature, the system at equilibrium is in its thermodynamic stable tionally the write/read voltage values are compatible with phase (state ‘‘0’’). DG is the free energy difference between stable typical supply voltages of silicon circuits. and metastable phases (state ‘‘1’’). (b) An external stimulus drives The outline of the paper is as follows. Section II over- the phase transition from state ‘‘0’’ to state ‘‘1’’ and the minimum views the Mott transition phenomena and introduces the energy cost and the minimum energy dissipated in the system is DG. (c) When the writing signal is removed, the system in state ‘‘1’’ faces an key mechanisms involving cooperative structural and elec- energy barrier of GB and the relaxation to state ‘‘1’’ is limited by the tronic phase change to the general reader. Various devices kinetics of the transition. The relative magnitude of kinetic barrier GB that have been realized to date utilizing Mott transitions and thermodynamic driving force DG determines whether the state is for memory and neuromorphic devices are discussed in volatile. The memory is volatile if the metastable state ‘‘1’’ cannot be Section III. Section IV evaluates and benchmarks the per- retained for a significant period of time. Otherwise, it can function as a nonvolatile memory and (d) another external signal is needed to formance metrics of Mott transition memory devices, fol- change ‘‘1’’ back to ‘‘0.’’ lowed by a summary section. II. MATERIAL PROPERTIES such problems, furthering our fundamental understanding of strong correlations in complex systems. A. Metal-to-Insulator Transition Phenomena The general idea of utilizing Mott transition in memory Several types of phase transitions involving change in devices is illustrated in Fig. 1 by considering the Gibbs free magnetic, electric, and mechanical properties exist in the energy landscape of the system under write and read sig- family of Mott insulators. The metal-to-insulator transi- nals. Initially, the system is in the stable phase (state ‘‘0’’). tions refer to a class where the competition between the An external stimulus drives the phase transition from the electron localization and delocalization lead to drastic thermodynamically stable phase to the metastable phase changes in the conductivity of materials. These phase tran- (state ‘‘1’’) (for example, from the insulating state to the sitions can be triggered by thermal energy, electric fields, metallic state). When the stimulus is removed, the relaxa- and optical stimuli, and the state of the system can be 2 Proceedings of the IEEE | This article has been accepted for inclusion in a future issue
Recommended publications
  • Artificial Quantum Many-Body States in Complex Oxide Heterostructures at Two-Dimensional Limit Xiaoran Liu University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2016 Artificial Quantum Many-Body States in Complex Oxide Heterostructures at Two-Dimensional Limit Xiaoran Liu University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Condensed Matter Physics Commons Recommended Citation Liu, Xiaoran, "Artificial Quantum Many-Body States in Complex Oxide Heterostructures at Two-Dimensional Limit" (2016). Theses and Dissertations. 1767. http://scholarworks.uark.edu/etd/1767 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Artificial Quantum Many-Body States in Complex Oxide Heterostructures at Two-Dimensional Limit A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Xiaoran Liu Nanjing University Bachelor of Science in Materials Science and Engineering, 2011 University of Arkansas Master of Science in Physics, 2013 December 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Prof. Jak Chakhalian Dissertation Director Prof. Laurent Bellaiche Prof. Surendra P. Singh Committee Member Committee Member Prof. Huaxiang Fu Prof. Ryan Tian Committee Member Committee Member ABSTRACT As the representative family of complex oxides, transition metal oxides, where the lattice, charge, orbital and spin degrees of freedom are tightly coupled, have been at the forefront of condensed matter physics for decades. With the advancement of state-of-the-art het- eroepitaxial deposition techniques, it has been recognized that combining these oxides on the atomic scale, the interfacial region offers great opportunities to discover emergent phe- nomena and tune materials' functionality.
    [Show full text]
  • On the Mott Transition and the New Metal-Insulator Transitions in Doped Covalent and Polar Crystals
    the abdus salam united nations educational, scientific and cultural international organization centre XA0200199 international atomic energy agency for theoretical physics ON THE MOTT TRANSITION AND THE NEW METAL-INSULATOR TRANSITIONS IN DOPED COVALENT AND POLAR CRYSTALS S. Dzhumanov U. Begimkulov U.T. Kurbanov 4 and B.Y. Yavidov 33/05 Available at: http://www. ictp. trieste. it/~pub_ off IC/2001/139 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS ON THE MOTT TRANSITION AND THE NEW METAL-INSULATOR TRANSITIONS IN DOPED COVALENT AND POLAR CRYSTALS S. Dzhumanov Institute of Nuclear Physics. Ulugbek, Tashkent, 702132, Uzbekistan1 and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, U. Begimkulov, U.T. Kurbanov and B.Y. Yavidov Institute of Nuclear Physics, Ulugbek, Tashkent, 702132, Uzbekistan. Abstract The Mott transition and new metal-insulator transitions (MIT's) and their distinctive fea- tures in doped covalent semiconductors and polar compounds are studied within the contin- uum model of extrinsic carrier self-trapping, the Hubbard impurity band model (with on-site Coulomb repulsion and screening effects) and the extrinsic (bi)polaronic band model (with short- and long-range carrier-impurity, impurity-phonon and carrier-phonon interactions and intercar- rier correlation) using the appropriate tight-binding approximations and variational methods. We have shown the formation possibility of large-radius localized one- and two-carrier impurity (or defect) states and narrow impurity bands in the band gap and charge transfer gap of these carrier-doped systems. The extrinsic Mott-Hubbard and (bi)polaronic insulating gaps are cal- culated exactly.
    [Show full text]
  • Vanadium Dioxide: Metal-Insulator Transition, Electrical Switching and Oscillations
    Vanadium Dioxide: Metal-Insulator Transition, Electrical Switching and Oscillations. A Review of State of the Art and Recent Progress Alexander Pergament1,2,*), Aurelian Crunteanu1, Arnaud Beaumont1, Genrikh Stefanovich2, and Andrey Velichko2 1 XLIM Research Institute, UMR7252 CNRS/ Université de Limoges, LIMOGES Cedex FRANCE 2Department of Physical Engineering, Petrozavodsk State University, PETROZAVODSK Republic of Karelia RUSSIA Abstract. Vanadium dioxide is currently considered as one of the most promising materials for oxide electronics. Both planar and sandwich thin-film metal/oxide/metal devices based on VO2 exhibit electrical switching with an S-shaped I-V characteristic, and this switching effect is associated with the metal-insulator transition (MIT). In an electrical circuit containing such a switching device, relaxation oscillations are observed if the load line intersects the I–V curve at a unique point in the negative differential resistance region. All these effects are potentially prospective for designing various devices of oxide electronics, such as, particularly, elements of dynamical neuron networks based on coupled oscillators. In this paper, we present a brief review of the state of the art and recent advances in this though only freshly emerged, but exciting and rapidly developing field of research. We start by describing the experimental facts and theoretical models, mainly on the basis of the Mott MIT in vanadium dioxide as a model object, of the switching effect with especial emphasis on their applied potentialities for oxide electronics, and then turn to our recent results concerning synchronization of an array of coupled oscillators based on VO2 switches. In conclusion, we try to formulate an outlook on how these findings can contribute to the future development of bio-inspired neuromorphic devices implementing the associative memory function, that is, non-Boolean computing with artificial neural networks**).
    [Show full text]
  • Unusual Mott Transition in Multiferroic Pbcro3
    Unusual Mott transition in multiferroic PbCrO3 Shanmin Wanga,b,c,1,2,3, Jinlong Zhub,c,d,1, Yi Zhangb, Xiaohui Yuc,d, Jianzhong Zhangc, Wendan Wanga, Ligang Baib,e, Jiang Qianf, Liang Ying, Neil S. Sullivang, Changqing Jind,h, Duanwei Hea,2, Jian Xua, and Yusheng Zhaob,c,2 aInstitute of Atomic & Molecular Physics, Sichuan University, Chengdu 610065, China; bHigh Pressure Science & Engineering Center and Physics Department, University of Nevada, Las Vegas, NV 89154; cLos Alamos Neutron Science Center and Materials Science & Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545; dNational Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; eHigh Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL 60439; fUS Synthetic Corporation, Orem, UT 84058; gDepartment of Physics, University of Florida, Gainesville, FL 32611; and hCollaborative Innovation Center of Quantum Matter, Beijing 100871, China Edited by Ho-kwang Mao, Carnegie Institution of Washington, Washington, DC, and approved November 3, 2015 (received for review May 28, 2015) The Mott insulator in correlated electron systems arises from classi- study of correlated systems. Among them, PbCrO3 is such a cal Coulomb repulsion between carriers to provide a powerful force material that can only be synthesized at high pressures. At am- for electron localization. Turning such an insulator into a metal, the bient pressure, it adopts a paramagnetic (PM), cubic structure at so-called Mott transition, is commonly achieved by “bandwidth” room temperature (T) with an anomalously large unit-cell volume control or “band filling.” However, both mechanisms deviate from and transforms to an antiferromagnetic (AFM) ground state at low the original concept of Mott, which attributes such a transition to temperatures (19, 20).
    [Show full text]
  • Attosecond Transient Absorption of Solid-State and Phase-Change Materials
    Attosecond Transient Absorption of Solid-State and Phase-Change Materials By Marieke Faye Jager A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Stephen R. Leone, Co-Chair Professor Daniel M. Neumark, Co-Chair Professor Eric Neuscamman Professor David Attwood Fall 2017 Attosecond Transient Absorption of Solid-State and Phase-Change Materials Copyright 2017 by Marieke Faye Jager Abstract Attosecond Transient Absorption of Solid-State and Phase-Change Materials by Marieke Faye Jager Doctor of Philosophy in Chemistry University of California, Berkeley Professor Stephen R. Leone, Co-Chair Professor Daniel M. Neumark, Co-Chair Attosecond science, utilizing short bursts of extreme ultraviolet light, has opened up a fascinating new field of ultafast light-matter interactions, where dynamics in atomic, molecular, and solid state systems can now be followed on the timescale of electron motion. In this dissertation, applications of attosecond pulses toward performing transient absorption spectroscopy experiments on complex electron-correlation-driven processes in material systems are described. In the first chapter, a brief overview of ultrafast spectroscopy, attosecond pulse production, and light-matter interaction in the extreme ultraviolet is provided, which offers the necessary breadth and background for the detailed case study that follows, on the insulator-to-metal phase transition in vanadium dioxide. The origin of the bandgap in vanadium dioxide, which is not predicted to exist under conventional single-particle band theories, has been explained as the result of either electron correlation or structural distortion.
    [Show full text]
  • Mott Transition and Electronic Structure in Complex Oxide Heterostructures Mott Transition and Electronic Structure in Complex Oxide Heterostructures
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Mott rT ansition and Electronic Structure in Complex Oxide Heterostructures Jian Liu University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Condensed Matter Physics Commons, and the Semiconductor and Optical Materials Commons Recommended Citation Liu, Jian, "Mott rT ansition and Electronic Structure in Complex Oxide Heterostructures" (2012). Theses and Dissertations. 275. http://scholarworks.uark.edu/etd/275 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Mott Transition and Electronic Structure in Complex Oxide Heterostructures Mott Transition and Electronic Structure in Complex Oxide Heterostructures A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics By Jian Liu Nanjing University Bachelor of Science in Physics, 2004 University of Houston Master of Science in Physics, 2006 May 2012 University of Arkansas Abstract Strongly correlated electron systems, particularly transition metal oxides, have been a focus of condensed matter physics for more than two decades since the discovery of high-temperature su- perconducting cuprates. Diverse competing phases emerge, spanning from exotic magnetism to unconventional superconductivity, in proximity to the localized-itinerant transition of Mott insu- lators. While studies were concentrated on bulk crystals, the recent rapid advance in synthesis has enabled fabrication of high-quality oxide heterostructures, offering a new route to create novel artificial quantum materials.
    [Show full text]
  • Introduction to Metal-Insulator Transitions
    Introduction to Metal-Insulator Transitions V. Dobrosavljevi´c Department of Physics and National High Magnetic Field Laboratory Florida State University,Tallahassee, FL 32306, USA arXiv:1112.6166v1 [cond-mat.str-el] 28 Dec 2011 1 1 Introduction to Metal-Insulator Transitions 1.1 Why study metal-insulator transitions? The metal-insulator transition (MIT) is one of the oldest, yet one of the fundamentally least understood problems in condensed matter physics. Materials which we under- stand well include good insulators such as silicon and germanium, and good metals such as silver and gold. Remarkably simple theories (Ashcroft and Mermin, 1976) have been successful in describing these limiting situations: in both cases low temperature dynamics can be well described through a dilute set of elementary excitations. Un- fortunately, this simplicity comes at a price: the physical properties of such materials are extremely stable. They prove to be very difficult to manipulate or modify in order to the meet the needs modern technology, or simply to explore novel and interesting phenomena. Disorder Interactions: : Frustration: Anderson Mott Transition Glassy Localization Freezing Metal-Insulator Transition Fig. 1.1 Three basic mechanism for electron localization. The situation is more promising in more complicated materials, where relatively few charge carriers are introduced in an otherwise insulating host. Several such systems have been fabricated even years ago, and some have, in fact, served as basic building blocks of modern information technology. The most familiar are, of course, the doped 2 Introduction to Metal-Insulator Transitions semiconductors which led to the discovery of the transistor. More recent efforts drifted to structures of reduced dimensionality and devices such as silicon MOSFETs (metal- oxide-semiconductor field-effect transistors), which can be found in any integrated circuit.
    [Show full text]
  • Correlation Physics from a Condensed Matter Perspective: Menu and Amuse- Bouche Leon Balents, KITP
    Correlation physics from a condensed matter perspective: menu and amuse- bouche Leon Balents, KITP serious lecture next week by Cenke Xu Local resources How exotic? 1 5 7 8 9 10 (self rated) Local resources How exotic? 1 5 7 8 9 10 viewed from outside UCSB Today’s agenda Get to know each other: Offer up a menu of potentially interesting topics to discuss later I will try to offer topics which seem most likely to be fruitful topics to explore Apologies if I am ignorant or naive, especially about the cold atom community Chez KITP Menu Specials High-Tc Quantum Spin Liquids Mott Transitions Spin-Orbit Physics Classics Frustrated Magnetism Quantum Criticality Simulations quantum classical Simulations quantum classical Anything is possible - so what is really interesting? Motivations in CMT Understand materials Applications Expand the boundaries of fundamental theory emergent phenomena - phases, correlations, excitations, topology mechanisms - e.g. of high-Tc, etc. Topics High-Tc - and beyond? Quantum spin liquids Mott transitions Spin orbit physics High Tc “Unsolved” almost 25 years, cuprate superconductivity is probably still considered the most greatest challenge in CMP High Tc - Questions What are the necessary features for high-Tc? 2d? proximity to Mott insulator? antiferromagnetic fluctuations? Single band? Charge transfer material? Is Hubbard model sufficient? High Tc - Questions How do we understand the unusual features of the cuprates? Is there an underlying QCP of importance? What is the nature of the “strange metal”? Is the pseudo-gap
    [Show full text]
  • The Anderson-Mott Transition
    The Anderson-Mott transition D. Belitz Department of Physics, and Materials Science Institute, University of Oregon, Eugene, Oregon 97409 T. R. Kirkpatrick lnsti tute for Physical Science and Technology, and Department of Physics, University of Maryland, College Park, Maryland 20742 The interacting disordered electron problem is reviewed with emphasis on the quantum phase transitions that occur in a model system and on the field-theoretic methods used to describe them. An elementary discussion of conservation laws and diffusive dynamics is followed by a detai1ed derivation of the extended nonlinear sigma model, which serves as an effective field theory for the problem. A general scaling theory of metal-insulator and related transitions is developed, and explicit renormalization-group calculations for the various universality classes are reviewed and compared with experimental results. A discussion of per- tinent physical ideas and phenomenological approaches to the metal-insulator transition not contained in the sigma-model approach is given, and phase-transition aspects of related problems, like disordered su- perconductors and the quantum Hall effect, are discussed. The review concludes with a list of open prob- lems. CONTENTS 4. Symmetry considerations 298 a. Spontaneously broken symmetry 298 b. Externally broken symmetry 299 I. Introduction 262 c. Remaining soft modes and universality II. Diffusive Electrons 266 classes 300 A. Diffusion poles 266 C. Summary of results for noninteracting electrons 301 1 ~ The quasiclassical approximation for electron 1. Renormalization of the nonlinear sigma model 301 transport 267 2. Composite operators, ultrasonic attenuation, a. A phenomenological argument for diffusion 267 and the HalI conductivity 302 b. Linear response and the Boltzmann equation 268 3.
    [Show full text]
  • 1 Continuous Mott Transition in Semiconductor Moiré Superlattices
    Continuous Mott transition in semiconductor moiré superlattices Tingxin Li1, Shengwei Jiang2, Lizhong Li1, Yang Zhang3, Kaifei Kang1, Jiacheng Zhu1, Kenji Watanabe4, Takashi Taniguchi4, Debanjan Chowdhury2, Liang Fu3, Jie Shan1,2,5*, Kin Fai Mak1,2,5* 1School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA 2Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA 3Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA 4National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan 5Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA Correspondence to: [email protected], [email protected] These authors contributed equally: Tingxin Li, Shengwei Jiang, Lizhong Li. The evolution of a Landau Fermi liquid into a nonmagnetic Mott insulator with increasing electronic interactions is one of the most puzzling quantum phase transitions in physics 1-6. The vicinity of the transition is believed to host exotic states of matter such as quantum spin liquids 4-7, exciton condensates 8 and unconventional superconductivity 1. Semiconductor moiré materials realize a highly controllable Hubbard model simulator on a triangular lattice 9-22, providing a unique opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the electronic interactions. Here, by electrically tuning the effective interaction strength in MoTe2/WSe2 moiré superlattices, we observe a continuous MIT at a fixed filling of one electron per unit cell. The existence of quantum criticality is supported by the scaling behavior of the resistance, a continuously vanishing charge-gap as the critical point is approached from the insulating side, and a diverging quasiparticle effective mass from the metallic side.
    [Show full text]
  • Mott-Anderson Transition in Molecular Conductors: Influence of Randomness on Strongly Correlated Electrons in the Κ-(BEDT-TTF)2X System
    Crystals 2012, 2, 374-392; doi:10.3390/cryst2020374 OPEN ACCESS crystals ISSN 2073-4352 www.mdpi.com/journal/crystals Review Mott-Anderson Transition in Molecular Conductors: Influence of Randomness on Strongly Correlated Electrons in the κ-(BEDT-TTF)2X System Takahiko Sasaki 1,2 1 Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; E-Mail: [email protected]; Tel.:+81-22-215-2025; Fax:+81-22-215-2026 2 JST-CREST, Tokyo 102-0076, Japan Received: 12 March 2012; in revised form: 18 April 2012 / Accepted: 20 April 2012 / Published: 8 May 2012 Abstract: The Mott-Anderson transition has been known as a metal-insulator (MI) transition due to both strong electron-electron interaction and randomness of the electrons. For example, the MI transition in doped semiconductors and transition metal oxides has been investigated up to now as a typical example of the Mott-Anderson transition for changing electron correlations by carrier number control in concurrence with inevitable randomness. On the other hand, molecular conductors have been known as typical strongly correlated electron systems with bandwidth controlled Mott transition. In this paper, we demonstrate our recent studies on the randomness effect of the strongly correlated electrons of the BEDT-TTF molecule based organic conductors. X-ray irradiation on the crystals introduces molecular defects in the insulating anion layer, which cause random potential modulation of the correlated electrons in the conductive BEDT-TTF layer. In combination with hydrostatic pressure, we are able to control the parameters for randomness and correlations for electrons approaching the Mott-Anderson transition.
    [Show full text]
  • A First-Order Mott Transition in Lix Coo2
    ARTICLES A first-order Mott transition in LixCoO2 C.A. MARIANETTI1,G.KOTLIAR2 AND G. CEDER1,3* 1Department of Materials Science and Engineering,Massachusetts Institute of Technology,Cambridge,Massachusetts 02139,USA 2Center for Materials Theory,Department of Physics and Astronomy,Rutgers University,Piscataway,New Jersey 08854,USA 3Center for Materials Science and Engineering,Massachusetts Institute of Technology,Cambridge,Massachusetts 02139,USA *e-mail: [email protected] Published online: 22 August 2004; doi:10.1038/nmat1178 Despite many years of experimental searches for a first- ayered CoO2-based materials are continuing to prove themselves rich in both fundamental physics and technological applications. order Mott transition in crystalline-doped semiconductors, Na CoO and its hydrated counterpart are receiving renewed L x 2 interest due to the discovery of superconductivity1,in addition to none have been found. Extensive experimental work has 2 anomalous thermoelectric properties .LixCoO2 is the primary cathode characterized a first-order metal–insulator transition in material in rechargeable Li batteries, sustaining a multibillion-dollar market. As a result, it has been the subject of intense experimental and 3–5 LixCoO2, the classic material for rechargeable Li batteries, theoretical study, including the prediction and experimental verification6,7 of unusually complex phase behaviour. In this letter, with a metallic state for x < 0.75 and insulating for x > 0.95. another fundamentally important phenomenon is uncovered within this technologically important material. Using density functional Using density functional theory calculations on large theory (DFT) calculations, we provide firm evidence that LixCoO2 supercells, we identify the mechanism of this hereto exhibits a clear example of a first-order Mott transition in a crystalline- doped semiconductor.
    [Show full text]