Materials Studio: CASTEP Guide

Total Page:16

File Type:pdf, Size:1020Kb

Materials Studio: CASTEP Guide CASTEP GUIDE MATERIALS STUDIO 2019 Copyright Notice ©2018 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3DVIA, 3DSWYM, BIOVIA, NETVIBES, IFWE and 3DEXCITE, are commercial trademarks or registered trademarks of Dassault Systèmes, a French "société européenne" (Versailles Commercial Register # B 322 306 440), or its subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval. Acknowledgments and References To print photographs or files of computational results (figures and/or data) obtained by using Dassault Systèmes software, acknowledge the source in an appropriate format. For example: "Computational results were obtained by using Dassault Systèmes BIOVIA software programs. BIOVIA Materials Studio was used to perform the calculations and to generate the graphical results." Dassault Systèmes may grant permission to republish or reprint its copyrighted materials. Requests should be submitted to Dassault Systèmes Customer Support, either by visiting https://www.3ds.com/support/ and clicking Call us or Submit a request, or by writing to: Dassault Systèmes Customer Support 10, Rue Marcel Dassault 78140 Vélizy-Villacoublay FRANCE Contents CASTEP 1 Setting up a calculation on an isolated Introduction 1 molecule 32 Additional Information 1 Requesting electronic, structural, and vibrational properties 33 Tasks in CASTEP 2 Manipulating files 49 CASTEP Energy task 3 Analyzing CASTEP results 51 CASTEP Geometry Optimization task 3 Displaying trajectory and chart data 51 Equation of state calculation 4 Visualizing volumetric data 53 Geometry optimization methods 5 Displaying band structure charts 58 CASTEP Dynamics task 5 Displaying core level spectra 59 Selecting the thermodynamic ensemble 5 Displaying density of states charts 60 Defining the time step 5 Calculating elastic constants 62 Constraints during dynamics 5 Visualizing Fermi surfaces 66 CASTEP Elastic Constants task 6 Visualizing vibrational spectra 66 CASTEP Transition State Search task 6 Displaying NMR results 67 Synchronous transit methods 7 Displaying optical properties 68 CASTEP TS Confirmation task 7 Displaying phonon dispersion and density CASTEP Properties 8 of states 70 Modeling disorder in solids 9 Displaying population analysis results 71 Mixture atoms 9 Calculating reaction kinetics 72 Technical limitations 9 Displaying the averaged potential chart for Setting up CASTEP calculations 10 work function calculations 73 Setting electronic options 10 Updating structure 73 Setting up a geometry optimization 22 Displaying thermodynamic properties 74 Setting up a molecular dynamics CASTEP jobs 76 calculation 24 Using CASTEP job control 76 Setting up a transition state calculation 26 Running CASTEP jobs in parallel 76 Setting up a transition state confirmation Remote CASTEP jobs 76 calculation 26 A sample CASTEP run 77 Setting up an elastic constants calculation 27 If a remote CASTEP job fails 79 Setting up an LDA+U calculation 28 Running CASTEP in standalone mode 80 Setting up a core hole calculation 29 CASTEP file formats 82 Setting up a work function calculation 30 CASTEP file formats - PARAM 83 Setting up a reaction kinetics calculation 31 CASTEP file formats - CELL 83 Page i | Materials Studio • CASTEP Guide CASTEP file formats - CASTEP 84 Estimated compressibility 112 CASTEP file formats - binary checkpoint TPSD geometry optimization 113 files 84 Damped molecular dynamics 113 CASTEP file formats - BANDS 84 Dynamics 113 CASTEP file formats - CST_ESP 84 Wavefunctions and density extrapolation 114 CASTEP file formats - task-specific files 84 Ensembles 115 CASTEP file formats - PHONON 85 Constraints 118 CASTEP file formats - TDDFT 85 Example 118 CASTEP file formats - PDOS_WEIGHTS 85 Core level spectroscopy 119 CASTEP file formats - CST_OME 85 Emission spectroscopy 119 CASTEP file formats - ORBITALS 86 Absorption spectroscopy 120 CASTEP file formats - CHDIFF 86 Core hole effects 120 CASTEP file formats - ELF 86 Energy broadening 120 CASTEP file formats - OTFG 86 Spin-orbit splitting 121 Reaction Kinetics Study Table 87 Phonon density of states 121 Theory in CASTEP 88 Electron localization function 121 CASTEP background theory 88 Formulation of electron localization Supercell approach 88 function 121 Fast Fourier transforms (FFT) in CASTEP 90 How to interpret ELF 123 Exchange-correlation functionals in CASTEP 91 Mulliken population analysis 123 Spin Orbit Coupling 93 Introduction 123 LDA+U 93 Formalism 123 Symmetry in CASTEP 94 The LCAO Basis Set 125 Pseudopotentials 94 Implementation details 125 Plane wave basis set 102 Interpreting the results 126 Self-consistent electronic minimization 104 Hirshfeld charge analysis 126 Disorder in solids 106 Calculating NMR shielding tensors using Disorder and first principles calculations 107 pseudopotentials 127 Limitations of VCA implementation in All-electron magnetic response with CASTEP 108 pseudopotentials 127 Test results 108 Calculation of perturbed wavefunctions 128 Geometry optimization 111 NMR properties of molecules and crystals 128 BFGS geometry optimization 111 NMR shielding tensor 128 Constraints 111 Sensitivity of NMR to calculation parameters 129 Non-linear constraints 112 NMR J-couplings 129 Page ii | Materials Studio • CASTEP Guide EPR G-tensor 130 Electron density selection 201 Optical properties 131 Electron density difference selection 202 Definition of optical constants 131 Electron localization function selection 202 DFT optics 133 Energy evolution selection 203 Evaluation of the dielectric constant 133 Fermi surface selection 203 Details of the calculation 133 IR spectrum selection 204 Limitations of the method 134 NMR selection 204 Sensitivity of optical properties to Optical properties selection 205 calculation parameters 135 Orbitals selection 206 TD-DFT optics 138 Phonon dispersion selection 207 Phonons 138 Phonon density of states selection 208 Practical schemes for phonon calculations 140 Population analysis selection 209 Interpolation schemes 141 Potentials selection 210 Symmetry analysis of vibrations 141 Reaction kinetics selection 211 Infrared spectra 141 Raman spectrum selection 211 Linear response 142 STM profile selection 212 Raman spectra 143 Structure selection 213 Thermodynamic calculations 144 Thermodynamic properties selection 213 Dialogs in CASTEP 147 Results file selector 214 CASTEP Calculation dialog 147 CASTEP keywords 215 Setup tab 147 CASTEP References 216 Electronic tab 162 CASTEP Density Mixing Options dialog 167 CASTEP Occupancy Options dialog 168 CASTEP Real Space Potentials dialog 172 Properties tab 174 CASTEP Phonon Density of States Options dialog 189 Job Control tab 192 CASTEP Job Files dialog 194 CASTEP Analysis dialog 195 Band structure selection 195 Core level spectroscopy selection 197 Density of states selection 198 Elastic constants selection 201 Page iii |Materials Studio • CASTEP Guide CASTEP Introduction CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science. CASTEP employs the density functional theory plane-wave pseudopotential method, which allows you to perform first-principles quantum mechanics calculations that explore the properties of crystals and surfaces in materials such as semiconductors, ceramics, metals, minerals, and zeolites. Typical applications involve studies of surface chemistry, structural properties, band structure, density of states, and optical properties. CASTEP can also be used to study the spatial distribution of the charge density and wavefunctions of a system. In addition, you can use CASTEP to calculate the full tensor of second-order elastic constants and related mechanical properties of a crystal (Poisson coefficient, Lamé constants, bulk modulus). The transition- state searching tools in CASTEP enable you to study chemical reactions in either the gas phase or on the surface of a material using linear synchronous transit/quadratic synchronous transit technology. These tools can also be used to investigate bulk and surface diffusion processes. CASTEP can be used effectively to study properties of both point defects (vacancies, interstitials, and substitutional impurities) and extended defects (for example grain boundaries and dislocations) in semiconductors and other materials. Furthermore, the vibrational properties of solids (phonon dispersion, total and projected density of phonon states, thermodynamic properties) can be calculated with CASTEP using either the linear response methodology or the finite displacements technique. The results can be used in various ways, for instance, to investigate the vibrational properties of adsorbates on surfaces, to interpret experimental neutron spectroscopy data or vibrational spectra, to study phase stability at high temperatures and pressures, and so on. The linear response method can also be used to calculate the response of a material to an applied electric field - polarizability for molecules and dielectric permittivity in solids - and to predict IR spectra. CASTEP can be used to calculate the properties required to analyze the results of solid-state NMR experiments, that is, chemical shifts and electric field gradients on atoms of interest. A detailed review of the CASTEP NMR formalism and numerous examples of practical applications are discussed in Bonhomme et al. (2012). The CASTEP
Recommended publications
  • Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department
    Spoken Tutorial Project, IIT Bombay Brochure for Chemistry Department Name of FOSS Applications Employability GChemPaint GChemPaint is an editor for 2Dchem- GChemPaint is currently being developed ical structures with a multiple docu- as part of The Chemistry Development ment interface. Kit, and a Standard Widget Tool kit- based GChemPaint application is being developed, as part of Bioclipse. Jmol Jmol applet is used to explore the Jmol is a free, open source molecule viewer structure of molecules. Jmol applet is for students, educators, and researchers used to depict X-ray structures in chemistry and biochemistry. It is cross- platform, running on Windows, Mac OS X, and Linux/Unix systems. For PG Students LaTeX Document markup language and Value addition to academic Skills set. preparation system for Tex typesetting Essential for International paper presentation and scientific journals. For PG student for their project work Scilab Scientific Computation package for Value addition in technical problem numerical computations solving via use of computational methods for engineering problems, Applicable in Chemical, ECE, Electrical, Electronics, Civil, Mechanical, Mathematics etc. For PG student who are taking Physical Chemistry Avogadro Avogadro is a free and open source, Research and Development in Chemistry, advanced molecule editor and Pharmacist and University lecturers. visualizer designed for cross-platform use in computational chemistry, molecular modeling, material science, bioinformatics, etc. Spoken Tutorial Project, IIT Bombay Brochure for Commerce and Commerce IT Name of FOSS Applications / Employability LibreOffice – Writer, Calc, Writing letters, documents, creating spreadsheets, tables, Impress making presentations, desktop publishing LibreOffice – Base, Draw, Managing databases, Drawing, doing simple Mathematical Math operations For Commerce IT Students Drupal Drupal is a free and open source content management system (CMS).
    [Show full text]
  • Pymol Modelling Workshop
    PyMOL Modelling Workshop My website: http://pldserver1.biochem.queensu.ca/~rlc/work/teaching/BCHM442/ There you will find links to download the latest educational version of PyMOL as well as a link to my “Introduction to PyMOL”, which in turn has links to other people's PyMOL tutorials. Note also the PyMOL Wiki: http://pymolwiki.org. Structure files can be found by searching the Protein Data Bank (PDB) for structure: easy to remember website http://www.pdb.org. There is also the PDBe (PDB Europe, http://www.pdbe.org) that contains the same databank of structures, but with a different web interface for searching for structures and a different set of tools for analyzing structures. What is in a PDB file? Lots of information in the “header” (the section of the file preceding the actual atomic coordinates) as well as the coordinates for the atoms. When assessing a structure, one needs to take account of the resolution and R-factor, error estimates and missing residues. There is information about the sequence that was used to determine the structure with a sequence database reference. There is also information about the biological unit. In the case of crystal structures the biological unit may need to be generated by applying crystallographic symmetry operators, although there are web sites that also try to provide that information. (e.g. http://www.ebi.ac.uk/msd-srv/pisa/). Warning: One cannot blindly trust a crystal structure to be providing you with a completely accurate picture of reality. Reading the paper that describes the structure is a good start! Outline of PyMOL usage PyMOL is a very powerful, scriptable (customizable) tool for making publication-quality figures and performing analyses on structures.
    [Show full text]
  • Dmol Guide to Select a Dmol3 Task 1
    DMOL3 GUIDE MATERIALS STUDIO 8.0 Copyright Notice ©2014 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA and NETVIBES are commercial trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the U.S. and/or other countries. All other trademarks are owned by their respective owners. Use of any Dassault Systèmes or its subsidiaries trademarks is subject to their express written approval. Acknowledgments and References To print photographs or files of computational results (figures and/or data) obtained using BIOVIA software, acknowledge the source in an appropriate format. For example: "Computational results obtained using software programs from Dassault Systèmes Biovia Corp.. The ab initio calculations were performed with the DMol3 program, and graphical displays generated with Materials Studio." BIOVIA may grant permission to republish or reprint its copyrighted materials. Requests should be submitted to BIOVIA Support, either through electronic mail to [email protected], or in writing to: BIOVIA Support 5005 Wateridge Vista Drive, San Diego, CA 92121 USA Contents DMol3 1 Setting up a molecular dynamics calculation20 Introduction 1 Choosing an ensemble 21 Further Information 1 Defining the time step 21 Tasks in DMol3 2 Defining the thermostat control 21 Energy 3 Constraints during dynamics 21 Setting up the calculation 3 Setting up a transition state calculation 22 Dynamics 4 Which method to use?
    [Show full text]
  • Atomistic Molecular Dynamics Simulation of Graphene- Isoprene Nanocomposites
    Atomistic molecular dynamics simulation of graphene- isoprene nanocomposites P Chanlert1, J Wong-Ekkabut2, W Liewrian3,4,5 and T Sutthibutpong3,4,5* 1 Program of Physics, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla, 90000, Thailand 2 Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand 3 Theoretical and Computational Physics Group, Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand 4 Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand 5 Thailand Center of Excellence in Physics (ThEP Center), Commission on Higher Education, Bangkok 10400, Thailand *email: [email protected] Abstract. A series of atomistic molecular dynamics simulations were performed for 4-mer isoprene molecules confined between graphene sheets with varied graphene separations in order to observe the finite size effects arose from the van der Waals interactions between the isoprene oligomer, forming high density shells at the graphene interfaces. For the small confinement regions, 1.24 nm and 2.21 nm, local density of isoprene at the graphene interface becomes higher than 10 times the bulk density. These results provided the further insights towards the rational design of nanostructures based on graphene sheets and natural rubber polymer. 1. Introduction Composite material is the combination between two materials or more where chemical reaction between these materials is absent. In composites, one with higher quantity is called matrix while those with lesser quantity are called fillers. In general, adding fillers into matrix material enhances both physical and mechanical properties in some ways.
    [Show full text]
  • EPSRC Service Level Agreement with STFC for Computational Science Support
    CoSeC Computational Science Centre for Research Communities EPSRC Service Level Agreement with STFC for Computational Science Support FY 2016/17 Report and Update on FY 2017/18 Work Plans This document contains the 2016/17 plans, 2016/17 summary reports, and 2017/18 plans for the programme in support of CCP and HEC communities delivered by STFC and funded by EPSRC through a Service Level Agreement. Notes in blue are in-year updates on progress to the tasks included in the 2016/17 plans. Text highlighted in yellow shows changes to the draft 2017/18 plans that we submitted in January 2017. Contents CCP5 – Computer Simulation of Condensed Phases .......................................................................... 4 CCP5 – 2016 / 17 Plans (1 April 2016 – 31 March 2017) ...................................................... 4 CCP5 – Summary Report (1 April 2016 – 31 March 2017) .................................................... 7 CCP5 –2017 / 18 Plans (1 April 2017 – 31 March 2018) ....................................................... 8 CCP9 – Electronic Structure of Solids .................................................................................................. 9 CCP9 – 2016 / 17 Plans (1 April 2016 – 31 March 2017) ...................................................... 9 CCP9 – Summary Report (1 April 2016 – 31 March 2017) .................................................. 11 CCP9 – 2017 / 18 Plans (1 April 2017 – 31 March 2018) .................................................... 12 CCP-mag – Computational Multiscale
    [Show full text]
  • Arxiv:1508.02735V1 [Cond-Mat.Mtrl-Sci] 11 Aug 2015
    A critical look at methods for calculating charge transfer couplings fast and accurately Pablo Ramos, Marc Mankarious, and Michele Pavanello∗ Department of Chemistry, Rutgers University, Newark, NJ 07102, USA E-mail: [email protected] Abstract We present here a short and subjective review of methods for calculating charge trans- fer couplings. Although we mostly focus on Density Functional Theory, we discuss a small subset of semiempirical methods as well as the adiabatic-to-diabatic transformation methods typically coupled with wavefunction-based electronic structure calculations. In this work, we will present the reader with a critical assessment of the regimes that can be modelled by the various methods – their strengths and weaknesses. In order to give a feeling about the practical aspects of the calculations, we also provide the reader with a practical protocol for running coupling calculations with the recently developed FDE-ET method. arXiv:1508.02735v1 [cond-mat.mtrl-sci] 11 Aug 2015 ∗To whom correspondence should be addressed 1 Contents 1 Introduction 3 2 DFT Based Methods 5 2.1 The Frozen Density Embedding formalism . 5 2.1.1 FDE-ET method . 9 2.1.2 Distance dependence of the electronic coupling . 12 2.1.3 Hole transfer in DNA oligomers . 14 2.2 Constrained Density Functional Theory Applied to Electron Transfer Simulations . 16 2.3 Fragment Orbital DFT . 18 2.3.1 Hole transfer rates on DNA hairpins . 20 2.3.2 The Curious Case of Sulfite Oxidase . 20 2.4 Ultrafast computations of the electronic couplings: The AOM method . 22 2.5 Note on orthogonality .
    [Show full text]
  • Interoperability Between Electronic Structure Codes with the Quippy Toolkit
    Interoperability between electronic structure codes with the quippy toolkit James Kermode Department of Physics King’s College London 6 September 2012 Outline Overview of libAtoms and QUIP Scripting interfaces Overview of quippy capabilities Live demo! Summary and Conclusions Outline Overview of libAtoms and QUIP Scripting interfaces Overview of quippy capabilities Live demo! Summary and Conclusions I The QUIP (QUantum mechanics and Interatomic Potentials) package, built on top of libAtoms, implements a wide variety of interatomic potentials and tight binding quantum mechanics, and is also able to call external packages. I Various hybrid combinations are also supported in the style of QM/MM, including ‘Learn on the Fly’ scheme (LOTF).2 3 I quippy is a Python interface to libAtoms and QUIP. The libAtoms, QUIP and quippy packages 1 I The libAtoms package is a software library written in Fortran 95 for the purposes of carrying out molecular dynamics simulations. 1http://www.libatoms.org 2Csányi et al., PRL (2004) 3http://www.jrkermode.co.uk/quippy I Various hybrid combinations are also supported in the style of QM/MM, including ‘Learn on the Fly’ scheme (LOTF).2 3 I quippy is a Python interface to libAtoms and QUIP. The libAtoms, QUIP and quippy packages 1 I The libAtoms package is a software library written in Fortran 95 for the purposes of carrying out molecular dynamics simulations. I The QUIP (QUantum mechanics and Interatomic Potentials) package, built on top of libAtoms, implements a wide variety of interatomic potentials and tight binding quantum mechanics, and is also able to call external packages. 1http://www.libatoms.org 2Csányi et al., PRL (2004) 3http://www.jrkermode.co.uk/quippy 3 I quippy is a Python interface to libAtoms and QUIP.
    [Show full text]
  • Surface Functionalization of H-Terminated Diamond with NH and NH2 on the (1, 0, 0), (1, 1, 0) and (1, 1, 1) Surface Planes Using Density Functional Theory
    Uppsala University Bachelor project, 15hp Surface functionalization of H-terminated diamond with NH and NH2 on the (1; 0; 0), (1; 1; 0) and (1; 1; 1) surface planes using Density Functional Theory Sara Kjellberg Supervised by Prof. Karin Larsson October 5, 2017 Abstract The adsorption energy of aminated diamond surfaces on the (1; 1; 1), (1; 1; 0) and (1; 0; 0) diamond surfaces have been calculated with density functional theory (DFT). The resulting values show that bridging is favoured before on-top nitrogen at low coverage for all the low index planes. The trend is even more pronounced as the coverage increases, most likely due to sterical hindrance. As expected, the imidogen (NH) and amidogen (NH2) groups are bonded to the surface planes in the order (1; 0; 0) > (1; 1; 1) > (1; 1; 0) as decrease in energy is the highest on the (1; 0; 0) plane and lowest on the (1 010) plane. The effect of sterical hindrance is largest at the (1; 1; 0) surface while the (1; 0; 0) surface is almost unaffected by neighbouring functional groups. Also, double bonded on-top imidogen (NH) is the least stable group at the (1; 0; 0) surface at low coverage while it is almost as stable as bridging NH when having a full mono-layer. Moreover, on-top imidogen (NH) was highly distorted and forced a change in surface geometry 1 Contents 1 Goal 3 2 Introduction 3 2.1 Background . .3 3 Theory 4 3.1 Surfaces of diamond . .4 3.1.1 General surface theory .
    [Show full text]
  • Trends in Atomistic Simulation Software Usage [1.3]
    A LiveCoMS Perpetual Review Trends in atomistic simulation software usage [1.3] Leopold Talirz1,2,3*, Luca M. Ghiringhelli4, Berend Smit1,3 1Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingenierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland; 2Theory and Simulation of Materials (THEOS), Faculté des Sciences et Techniques de l’Ingénieur, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 3National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; 4The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany This LiveCoMS document is Abstract Driven by the unprecedented computational power available to scientific research, the maintained online on GitHub at https: use of computers in solid-state physics, chemistry and materials science has been on a continuous //github.com/ltalirz/ rise. This review focuses on the software used for the simulation of matter at the atomic scale. We livecoms-atomistic-software; provide a comprehensive overview of major codes in the field, and analyze how citations to these to provide feedback, suggestions, or help codes in the academic literature have evolved since 2010. An interactive version of the underlying improve it, please visit the data set is available at https://atomistic.software. GitHub repository and participate via the issue tracker. This version dated August *For correspondence: 30, 2021 [email protected] (LT) 1 Introduction Gaussian [2], were already released in the 1970s, followed Scientists today have unprecedented access to computa- by force-field codes, such as GROMOS [3], and periodic tional power.
    [Show full text]
  • Porting the DFT Code CASTEP to Gpgpus
    Porting the DFT code CASTEP to GPGPUs Toni Collis [email protected] EPCC, University of Edinburgh CASTEP and GPGPUs Outline • Why are we interested in CASTEP and Density Functional Theory codes. • Brief introduction to CASTEP underlying computational problems. • The OpenACC implementation http://www.nu-fuse.com CASTEP: a DFT code • CASTEP is a commercial and academic software package • Capable of Density Functional Theory (DFT) and plane wave basis set calculations. • Calculates the structure and motions of materials by the use of electronic structure (atom positions are dictated by their electrons). • Modern CASTEP is a re-write of the original serial code, developed by Universities of York, Durham, St. Andrews, Cambridge and Rutherford Labs http://www.nu-fuse.com CASTEP: a DFT code • DFT/ab initio software packages are one of the largest users of HECToR (UK national supercomputing service, based at University of Edinburgh). • Codes such as CASTEP, VASP and CP2K. All involve solving a Hamiltonian to explain the electronic structure. • DFT codes are becoming more complex and with more functionality. http://www.nu-fuse.com HECToR • UK National HPC Service • Currently 30- cabinet Cray XE6 system – 90,112 cores • Each node has – 2×16-core AMD Opterons (2.3GHz Interlagos) – 32 GB memory • Peak of over 800 TF and 90 TB of memory http://www.nu-fuse.com HECToR usage statistics Phase 3 statistics (Nov 2011 - Apr 2013) Ab initio codes (VASP, CP2K, CASTEP, ONETEP, NWChem, Quantum Espresso, GAMESS-US, SIESTA, GAMESS-UK, MOLPRO) GS2NEMO ChemShell 2%2% SENGA2% 3% UM Others 4% 34% MITgcm 4% CASTEP 4% GROMACS 6% DL_POLY CP2K VASP 5% 8% 19% http://www.nu-fuse.com HECToR usage statistics Phase 3 statistics (Nov 2011 - Apr 2013) 35% of the Chemistry software on HECToR is using DFT methods.
    [Show full text]
  • HPC Issues for DFT Calculations
    HPC Issues for DFT Calculations Adrian Jackson EPCC Scientific Simulation • Simulation fast becoming 4 th pillar of science – Observation, Theory, Experimentation, Simulation • Explore universe through simulation rather than experimentation – Test theories – Predict or validate experiments – Simulate “untestable” science • Reproduce “real world” in computers – Generally simplified – Dimensions and timescales restricted – Simulation of scientific problem or environment – Input of real data – Output of simulated data – Parameter space studies – Wide range of approaches http://www.nu-fuse.com Reduce runtime • Serial code optimisations – Reduce runtime through efficiencies – Unlikely to produce required savings • Upgrade hardware – 1965: Moore’s law predicts growth in complexity of processors – Doubling of CPU performance – Performance often improved through on chip parallelism http://www.nu-fuse.com Parallel Background • Why not just make a faster chip? – Theoretical • Physical limitations to size and speed of a single chip • Capacitance increases with complexity • Speed of light, size of atoms, dissipation of heat • The power used by a CPU core is proportional to Clock Frequency x Voltage 2 • Voltage reduction vs Clock speed for power requirements – Voltages become too small for “digital” differences – Practical • Developing new chips is incredibly expensive • Must make maximum use of existing technology http://www.nu-fuse.com Parallel Systems • Different types of parallel systems P M – Shared memory P M P M – Distributed memory P M Interconnect
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Permalink https://escholarship.org/uc/item/4sm897jh Journal Chemical reviews, 121(8) ISSN 0009-2665 Authors Kowalski, Karol Bair, Raymond Bauman, Nicholas P et al. Publication Date 2021-04-01 DOI 10.1021/acs.chemrev.0c00998 Peer reviewed eScholarship.org Powered by the California Digital Library University of California From NWChem to NWChemEx: Evolving with the computational chemistry landscape Karol Kowalski,y Raymond Bair,z Nicholas P. Bauman,y Jeffery S. Boschen,{ Eric J. Bylaska,y Jeff Daily,y Wibe A. de Jong,x Thom Dunning, Jr,y Niranjan Govind,y Robert J. Harrison,k Murat Keçeli,z Kristopher Keipert,? Sriram Krishnamoorthy,y Suraj Kumar,y Erdal Mutlu,y Bruce Palmer,y Ajay Panyala,y Bo Peng,y Ryan M. Richard,{ T. P. Straatsma,# Peter Sushko,y Edward F. Valeev,@ Marat Valiev,y Hubertus J. J. van Dam,4 Jonathan M. Waldrop,{ David B. Williams-Young,x Chao Yang,x Marcin Zalewski,y and Theresa L. Windus*,r yPacific Northwest National Laboratory, Richland, WA 99352 zArgonne National Laboratory, Lemont, IL 60439 {Ames Laboratory, Ames, IA 50011 xLawrence Berkeley National Laboratory, Berkeley, 94720 kInstitute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794 ?NVIDIA Inc, previously Argonne National Laboratory, Lemont, IL 60439 #National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373 @Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 4Brookhaven National Laboratory, Upton, NY 11973 rDepartment of Chemistry, Iowa State University and Ames Laboratory, Ames, IA 50011 E-mail: [email protected] 1 Abstract Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems.
    [Show full text]