26-29 October Murcia (Spain) XX Congress of the Iberian Association of Limnology (AIL-2020) III Iberoamerican Congress of Limnology (CIL-2020)

Total Page:16

File Type:pdf, Size:1020Kb

26-29 October Murcia (Spain) XX Congress of the Iberian Association of Limnology (AIL-2020) III Iberoamerican Congress of Limnology (CIL-2020) XX Congress of the Iberian Association of Limnology (AIL-2020) III Iberoamerican Congress of Limnology (CIL-2020) ONLINE CONGRESS 26-29 October Murcia (Spain) XX Congress of the Iberian Association of Limnology (AIL-2020) III Iberoamerican Congress of Limnology (CIL-2020) Between 26nd and 29th of October 2020 and honouring the theme of the congress, “Limnology in a changing Limnology world”, we will celebrate in a virtual form from Murcia (Southeast of Spain) the XX Congress of the Iberian Association of Limnology (AIL-2020). We highlight that in a the congress is the result of a fruitful coordination between the Iberian Association of Limnology (AIL) and the Iberoamerican Associations of Limnology. changing Thus, this congress is will be also the III Iberoamerican Congress of Limnology (CIL-2020). This event will provide a valuable opportunity, although in a virtual way, for the exchange of knowledge and experiences world among Iberian and Ibero-American limnologists. One of the main aims of this meeting is to discuss the new scientific knowledge that will be useful to improve the management and conservation of inland aquatic ecosystems (from lakes to deltas and estuaries, through rivers and wetlands). This information will be discussed under a global change scenario and considering new models of man-nature cooperation. Under the slogan “Limnology in a changing world”, the congress aims to discuss key issues to manage these ecosystems that despite being of high importance for humans, are subjected to increasing human pressures and impacts. The Iberian Southeast is one of the most arid regions in Europe. Inland aquatic ecosystems in this area acquire a great importance for their uniqueness at European scale. Arid environments offer a wide variety of aquatic ecosystems, hosting an extraordinary biodiversity. The functioning of such ecosystems is determined by extreme biophysic conditions, especially at the terrestrial-aquatic interface. Despite its conservation value, the aquatic ecosystems of this region are highly threatened by the high degree of anthropic alteration and global change. We invite you to participate in this unique event to share experiences, to coordinate works and advance in the knowledge of aquatic ecology, thus contributing to a more sustainable inland aquatic ecosystem management. In this sense, we feel that the involvement of water managers and interested technicians and consultants is essential as a bridge The Congress logo is an original idea between scientific knowledge and society. For this from Antonio José García Cano. reason, our invitation is extended to this collective. 2 PARTNERS Partners & Sponsors SPONSORS 3 President Organizing Mª Rosario Vidal-Abarca Gutiérrez secretary committee Rosa Gómez Cerezo treasurer Mª del Mar Sánchez-Montoya Vocals Mª Luisa Suárez Alonso Josefa Velasco García Andrés Millán Sánchez David Sánchez-Fernández Mercedes Guerrero Brotons Néstor Nicolás Ruiz María Botella Cruz Juana María Mirón Gatón Antonio J. García-Meseguer Zeus Freixinos Campillo 4 Alberto Rodrigues Capitulo asociación argentina de limnología Andrea Encalada asociación ecuatoriana de limnología Andrés Millán Sánchez uniVersidad de murcia Arturo Elosegui uniVersidad del País Vasco Biel Obrador uniVersitat de Barcelona Claudia Pascoal uniVersidade do minho Cristina Canhoto uniVersidade de coimBra Daniel von Schiller uniVersitat de Barcelona David Sánchez-Fernández uniVersidad de murcia Eugenia Martí Scientific ceaB-csic, Blanes Francisco Xavier Quintana Pou uniVersitat de girona committee Isabel Muñoz uniVersitat de Barcelona Jorge Ciros asociación mexicana de limnología Jorge Nimptsch sociedad chilena de limnología Jose Attayde asociación Brasileña de limnología Josefa Velasco García uniVersidad de murcia Margarita Menéndez López uniVersitat de Barcelona Maria Joao Feio uniVersidade de coimBra María Luisa Suárez Alonso uniVersidad de murcia Nelson Aranguren Riaño uniVersidad Pedagógica y tecnológica de colomBia Núria Bonada uniVersitat de Barcelona Núria Catalán united states geological surVey. reston, ca, us Paloma Alcorlo Pagés uniVersidad autónoma de madrid Pepe Barquín uniVersidad de cantaBria Rui Cortés uniVersidade de trás-os-montes e alto douro Toni Camacho uniVersidad de Valencia Verónica Ferreira uniVersidade de coimBra 5 Nancy B. Grimm Arizona State University, Tempe, Arizona, USA The need for positive thinking in times of crisis: co-producing sustainable future scenarios and nature- based solutions for cities We are in a time of accelerating global crises, and nowhere is this more evident than in cities. Because they concentrate people and infrastructure and are often Invited found along coasts and rivers or in arid areas, cities are particularly vulnerable to the impacts of extreme, weather- related events. Population aggregation provides many benefits to society, including enhanced collective creativity Speakers and economies of scale, but among the detriments is rampant spread of disease, as illustrated by the current coronavirus pandemic. Facing this reality, building resilience for our cities requires diverse strategies that integrate social (S), ecological (E), and technological/built (T) components in a systems (S) approach. It also requires outside-the-box thinking and an emphasis on positive futures. I will present a conceptual framework for SETS integration and an approach for co- creating positive future visions (scenarios) developed and applied in nine North and Latin American cities. Examples from the scenario development process will highlight diverse strategies that address unique challenges across the cities. Closer examination of strategies for flooding will show common approaches across diverse cities. And finally, emergent themes, goals, and strategies will be examined in the context of the pandemic, asking how social, ecological, and technological systems respond and fare under this very different type of threat. 6 Mariana Meerhoff Raquel Mendonça Departamento de Ecología y Gestión Ambiental. Federal University of Juiz de Fora. Universidad de la Republica. Uruguay. Brasil. Climate warming decreases ecosystem Carbon footprint of reservoirs – resilience against eutrophication; lessons learned from tropical systems what about the other way round? Climate change affects a myriad of processes that Reservoirs play key social and economic roles as source affect water quality and ecosystem functioning, from the of water and hydropower. There are currently about watershed to the organism scale. Climate change interacts 38,000 dams around the world and many new ones are with other anthropogenic stressors, in often in a synergistic planned especially in the tropics, affecting landscape- way, leading to a decrease in ecosystem resistance and scale greenhouse gas emissions and the carbon cycle. resilience to external perturbations. In particular, there Particularly methane emission is of major concern, is a growing consensus on the idea that warming, in since the transformation of previously fixed atmospheric particular, enhances both eutrophication and its symptoms, carbon dioxide to methane implies a 34-fold amplification promoting cyanobacterial blooms among others. in global warming potential. However, reservoirs also trap large amounts of fluvial sediments containing It has been hypothesized that eutrophication organic carbon in a burial-prone environment, thereby can also enhance climate warming, although the enhancing basin-scale organic carbon sequestration. partial evidence is incipient and often contradictory In my talk, I will discuss some of the latest advances due to the different processes involved. towards quantifying the carbon footprint of reservoirs, showing the research that my group has developed over In this presentation, I will review the main processes the past years. We have demonstrated, for example, that are affected by climate change that lead to a that reservoirs sequester terrestrial organic carbon with weakening of ecosystem resistance and resilience higher efficiency than other depositional environments. against nutrient enrichment, and the growing evidence We also confirmed that methane emission through on the interaction between eutrophication and its bubbles, an emission pathway largely overlooked, symptoms on the carbon cycle and the climate system. can account for most of a reservoir greenhouse gas emission. It is clear that the ultimate carbon footprint of a reservoir is strongly dependent on the characteristics of its project and on the properties of its catchment. Based on this, I will also discuss ideas of how strategic dam planning can reduce greenhouse gas emission. 7 Luisa Orsini Cayetano Gutiérrez Cánovas Departament de Biologia Evolutiva, School of Biosciences,University Ecologia i Cièncias Ambientales. of Birmingham. UK. Universitat de Barcelona. España. Back to the future with the Multiple stressor impacts on freshwater evolutionary time machine ecosystems: biodiversity responses and functional consequences Human-driven environmental change has been associated Freshwaters ecosystems are exposed to multiple drivers with loss of biodiversity and ecosystem services. Yet, we of change and stress, which threaten their biodiversity struggle to mitigate this loss and to regulate pollution. This and their vital contribution to people’s welfare and global is because the links between abiotic environmental change biogeochemical cycles. As a consequence, to improve and biodiversity are dynamic and complex. Because of and adapt biomonitoring, management
Recommended publications
  • Curriculum Vitae
    DR. EVELYN E. GAISER George M. Barley, Jr. Endowed Chair, Institute of Environment Professor, Department of Biological Sciences Florida International University Miami, FL 33199 305-348-6145 (phone), 305-348-4096 (fax), [email protected] EDUCATION 1997 Ph.D. University of Georgia, Athens, Georgia, Institute of Ecology 1991 M.S. Iowa State University, Ames, Iowa, Department of Animal Ecology 1989 B.S. Kent State University, Kent, Ohio, Department of Biology ACADEMIC AND PROFESSIONAL APPOINTMENTS 2018-present George M. Barley, Jr. Endowed Chair of Everglades Research, Institute of Environment, Florida International University, Miami, FL 2014 – 2018 Executive Director, School of Environment, Arts and Society and Associate Dean, College of Arts, Sciences and Education, Florida International University, Miami, FL 2012-present Professor, Department of Biological Sciences, Florida International University, Miami, FL 2006-2012 Associate Professor, Department of Biological Sciences, Florida International University, Miami, FL 2008-present Research Associate, Archbold Biological Station, Lake Placid, FL 2001- 2006 Assistant Professor, Department of Biological Sciences, Florida International University, Miami, FL 1997-2001 Assistant Research Scientist, Southeast Environmental Research Center, Florida International University, Miami, FL 1991-1997 Research/Teaching Assistant, Institute of Ecology, University of Georgia, Athens, GA and Savannah River Ecology Lab, Aiken, SC 1989-1991 Research/Teaching Assistant, Department of Animal Ecology, Iowa State University, Ames, IA and Iowa Lakeside Laboratory, Milford, IA 1987-1988 Research Technician, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH ADMINISTRATIVE SERVICE AT FLORIDA INTERNATIONAL UNIVERSITY 2014 – 2018 Executive Director, School of Environment, Arts and Society and Associate Dean, College of Arts, Sciences and Education. I served as the academic leader of one of three schools in the College of Arts, Sciences and Education.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Researchers Detail Climate-Change Impacts in Ecological Journal 5 November 2013
    Researchers detail climate-change impacts in ecological journal 5 November 2013 also senior author of two of the papers. To produce this special issue of ESA's Frontiers, a diverse group of over 50 ecological scientists and other stakeholders condensed and illustrated the work they had done for a technical input report on biodiversity, ecosystems and ecosystem services for the U.S. National Climate Assessment. The assessment is due to be released in 2014. The collection is aimed at both ecologists and practitioners. The authors hope to demonstrate the potential for researchers to collaborate with practitioners in identifying "policy relevant questions" – information that practitioners need to Climate change is already increasing the frequency of make science-based decisions about management extreme events, such as storms, which directly affect of natural resources. Grimm would like to see more people in numerous ways. Credit: City of Scottsdale academic researchers designing "policy-relevant (with permission) questions" into their research programs so that research projects may address the data needs of managers while tackling basic science questions. The coming century will bring many changes for The authors designed the collection of reports to natural systems and for the human societies that demonstrate the interrelationships of human and depend on them, as changing climate conditions ecosystem productivity, as well as the ripple outward to changing rainfall patterns, soil interrelationships of species, climate and nutrient cycles, species ranges, seasonal timing landscape. By properly managing ecosystems, they and a multitude of other interconnected factors. say, we are also managing their potential to harm Many of these changes have already begun.
    [Show full text]
  • Newsletter of the Biological Survey of Canada
    Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2.
    [Show full text]
  • Annual Report 2009.Qxd
    RisingRising toto thethe ChallengeChallenge Annual Report 2009 From the Executive Director ESA remains financially sound and programmatically strong. n spite of the difficult economic times the country is I facing, ESA remains financially sound and programmatical- ly strong. Our loyal membership stands near 10,000 and the annual meeting—this year in Albuquerque—attracted 3,599 participants with its excellent program offerings. More than 2,000 institutions worldwide subscribe to one or more of our journals, which continue to be among the most highly cited in our field. Ecology, which is 90 years old this year, was named by the Special Libraries Association (SLA) as one of the top 100 most influential journals in science and medicine in the past 100 years. ESA is engaged in a range of activities that are a testament to the breadth of interests of our members. From congressional briefings on “hot” issues to an energized blog; from specialized ESA file photo Credit: conferences and workshops to galvanizing the community behind data sharing; from the continued evo- lution of our prized diversity program to helping faculty use large scale data sets; and from the ever- increasing influence of our journals, ESA continues to be a vibrant and energized society. ESA is also looking to the future. This year, the Governing Board initiated a long range planning process that will examine the existing activities of the Society and anticipate programs and activities that may be needed in the future. We expect that many of our members will be involved in this effort and be asked to help us ensure that ESA stays relevant far into the future.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • Urex Srn 2020 Annual Report
    UREX SRN 2020 ANNUAL REPORT Award Number 1444755 Project Period July 1, 2015 - June 30, 2020 (No-Cost Extension granted through June 30, 2021) Reporting Period: July 1, 2019 - June 30, 2020 (Year 5) Executive Management Team Charles L. Redman, Arizona State University Nancy B. Grimm, Arizona State University Mikhail V. Chester, Arizona State University Peter Groffman,City University of New York David M. Iwaniec, Georgia State University P. Timon McPhearson, The New School Thaddeus R. Miller, Arizona State University Tischa A. Muñoz-Erickson, USDA Forest Service Urban Resilience to Extremes Sustainability Research Network www.URExSRN.net Table of Contents Overarching UREx SRN Goals 1 Network Partners 2 Common Abbreviations 2 Accomplishments 3 Major Activities Specific Objectives Significant Results Key Outcomes & Other Achievements Opportunities for Training & Professional Development Disseminating Results to Communities of Interest Year 6 Plans Impacts 22 Impact on the Development of the Principal Disciplines of the Project Impact on Other Disciplines Impact on the Development of Human Resources Impact on Physical Resources that Form Infrastructure Impact on Institutional Resources that Form Infrastructure Impact on Information Resources that Form Infrastructure Impact on Technology Transfer Impact on Society Beyond Science & Technology Changes 27 Products 28 Books Book Chapters Journal Articles Conference Presentations Other Publications/Products Thesis/Dissertations Network Researchers 41 External Advisory Members 48 Practitioner Organizations 49 Overarching UREx SRN Goals Climate change is widely considered to be one of the greatest challenges to global sustainability, with extreme events being the most immediate way that people experience this phenomenon. Urban areas are particularly vulnerable to these events given their location, high concentration of people, and increasingly complex and interdependent infrastructure.
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • Integrated Approaches to Long-Term Studies of Urban Ecological Systems
    Articles IntegratedIntegrated ApproachesApproaches toto Long-TermLong-Term Studies Studies ofof UrbanUrban EcologicalEcological SystemsSystems NANCY B. GRIMM, J. MORGAN GROVE, STEWARD T. A. PICKETT, AND CHARLES L. REDMAN n 1935, Arthur Tansley wrote: I URBAN ECOLOGICAL SYSTEMS PRESENT We cannot confine ourselves to the so-called “natural” entities and ignore the processes and expressions of vegetation now so MULTIPLE CHALLENGES TO ECOLOGISTS— abundantly provided by man. Such a course is not scientifically PERVASIVE HUMAN IMPACT AND EXTREME sound, because scientific analysis must penetrate beneath the HETEROGENEITY OF CITIES, AND THE forms of the “natural” entities, and it is not practically useful because ecology must be applied to conditions brought about by NEED TO INTEGRATE SOCIAL AND human activity. The “natural” entities and the anthropogenic ECOLOGICAL APPROACHES, CONCEPTS, derivates alike must be analyzed in terms of the most appropriate concepts we can find. (Tansley 1935, p. 304) AND THEORY This quote captures the spirit of the new urban emphasis The conceptual basis for studying urban in the US Long-Term Ecological Research (LTER) net- ecological systems work. We know now that Earth abounds with both subtle and pronounced evidence of the influence of people on Why has the study of urban ecological systems attracted so natural ecosystems (Russell 1993, Turner and Meyer much recent interest? The rationale for the study of 1993). Arguably, cities are the most human dominated of human-dominated systems is three-pronged. First, all ecosystems. Recent calls for studies on “human-domi- humans dominate Earth’s ecosystems (Groffman and nated ecosystems” (Vitousek et al. 1997) finally have been Likens 1994, Botsford et al.
    [Show full text]
  • Aquatic Insects in a Multistress Environment: Cross-Tolerance To
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1277-1286 doi:10.1242/jeb.152108 RESEARCH ARTICLE Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation Susana Pallarés1,*,Marıá Botella-Cruz1, Paula Arribas2,3,4, Andrés Millán1 and Josefa Velasco1 ABSTRACT against the two stressors are shared (cross-tolerance, e.g. Elnitsky Exposing organisms to a particular stressor may enhance tolerance et al., 2009; Holmstrup et al., 2002) or, conversely, can cause to a subsequent stress, when protective mechanisms against the two the organisms to be more susceptible to the second stress stressors are shared. Such cross-tolerance is a common adaptive (cross-susceptibility) (Sinclair et al., 2013; Todgham and response in dynamic multivariate environments and often indicates Stillman, 2013). potential co-evolution of stress traits. Many aquatic insects in inland Studies on multiple stressors have received increasing attention saline waters from Mediterranean-climate regions are sequentially for their potential to reveal interesting information, which would be challenged with salinity and desiccation stress. Thus, cross-tolerance difficult to predict based on single stressor approaches (DeBiasse to these physiologically similar stressors could have been positively and Kelly, 2016; Gunderson et al., 2016), as well as to increase our selected in insects of these regions. We used adults of the understanding of responses to global change in natural multivariate saline water beetles Enochrus jesusarribasi (Hydrophilidae) and environments (Hewitt et al., 2016). However, these approaches are Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses still scarce in the literature and are mostly focused on the combined to desiccation and salinity.
    [Show full text]
  • Algae and Invertebrates of a Great Basin Desert Hot Lake: a Description of the Borax Lake Ecosystem of Southeastern Oregon
    Conference Proceedings. Spring-fed Wetlands: Important Scientific and Cultural Resources of the Intermountain Region, 2002. http://www.wetlands.dri.edu Algae and Invertebrates of a Great Basin Desert Hot Lake: A description of the Borax Lake ecosystem of southeastern Oregon Joseph Furnish Pacific Southwest Region 5, U.S. Department of Agriculture, Forest Service, Vallejo, CA [email protected] James McIver Pacific Northwest Research Station, U.S. Department of Agriculture, Forest Service, LaGrande, OR Mark Teiser Department of Oceanography, Oregon State University, Corvallis, OR Abstract Introduction As part of the recovery plan for the Borax Lake is a geothermally heated endangered chub Gila boraxobius (Cyprinidae), alkaline lake in southeastern Oregon. It a description of algal and invertebrate represents one of the only permanent water populations was undertaken at Borax Lake in sources in the Alvord Desert, which receives 1991 and 1992. Borax Lake, the only known less than 20 cm of rain annually (Green 1978; habitat for G. boraxobius, is a warm, alkaline Cobb et al. 1981). Borax Lake is the only known water body approximately 10 hectares in size habitat for Gila boraxobius, the Borax Lake with an average surface water temperature of chub, a cyprinid fish recognized as a new 30°C. Periphyton algae were surveyed by species in 1980. The chub was listed as scraping substrates and incubating microscope endangered under the Endangered Species Act slides in the water column. Invertebrates were in 1982 because it was believed that geothermal- collected using dip nets, pitfall traps and Ekman energy test-well drilling activities near Borax dredges. The aufwuchs community was Lake might jeopardize its habitat by altering the composed of 23 species and was dominated by flow or temperature of water in the lake.
    [Show full text]
  • 20140620 Thesis Vanklink
    University of Groningen Of dwarves and giants van Klink, Roel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van Klink, R. (2014). Of dwarves and giants: How large herbivores shape arthropod communities on salt marshes. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Of Dwarves and Giants How large herbivores shape arthropod communities on salt marshes Roel van Klink This PhD-project was carried out at the Community and Conservation Ecology group, which is part of the Centre for Ecological and Environmental Studies of the University of Groningen, The Netherlands.
    [Show full text]